THEOREM (POINCARE DUALITY)
Let M be a closed Reoriented n-manifold with fundamental class $[M] \in H_{n}(M ; R)$ (corresponding to the given orientation). Then the map

$$
\begin{aligned}
P D: H^{k}(M ; R) & \longrightarrow H_{n-k}(M ; R) \\
\alpha & \longmapsto \alpha \cap[M]
\end{aligned}
$$

is an isomorphioro of R -modules for all K. K previous theorem follows from this
the map $H^{k}(M ; R) \rightarrow H_{n-k}(M ; R)$ is called the cap product \& it is what we take a look at next. CAP PRODUCT
For an arbitrary space X and
coefficient wing R, define an R-bilinear cap product

$$
\cap: S_{k}(x ; R) \times S^{e}(x ; R) \rightarrow S_{k-l}(x ; R)
$$

for $k \geq l$ by setting.

$$
\sigma \cap \varphi=\varphi\left(\sigma\left[e_{0}, \ldots, e_{e}\right]\right) \sigma\left[e_{e}, \ldots, e_{k}\right]
$$

for $\sigma: \Delta_{k} \rightarrow x$ and $\varphi \in S^{e}(x, R)$.
LEMMA

$$
\partial(\sigma \cap \varphi)=(-1)^{e}(\partial \sigma \cap \varphi-\sigma \cap \delta \varphi)
$$

PROOF OF LEMMA

$$
\begin{aligned}
& \partial \sigma \cap \varphi= \sum_{i=0}^{l}(-1)^{i} \varphi\left(b\left[e_{0}, \ldots, \hat{e}_{i}, \ldots e_{21}, b\right) b\left[e_{l+1}, \ldots, e_{k}\right]\right. \\
&+\sum_{i=l+1}^{k}(-1)^{i} \varphi\left(b\left[e_{0}, \ldots, e_{l}\right]\right) b\left[e_{l}, \ldots, \hat{e}_{i}, \ldots, e_{k}\right] \\
& \sigma \cap S \varphi= \sum_{i=0}^{l+1}(-1)^{i} \varphi\left(\sigma\left[e_{0}, \ldots \hat{e}_{i}, \ldots e_{l+1}\right]\right) b\left[e_{e+1}, \ldots, e_{k}\right] \\
& \partial(\sigma \cap \varphi)= \sum_{i=l}^{n}(-1)^{i-l} \varphi\left(b\left[e_{0}, \ldots, e_{l}\right]\right) b\left[e_{e}, \ldots, \hat{e}_{i}, \ldots, e_{k}\right] \\
& \Rightarrow(-1)^{l}(\partial \sigma \cap \varphi-\sigma \cap S \varphi)=
\end{aligned}
$$

$$
\begin{gathered}
(-1)^{-l}\left(\sum_{i=1}^{k}(-1)^{i} \varphi\left(b\left[e_{0}, \hat{e}_{k}, e_{k}+1\right) b\left[e_{e+1}, \ldots e_{k}\right]\right)=\partial\left(\delta_{n} \varphi\right)\right. \\
-(-1)^{1} \varphi\left(\zeta\left[0_{0}, \ldots, e_{e}\right]\right) b\left[e_{e+1}, \ldots e_{k}\right]
\end{gathered}
$$

COROLLARY cycles
(1) $\cap: Z_{k} \times Z^{l} \rightarrow Z_{k-l}$
(2) $\cap\left(B_{k} \times Z^{e}\right), \cap\left(Z_{k} \times B^{e}\right) \subseteq B_{k-l}$
(3) cap product on the level of chains/cochains induces coop product

$$
n: H_{k}(x ; R) x H^{\ell}(x ; R) \rightarrow H_{k-1}(x ; R)
$$

which is R-linear en every variable. PROOF
(1) From the relation $\partial(\sigma \cap \varphi)= \pm(\partial \sigma \cap \varphi-\sigma \cap b \varphi)$ it follows that the cap product of a cycle b and a cocycle φ is a cycle (z) if $\partial z=0$ then $\partial(\sigma \cap \varphi)= \pm(z \cap \zeta \varphi)$, so the cap product of a cycle and a coboundary is a boundary.

If $S \varphi=0, \partial(\sigma \cap \varphi)= \pm \partial \sigma \cap \varphi$, so the cup product of a boundary and a
cocycle is a boundary.
(3) Is a consequence of (1)\&(2).

Relative forms of the cap product also exist:

$$
\begin{aligned}
& H_{k}(x, R ; R) x H^{l}(x ; R) \xrightarrow[\rightarrow]{H_{k-l}}(x ; A ; R) \\
& H_{k}(x, A ; R) \times H^{l}(x, A ; R) \xrightarrow[\rightarrow]{ } H_{k-l}(x ; R)
\end{aligned}
$$

PROPOSITION (NATURALITY OF n)
\cap is natural w.r.t. maps in the sense that \forall spaces $x, 1, x \xrightarrow{f}, \underline{1}$ $\varphi \in H^{l}(y), \alpha \in H_{k}(x)$ we have

$$
\begin{aligned}
& f_{*}(\alpha) \cap \varphi=f_{*}\left(\alpha \cap f^{*}(\varphi)\right) \\
& H_{k}(x) \times H^{e}(x) \xrightarrow{\cap} H_{k-l}(x) \\
& f_{*} \downarrow \uparrow_{f^{*}} \quad f_{*} \\
& H_{k}(Y) \times H^{l}(I) \xrightarrow{\cap} H_{k-l}(Y)
\end{aligned}
$$

Exercise.

EXAMPLE: SURFACES
For n-manifolds that hove the structure of a Δ-complex, we have an explicit construction for a fundamental class. Consider the case with \mathbb{Z}-coefficients: In simplicial homology a fundamental class must be represented by some linear combination $\sum_{i} k_{i} \sigma_{i}$ of the n-simplices σ_{i} of M. Because the fundamental class maps to a generator of $H_{n}(M \mid x ; \mathbb{Z})$ for points in the interior of the bi_{i} 's each coefficient mut be ± 1. The k_{i}^{\prime} 's must also be such that $\sum k_{i} \sigma_{i}$ is a cycle. \Rightarrow if $\sigma_{i} \& \sigma_{j}$ and σ_{j} share
a common $(n-1)$-dim face, then

ORIENTABLE SURFACES
$X=n T$
$\begin{aligned} & x=4 n-\text { go } / \sim \\ & \text { vertices: } P_{1} \sim P_{2} \sim \ldots \sim P_{4 n}\end{aligned} \quad a_{2}, P_{5}$

$$
\begin{aligned}
& \text { PD: } H^{1}(x) \rightarrow H_{1}(x) \in \begin{array}{l}
H^{2}(x) \rightarrow H_{0}(x) \\
H^{\circ}(x) \rightarrow H_{2}(x)
\end{array} \text { cP } \\
& {[x]=[\tau], \tau=\sigma_{1}+b_{2}-\sigma_{3}-\sigma_{4}+.} \\
& \tau \cap \alpha_{1} \stackrel{\text { linearity }}{=} \sigma_{2} \cap \alpha_{1}=\alpha_{1}\left(G_{2}\left[P_{0}, P_{2}\right]\right) b_{2}\left[P_{2}, P_{3}\right]=1 \cdot b_{1} \\
& t \cap \beta_{1}=-G_{3} \cap \beta_{1}=-\beta_{1}\left(b_{3}\left[P_{0}, P_{4}\right]\right) b_{3}\left[P_{4} P_{3}\right]=-1 \cdot a_{1}
\end{aligned}
$$

$\operatorname{PD} \operatorname{PD}\left(\left[\alpha_{i}\right]\right)=\left[b_{i}\right] \quad$ geometrically:
$\operatorname{PD}\left(\left[\beta_{i}\right]\right)=-\left[a_{i}\right]<$ are nomotopic \& so are the loops $\beta_{i} \& a_{i}$

NON-ORIENTABLE SURFACES
(\mathbb{Z}_{2} - orientable)

$$
x \approx m P, m \geq 1
$$

X admits a structure of Δ-complex with $2 m$-simplices, $x=2 m$-goo $/ \sim$

vertices: $Q_{1} \sim Q_{2} \sim \sim Q_{2 m}$

$$
\begin{aligned}
\mathbb{Z}_{2} \text {-coefficients } & {[\tau]=\left[G_{1}+G_{2}+\cdots+\sigma_{2 m}\right] } \\
t \cap \alpha_{1}=\sigma_{2} \cap \alpha_{1} & =\alpha_{1}\left(\sigma_{Z_{2}}\left[Q_{0}, Q_{2}\right]\right) \sigma_{2}\left[Q_{2}, Q_{3}\right] \\
& =1 \cdot a_{1}
\end{aligned}
$$

$\operatorname{t\cap \alpha _{i}}=1 \cdot a_{i} \quad \leadsto a_{i}$ is the Poincare dual of α_{i} (geometrically, the a_{i} loops are homotopic to α_{i})

Comparing definitions of n and U we see that the composition

$$
S^{\ell}(x) \times\left(S_{k+e}(x) \times S^{k}(x)\right) \xrightarrow{i d \times n} S^{k+l}(x) \times S_{k+e}(x) \xrightarrow{e v} R
$$

is the same as

$$
\left(s^{k}(x) \times s^{l}(x)\right) \times S_{k+l}(x) \xrightarrow{\text { Uxid }} S^{k+l}(x) \times S_{k+l}^{(x)} \xrightarrow{\infty} R
$$

so

$$
\beta(子 \cap \alpha)=(\alpha \cup \beta)(子)
$$

Hence $P D$ induces a pairing

$$
\begin{aligned}
& H^{h-k}(x) \times H^{k}(x) \rightarrow R \\
& \quad(\beta, \alpha) \mapsto \beta([x] \cap \alpha)=(\alpha \cup \beta)[x] .
\end{aligned}
$$

