Let M be an R-orientable $n-m n f d$, not necessarily compact. Fix an R-orientation μ on M. Define

$$
P D: H_{c}^{K}(M ; R) \rightarrow H_{n-k}(M ; R) .
$$

$\forall K C L C M$ compact subsets we have

$$
\begin{aligned}
& H_{L, K}(M \mid L ; R) \times H_{n}(M \mid L ; R) \\
& \left.H^{K}(M \mid K ; R) \times H_{L, K}\right) \mid i_{L_{K}, L} \underbrace{H_{n-k}}_{n}(M ; R ; R)
\end{aligned}
$$

By a previas lemma $\left.F!\mu_{k} \in H_{n}(M) K\right)$,

$$
\begin{aligned}
& \mu_{L} \in H_{n}(M I L) \text { s.t. } L_{K_{1} x}\left(\mu_{K}\right)=\mu_{x} \\
& \forall x \in K \& L_{L_{1} x}\left(\mu_{L}\right)=\mu_{x} \quad \forall x \in L .
\end{aligned}
$$

By the uniqueness of $\mu_{K} \& \mu_{L}$ we have $i_{K, L}\left(\mu_{L}\right)=\mu_{K}$.

By naturality of the cup product we have: $\alpha \cap i_{*}\left(\mu_{L}\right)=i^{*} \alpha \cap \mu_{L}$ $(M, M \backslash L) \xrightarrow{i}(M, M \backslash K)$ is the inclusion.

$$
i_{*}=i_{K, L}, i^{*}=R_{L, K}
$$

So we get $\alpha \cap \mu_{k}=R_{L, k}(\alpha) \cap \mu_{L}$
\Rightarrow the homomorphisms

$$
\begin{aligned}
& H^{k}(M \mid K ; R) \rightarrow H_{n-k}(M ; R) \\
& \alpha \longmapsto \alpha \mu_{k}
\end{aligned}
$$

induce a map $\lim _{K \subset M} H^{k}(M \mid K ; R) \rightarrow H_{n-k}(M ; R)$

$$
\underbrace{\underbrace{K c M}}_{\substack{\left\langle/ / \\ H_{c}^{k}(M ; R)\right.}}
$$

We denote this $\operatorname{map} P D: H_{c}^{K}(M ; R) \rightarrow H_{h-K}(M, R)$.

For the proof of PD we also nerd the following lemma:
LEMMA
Suppose M is an R-oriented n-manifold and $m=u \cup v, u, v=$ open. Then \exists a commutative diagram

$$
\begin{aligned}
& \rightarrow H_{c}^{k}(u v v) \rightarrow H_{c}^{k}(u) \oplus H_{c}^{k}(v) \rightarrow H_{c}^{k}(M) \rightarrow H_{c}^{k+1}(u n v) \rightarrow \\
& \downarrow P D_{\text {ans }} \quad \| P D_{x} \oplus P D_{r} \quad \downarrow P D_{M} \downarrow P D_{\text {uss }} \\
& \rightarrow H_{n-k}(u v v) \rightarrow H_{n-k}(u) \oplus H_{n-k}(v) \rightarrow H_{n-k}(M) \rightarrow H_{n k-1}(u v)
\end{aligned}
$$

the rows are MV type of LESS. All coefficients are in R.
Proof
Recall the relative $M V:(x, y)=(A \cup B, C \cup D)$ with $C C A, D C B$ and st. $X=\operatorname{lnt}(A) \cup \operatorname{lnt}(B)$, $I=\ln t(C) \cup \ln t(D)$, then

$$
\begin{aligned}
& \ldots \rightarrow H^{k}(x, 7) \xrightarrow{\Psi} H^{k}(A, C) \oplus H^{k}(B, D) \xrightarrow[\rightarrow]{\varphi} H^{k}(A \cap B, C \cap D) \rightarrow \ldots \\
& \Psi(\alpha)=\left(\left.\alpha\right|_{S \cdot(A)},\left.\alpha\right|_{S .(B)}\right) \\
& \varphi\left(\beta, 0^{n}\right)=\left.\beta\right|_{S \cdot(A \cap B)}-\gamma_{S \cdot(A \cap B)}^{n}
\end{aligned}
$$

Well use this with $A=B=M, C=M \backslash K$, $D=M U L$, where $K C U, L C V$ are compact.
We get the 1st row of the following diag.

$$
\begin{aligned}
& \rightarrow H^{k}(M \mid K \cap L) \rightarrow H^{k}(M \mid K) \oplus H^{k}(M \mid L) \rightarrow H^{k}(M \mid K \cup L) \rightarrow H^{\prime k+1}(M| | K C h
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow H_{n-k}(u \cap v) \rightarrow H_{n-k}(u) \oplus H_{n-k}(v) \rightarrow H_{n-k}(M) \xrightarrow{c^{\prime \prime}+H_{n-k-1}(u n v)}
\end{aligned}
$$

The bottom row is homological $M-V$.
the vertical maps from the orientation, ie. $\mu_{K \cap L} \in H_{n}(u \cap v \mid K \cap L), \mu_{L} \in H_{n}(v \backslash L)$,

$$
\mu_{k} \in H_{n}(u / k), \mu_{k v L} \in H_{n}(u v v \mid k v L)
$$

are the restrictions of the given orientation to $K \cap L, K, L, e t c$.
CLAIM
Squares (1),(2),(3) are commutative, hence the diagram commutes.
Squares (1) \& (2) commute on the chain/ oochain level.

$$
\begin{align*}
& H^{k}(M \mid K \cup L) \xrightarrow{C^{\prime}} H^{k+1}(M \mid K \cap L) \\
& \begin{array}{rr}
& \downarrow \cong \\
(-) \cap \mu_{k u L} & H^{k+1}(u \cup v / K \cap L) \\
& \downarrow(-) \wedge \mu_{k \cap L}
\end{array} \tag{*}\\
& H_{n-k}(M) \xrightarrow{c^{\prime \prime}} H_{n-k-1}(u \cap v)
\end{align*}
$$

the map C^{\prime} : Put $C=M \backslash K, D=M \backslash L$. Let $S_{1}^{C D} \subset S(C U D)$ be the subcomplex generated by the chains in C \& the
chains in D.

$$
D:=\frac{S \cdot(M)}{S_{1}^{C, D}}, D^{*}:=\operatorname{hom}(D, R)
$$

$D^{*}=$ cochains in M that varush on the chains in C and on the chains in D.
Recall $S_{1}^{C, D} \xrightarrow{\text { inc. }} S .(C \cup D)$ induces an somorphusin on homology. \Rightarrow

$$
\begin{aligned}
& D^{*} \leftarrow S^{*}(M, C \cup D)=S^{\cdot}(M, M \backslash(K \cap L)) . \\
& O \rightarrow D^{*} \stackrel{\Psi}{\longrightarrow} S^{*}(M, C) \oplus S^{\cdot}(M, D) \xrightarrow{\varphi} \delta^{*}(M, C \cap D) \rightarrow O \\
& a \stackrel{\Psi}{\longrightarrow}(a, a) \\
&(b, c) \stackrel{\varphi}{\longmapsto} b-c
\end{aligned}
$$

REMARK
From this sequence \& the fact that $H^{*}(S \cdot(M, C \cup D)) \stackrel{\cong}{\cong} H^{*}\left(D^{*}\right)$ we get
the sequence on the top, from the beginning of the proof.
How to Calculate $C^{\prime}([\alpha])$ for a coaycle $\alpha \in S^{\prime}(M, C \cap D)$.
Hst stop

$$
\alpha=\alpha_{C}-\alpha_{D} \text { with } \alpha_{C} \in S^{\prime}(M, C), \alpha_{D} \in S^{\prime}(M, D)
$$

Note that $S \alpha_{C}-S \alpha_{D}=\delta \alpha=0 \Rightarrow$

$$
S \alpha_{C}=S \alpha_{D}
$$

and step

$$
\begin{aligned}
& \left(b \alpha_{C}, s_{\alpha_{D}}\right)=\Psi\left(\delta_{n}\right), \quad 0^{n}=b \alpha_{C}=5 \alpha_{D} \\
& c^{\prime}([\alpha])=\left[b \alpha_{c}\right] \in H^{k+1}\left(D^{*}\right) \cong H^{k+1}(M / k \cap L)
\end{aligned}
$$

\uparrow this is not necessarily a coboundary in \mathcal{D}^{+} be α_{c} might not belong to $D^{*}\left(S \alpha_{c}\right.$ is in $\left.D^{*}\right)$

We need to calculate $C^{\prime}([\alpha]) \cap \mu_{k \cap L}$ Consider the class $\mu_{k a L} \in H_{n}(M \backslash K \cup L)$. the open sets $u \backslash L, u \cap v, v \backslash K$ cover $M=u \cup v$ (because (uv) $u(u \vee v)=u$,

Using standard Mayen-Vietoris arguments (barycentric subdivision etc) arguments we can represent $\mu_{\text {KL }}$ by a chain

$$
\begin{aligned}
& x=x_{u \backslash L}+x_{u \cap v}+x_{v i k} \\
& \pi \\
& s_{n}(u \backslash L) \quad s_{n}(u \cap v) s_{n}(v \backslash K)
\end{aligned}
$$

Consider now $\mu_{K \cap L}=L_{K U L, K \cap L}\left(\mu_{K U L}\right)=$

$$
=[x] \in H_{n}(M, M \backslash(K \cap L)) \text {. }
$$

But in $S_{n}(M) / S_{n}(M \backslash(K \cap L))$ we have $x_{U \backslash L}=0, x_{V, K}=0$ (because $u K \subset M \backslash(K \cap L)) \Rightarrow \mu_{K \cap L}=\left[x_{u \cap v}\right]$. $V \backslash L \subset M \backslash(K \cap L)$
In a similar way $\mu_{k} \in H_{n}(M \mid K)$ can be written as $\mu_{k}=\left[x_{u L L}+x_{u n v}\right]$,

$$
\mu_{L}=\left[x_{U \cap v}+x_{v K K}\right] \text {. Let } \alpha \in S^{k}(M, M(K \cap L))
$$

be a cocycle. We've seen that
$c^{1}[\alpha]=\left[s \alpha_{c}\right]$. So we need to calculate $\delta \alpha_{c} \cap x_{u n v}$.
α_{c} might not
CLAIM
co in $S(\operatorname{lnv} / k n)$
$\left[\partial \alpha_{c} \cap X_{\text {unv }}\right]=(-1)^{k+1}\left[\alpha_{c} \cap \partial x_{\text {uv }}\right]$
The result might not be a boundary sh $s(u, v)$

PROOF

$$
\begin{aligned}
& \text { PROOF } \\
& \partial\left(\alpha_{c} \cap x_{u v v}\right)=S \alpha_{c} \cap x_{u v v}+(-1)^{k} \alpha_{c} \cap \partial x_{u v v} \\
& \text { Now } \alpha_{c} \cap x_{u \neg v} \in S \cdot(u \cap v) \Rightarrow \\
& {\left[\delta \alpha_{c} \cap x_{u \cap v}\right]=(-1)^{k+1}\left[\alpha_{c} \cap \partial x_{u \cap v}\right] \in H_{n-k-1}(u v)}
\end{aligned}
$$

SUMMARY

$$
\begin{aligned}
& {[\alpha] \stackrel{c^{\prime}}{\longrightarrow} } {\left[b \alpha_{c}\right] } \\
& \downarrow \cap \mu_{k \cap L} \\
&(-1)^{k+1}\left[\alpha_{c} \cap \partial x_{u \cap v}\right]
\end{aligned}
$$

Consider now the other composition

$$
\begin{gathered}
\prod_{[\alpha n x]}^{[\alpha]} \stackrel{c^{\prime \prime}}{\longmapsto} ? \\
\alpha \cap x=\left(\alpha \cap x_{u v}\right)+\left(\alpha \cap x_{u n v}+\alpha \cap x_{v, k}\right)
\end{gathered}
$$

$$
\underset{\text { chain in } u}{\lambda} \quad \text { chains in } v
$$

Exercise: $c^{n}([\alpha \cap x])=\left[\partial\left(\alpha \cap x_{u L L}\right)\right]$

To finish the proof of the commutativity of (3) we need to show that

$$
\begin{aligned}
& (-1)^{k+1}\left[\alpha_{c} \cap \partial x_{\text {inv }}\right]=\left[\partial\left(\alpha \cap x_{u \backslash L}\right)\right] \\
& \text { Indeed, } \partial\left(\alpha \cap x_{u M L}\right)=3 \alpha \cap x_{u M L}+(-1)^{k} \alpha \cap \partial x_{u L L} \\
& =(-1)^{k}\left(\alpha_{C}-\alpha_{D}\right) \cap \partial x_{U \backslash L}= \\
& =(-1)^{k} \alpha_{C} \cap \partial x_{u / L}-(-1)^{k} \underbrace{\alpha_{D} \cap \partial x_{u v L}}_{\substack{11 \\
0_{D}(\text { because }}} \\
& \alpha_{D} \in S^{k}(M, D), D=M I L_{1} \\
& \text { So } \left.\left.\alpha_{D}\right|_{S,(M L L)} \equiv 0\right) \\
& =(-1)^{k} \alpha_{c} \cap \partial x_{u 1 L} \cdot(* *)
\end{aligned}
$$

It remains to show:

$$
\begin{aligned}
& (-1)^{k+1}\left[\alpha_{c} \cap \partial x_{u n v}\right]=(-1)^{k}\left[\alpha_{c} \cap \partial x_{u \backslash L}\right] \in H_{n-k-1}(u \cap v) \\
& \text { Note } \mu_{k}=\left[x_{u n v}+x_{u \backslash L}\right] \in H_{n}(M, M \backslash K) \Rightarrow \\
& \partial x_{u n v}+\partial x_{u \backslash L} \in S_{n-1}(\underbrace{M \backslash K}_{\sim_{c}})
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \alpha_{c} \cap\left(\partial x_{u \cap v}+\partial x_{u L L}\right)=0 \text {, because } \\
& \left.\alpha_{c}\right|_{S .(c)} \equiv 0 .
\end{aligned}
$$

From ($*_{*}$) we get

$$
\left[\alpha_{c} \cap \partial x_{u \cap v}\right]=-\left[\alpha_{c} \cap \partial x_{u \vee L}\right]=(-1)^{k+1}\left[\partial\left(\alpha_{n} x_{u v}\right)\right]
$$

this completes the proof of (3).
Recall:
Let $\left\{G_{\alpha}{ }^{\prime}\right\},\left\{G_{\alpha}\right\},\left\{G_{\alpha}{ }^{\prime \prime}\right\}, \alpha \in I$ be directed systems of graphs of abelian groups. Suppose $\forall \alpha \in I$ we have an exact sequence

$$
G_{\alpha}^{\prime} \xrightarrow{\varphi_{\alpha}^{\alpha}} G_{\alpha} \xrightarrow{\Psi} G_{\alpha}^{\prime \prime}
$$

and that $\forall \beta \geq \alpha$ this diagram is commutative

$$
\begin{aligned}
& G_{\alpha}^{\prime} \xrightarrow{\varphi_{\alpha}} G_{\alpha} \xrightarrow{\Psi_{\alpha}} G_{\alpha}^{\prime \prime} \\
& f_{\beta \alpha \alpha}^{\prime \prime} \\
& \downarrow f_{\beta \alpha \alpha}^{\prime} \\
& G_{\beta}^{\prime} \xrightarrow[\varphi_{\beta}]{ } G_{\beta \beta} \xrightarrow{\longrightarrow} G_{\beta}^{\prime \prime}
\end{aligned}
$$

Then $\lim _{\alpha \in I} G_{\alpha}^{\prime} \rightarrow \lim _{\alpha \in I} G_{\alpha} \rightarrow \underset{\alpha \in I}{\lim } G_{\alpha}^{\prime \prime}$ is also exact.
We'll apply this to the diagram

$$
\begin{aligned}
& \ldots H^{k}(u \cap v \mid K \cap L) \rightarrow H^{k}(u \mid K) \oplus H^{k}(v \mid L) \rightarrow H^{k}(M \mid K \cup L) \rightarrow \\
& \stackrel{\downarrow}{\sim} \stackrel{\downarrow}{\downarrow} \stackrel{\downarrow}{H_{n-k}}(u \cap v) \rightarrow H_{n-k}(u) \oplus H_{n-k}(v) \rightarrow H_{n-k}(M) \rightarrow .
\end{aligned}
$$

Apply $\underset{(K, L)}{\lim }$ where $K \subset U, L \subset v$ are compact

$$
\&\left(K^{\prime}, L^{\prime}\right) \leqslant\left(K^{\prime \prime}, L^{\prime \prime}\right) \text { if } K^{\prime} C K^{\prime \prime}, L^{\prime} C L^{\prime \prime} \text {. }
$$

CLAIM

Proof of the claim
FACM compact, F KCU, LC compact.
s.t. ACKUL. Just cover AnU by open palls $\cup B_{\alpha}^{\prime}$ with $\bar{B}_{\alpha}^{\prime} c U$ and cover An by open balls $U_{\beta} B_{\beta}^{\prime \prime}$ with $\bar{B}_{\beta}^{\prime \prime} C V$. Now take a finite subcovering of $\bigcup_{\alpha} \overline{B_{\alpha}^{1}} \cup \bigcup_{\beta} \overline{B_{\beta}^{\prime \prime}}$ that covers A. This proves the claim.
CONCLUSION $\lim _{(K, 2)} H^{k}(M \mid K \cup L) \cong H_{c}^{t}(M)$.

$$
\text { Finally, } \begin{aligned}
\lim _{(\overrightarrow{K, v})} H^{k}(u \cap v \mid K \cap L) & \xlongequal[\substack{\text { Bcunv } \\
\text { compact }}]{\operatorname{liut}^{k}(u \cap v)} \\
& \cong H_{c}^{k}(u \cap v) .
\end{aligned}
$$

this proves the lemma.

Now we finally prove the Poincare Duality.

THEOREM (POINCARE DUALITY)
Let M be a closed R-oriented n-manifold with fundamental class $[M] \in H_{n}(M ; R)$ (corresponding to the given orientation). Then the map

$$
\begin{aligned}
P D: H^{k}(M ; R) & \longrightarrow H_{n-k}(M ; R) \\
\alpha & \longmapsto \alpha \cap[M]
\end{aligned}
$$

is an isomorphioro of R -modules for all k.
PROOF
Claw is 1 if M=UuV and if $P D_{u}, P D_{v}$ and PD nv ane all isos then PDM is also an iso.
this follows form the previous lemma and the 5-lemma.

Claim 2 suppose I is a directed set and $\left\{u_{\alpha}\right\}_{\alpha \in I}$ are open subsets of M s.t. $\alpha \leq \beta \Rightarrow U_{\alpha} \subset U_{\beta}$. Assume also that $\bigcup_{\alpha \in I} u_{\alpha}=M$. If $P D_{u_{\alpha}}$ is an is for all α, then $P D_{M}$ is an iso

$$
\begin{aligned}
& H_{c}^{k}\left(u_{\alpha}\right) \cong \underset{\substack{k c u_{\alpha} \\
\text { compact }}}{\lim _{\widehat{\prime}}} H^{H^{k}(M \mid K)} \\
& H^{k}\left(u_{\alpha} \mid K\right)
\end{aligned}
$$

Note that if $\alpha \leqslant \beta$ we have $H_{c}^{k}\left(u_{\alpha}\right) \rightarrow H_{c}^{k}\left(u_{\beta}\right)$ Cbecaure $\delta_{c}^{k}\left(u_{\alpha}\right) \hookrightarrow \delta_{c}^{k}\left(u_{\beta}\right)$: If $k c u_{\alpha}$ is compact, $\mathrm{Kc} u_{\alpha}$ is compact too)

$$
\begin{aligned}
& \Rightarrow \lim _{\alpha \in I} H_{c}^{k}\left(U_{\alpha}\right) \cong H_{c}^{k}(M) \\
& \cong \mid P D_{V_{\alpha}} \quad \|_{M} \Rightarrow \begin{array}{l}
P D_{M} \\
\text { an } \\
\text { iso. }
\end{array} \\
& \lim _{\alpha \vec{\in} \mathcal{I}} H_{n-k}\left(u_{\alpha}\right) \underset{q}{\cong} H_{n-k}(M) \\
& \text { every compact } \\
& \text { subset in } M \\
& \text { must be contained } \\
& \text { in some } u_{\alpha} \text { we had } \\
& \text { a lima saying that in } \\
& \text { such a cost } \underset{\underset{\alpha}{\lim }}{\mathrm{H}_{*}}\left(U_{\alpha}\right) \cong H_{*}(M)
\end{aligned}
$$

Step $1 \quad M=\mathbb{R}^{n}$
Given a closed ball B we know that $H_{n}\left(\mathbb{R}^{\prime}, \mathbb{R}^{n} \backslash B\right)=\mathbb{Z}$ with generator μ. By the UCT $\quad h: H^{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n} \backslash \mathbb{B} ; \mathbb{Z}\right) \rightarrow \operatorname{Hom}\left(H_{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n}, B\right) ; Z\right)$ is an jomorphism. Then \exists a generator a s.t. $a\left(\gamma \mu_{B}\right)=1$. then

$$
1=a\left(\jmath \mu_{B}\right)=(1 \cup a)\left(\mu_{B}\right)=1\left(a \cap \mu \mu_{B}\right) \Rightarrow
$$

a $\cap \mu_{B}$ is a generator of $H_{0}\left(\mathbb{R}^{n}\right)=\mathbb{Z}$. Thus μ_{B} gives an isomorphisms
$H^{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n} \backslash B\right) \rightarrow H_{0}\left(\mathbb{R}^{n}\right)$ for all B. Hence by universal property of direct limit, the map $P D_{\mathbb{R}^{r}}$ is an csomorphism in the case $i=n$. The cases if n is obvious since it maps 0 to 0 .
step 2 Let $M \subset \mathbb{R}^{n}$, and assume $M=\cup U_{i \in I}$ with I finite \& all U_{i} convex, open. By step $1 \mathrm{PD}_{u_{i}}$ is an so because $u_{i} \approx \mathbb{R}^{n}$. Now use induction on $|I|$:
Suppose $I=\{1, \ldots, k\}$, put

$$
V_{2}:=U_{1} \cup \ldots \cup U_{g-1} .
$$

By induction PD is an is for V_{2} \& $V_{2} \cap U_{2}$ (and of course U_{2} too).

$$
\underset{r \uparrow_{c}\left(u_{1}^{\prime \prime} \cap u_{2}\right) \cup \ldots\left(u_{g-1} \cap u_{2}\right)}{\substack{\text { convex }}}
$$

Since both $V_{2} \& V_{2} \cap U_{2}$ are unions of at most $2-1$ open convex subsets $\Rightarrow \underset{\substack{\text { follows } \\ \text { fou } \\ \text { cain } 1}}{\substack{\text { and }}}$ $P D$ is an iso also for $V_{2+1}=V_{2} \cup u_{2}$.
Step $3 M=\bigcup_{i \in I} u_{i}$ with $u_{i}=$ open, convex \mathbb{R}^{n},
I is countable
WLOG $I=\mathbb{N} . \quad \forall k \in \mathbb{N}$, put $V_{K}:=u_{1} v . \cup u_{k}$ By step 2, PD is an nos for $V_{k}, \forall k$ Now $M=\bigcup_{k \in \mathbb{N}} V_{k}$, so $P D_{M}$ is an iso by claim 2.
Step $4 M \subset \mathbb{R}^{n}$ is any open subset. The topology of M has a countable basis consisting of balls. So by step 3 we are done.
Step $5 M=U U_{i}$ with U_{i} homeomorphic to open subset in $\mathbb{R}^{n} \& I$ is countable (we do not assume $M \subset \mathbb{R}^{n}$).

The proof is the same as in Steps $2,3,4$. First prove for $I=$ finite by induction on I and then for $I=N$.

SUMMARY
If M can be covered by countably many charts, then PDM is an iso Step $6 M=a \quad$ general (noncompact) manifold that cannot be covered by a countable union of charts.
Use Zorn's lemma.
$T:=$ collection of all open subsets $u \mathrm{CM}$ s.t. $P D_{u}$ is an uso

Define $u^{\prime} \leqslant u^{\prime \prime}$ if $u^{\prime} c u^{\prime \prime}$.
If $\left\{u_{\alpha}\right\}_{\alpha \in I}$ is a chain in T, then $\bigcup u_{\alpha}$ is also en T (by Claim 2).

So every chain in T has an upper bound. By Zorn's lemma Ja max eft V in T. Now if $V \nsubseteq M$, take a chart U around $x_{0} \in M \backslash V$.
$P D_{u}$ is an iso $\Rightarrow u$ is in T.
Also $U \cap V$ is in T (because $u \cap v c u$ is open). By claim 1, uuv is also in T. Contradiction to maximality of V.

