CHANGE OF COEFFICIENTS
Let $\varphi: G_{1} \rightarrow G_{2}$ be a hoo of abelian groups. such a Y induces a chain map $y c: S_{0}\left(x, A ; G_{1}\right) \rightarrow S_{0}\left(x, A ; G_{2}\right)$
If $f:(x, A) \rightarrow(\mathcal{F}, B)$ is a map, then f a commutative square:

$$
\begin{gathered}
S_{0}\left(x, A ; G_{1}\right) \xrightarrow{f_{c}} S_{0}\left(I, B ; G_{1}\right) \\
\| \varphi^{c} \\
S_{0}\left(x, A ; G_{2}\right) \xrightarrow{f_{c}} S_{0}\left(7, B ; G_{2}\right)
\end{gathered}
$$

\Rightarrow we get a commutative square in homology,

$$
\begin{gathered}
H_{*}\left(x, A ; G_{1}\right) \xrightarrow{f_{*}} H_{*}\left(1, B ; G_{1}\right) \\
\downarrow \varphi_{*}
\end{gathered} \begin{gathered}
C \\
H_{*}\left(x, A ; G_{2}\right) \xrightarrow[f_{*}]{\longrightarrow} H_{*}\left(\Psi, B ; G_{2}\right)
\end{gathered}
$$

If $\quad 0 \rightarrow G^{\prime} \rightarrow G \rightarrow G^{\prime \prime} \rightarrow 0$ is a SES of abelian groups, then we get a SES of chain complexes

$$
0 \rightarrow S_{0}\left(X, A ; G^{\prime}\right) \rightarrow S_{0}(X, A ; G) \rightarrow S_{0}\left(X ; ; G^{\prime \prime}\right) \rightarrow 0
$$

\Rightarrow We get a LES in homology

$$
\begin{gathered}
\ldots \rightarrow H_{n}\left(x, A ; G^{\prime}\right) \rightarrow H_{n}(x, A ; G) \rightarrow H_{n}\left(x A ; G^{\prime \prime}\right) \\
\\
\rightarrow H_{n-1}\left(x, A ; G^{\prime}\right) \rightarrow \cdots
\end{gathered}
$$

the connecting homomorphism
is called the BOCKSTEIN HOMOMORPHISM
Two interesting examples

$$
\begin{aligned}
& 0 \rightarrow \mathbb{Z} \xrightarrow{\times p} \mathbb{Z} \rightarrow \mathbb{Z} / p \mathbb{Z} \rightarrow 0 \\
& 0 \rightarrow \mathbb{Z} / p \mathbb{Z} \rightarrow \mathbb{Z} / p^{2} \mathbb{Z} \rightarrow \mathbb{Z} / p \mathbb{Z} \\
& \psi 0 \\
& k \longrightarrow p k
\end{aligned}
$$

DEGREE THEORY wITH COEFFICIENTS in A group
Recall that if $f: S^{n} \rightarrow S^{n}$, then $\operatorname{deg} f=d \in \mathbb{Z}$, when e $d \in \mathbb{Z}$ is the unique integer sit.

$$
\begin{gathered}
\tilde{H}_{n}\left(\delta^{n}\right) \xrightarrow{f_{*}} \tilde{H}_{n}\left(\delta^{n}\right) \\
\mathbb{1 1 2} \\
\mathbb{Z} \\
f_{*}(a)=d \cdot a
\end{gathered}
$$

If we take coefficients in G, we get

Question: can we still say that $f_{*}(a)=d \cdot a$ with $d \in \mathbb{Z}$, as before? Yes $\mathbb{\nabla}$

If we consider $\sigma_{0}: \Delta^{n} \rightarrow \Delta^{n} / \partial \Delta^{n} \approx \delta^{n}$, then we 're seen that this is a generator of $H_{n}\left(S^{n}, *\right) \cong \tilde{H}_{n}\left(S^{n}\right) \Rightarrow f \circ \sigma_{0}$ is homologous to $d \cdot G_{0} . \Rightarrow$
$f_{0} b_{0}-d \cdot b_{0}=\partial \tau$ for some

$$
\begin{aligned}
& t: \Delta^{n+1} \rightarrow S^{n} \quad \Rightarrow \\
& f_{c}\left(g \sigma_{0}\right)-d\left(g \zeta_{0}\right)=\partial(g t) \text { in } H_{n}\left(S^{n}, * ; G\right) \\
& \forall g \in G .
\end{aligned}
$$

Conclusion: $f_{*}\left[g b_{0}\right]=d \cdot\left[g b_{0}\right] \quad \forall g \in G$.

$$
\Rightarrow f_{*}(a)-d \cdot a \quad \forall a \in \tilde{H}_{n}\left(S^{n} ; G\right)
$$

with this we can now define cellular homology with coefficients in G.

CELLULAR HOMOLOGY WITH COEFFICIENTS

K CW-Complex
$C^{C W}(K)$ cellular chain complex (\mathbb{Z} coefficients)

$$
\begin{aligned}
\rightarrow C_{i}^{w}(k) & \xrightarrow{d_{i}} C_{i-1}^{w}(k) \xrightarrow{d_{i-1}} C_{i-2}^{\omega}(k) \rightarrow \ldots \\
c_{i}^{\omega}(k) & =\bigoplus_{b \in I_{i}}^{\mathbb{Z} \cdot b} \\
d_{i}(b) & =\sum_{\tau \in I_{i-1}}[\sigma: \tau] t
\end{aligned}
$$

What is $[6: t]$?
$f_{i}: B^{i} \rightarrow K \quad$ chenacteristic map
δ is attached to $k^{(i-1)}$ via $\left.f_{i}\right|_{\partial B^{i}}$ attaching map
$\left.f_{i}\right|_{\partial B^{i}}$ induces a map $S^{i-1} \rightarrow \mathrm{~S}^{i-1}$ as depicted below

$K^{(i-1)} / k^{(i-2)}$

$$
[\varepsilon ; t]=\operatorname{deg}\left(\left.p_{\tau} \circ f_{i}\right|_{\partial B^{\prime}}\right)
$$

To compute cellular homology with coefficients, we define the degree as above.

$$
C_{i}^{c \omega}(K ; G) \cong \underset{G \in I_{i}}{\bigoplus} G \cdot \sigma
$$

EXAMPLE
Consider $\mathbb{R}^{n}=S_{\substack{n \\ \forall x \in S^{n}}}^{\substack{x-x\\}}$

RPM has as structure with one cell in each $\operatorname{dim} 0 \leq i \leq n$. The $(i-1)$-skeleton of $\mathbb{R P}^{i}$ is $\mathbb{R} P^{i-1}$. The i th skeleton, R Pi, is obtained $R P^{i}=\mathbb{R} P^{i-1} \cup B^{i}$ with attaching map $f_{i}: \partial B_{11}^{i} \rightarrow \mathbb{R}^{i-1}$ sin by $f_{i}(x)=[x]$

$$
([x]=[-x])
$$

The cellular chain complex C^{ω} (RPM) has $C_{i}^{c w}=\mathbb{Z} \cdot e^{(i)} \quad \forall 0 \leq i \leq n$. Tgenerator
2: $c_{i}^{c w} \rightarrow c_{i-1}^{c w}$ is $\partial\left(e^{(i)}\right)=2 \cdot e^{(i-1)}$,
where

$$
2= \begin{cases}0 & i=\text { odd } \\ 2 & i=\text { ever } \geq 2 \\ 0 & i \leq 0, i>n\end{cases}
$$

reminder:
$\mathbb{R P}^{i-1} / \mathbb{R} P^{i-2} \approx S^{i-1}$

So where does a come from?
Each f_{i} has two preimages:
signs depend on the degree of the antipodal map: $(-1)^{i}$ for $S^{i-1} \rightarrow S^{i-1} \Rightarrow$ the degree of 2 is $1+(-1)^{i}$ (the projection map is fist the identity since $\frac{\mathbb{R}^{P-1}}{\mathbb{R} P^{1-2}} \approx S^{i-1}$)

From here we get:
(*) if $n=$ even

*

$$
\text { if } n=\text { odd } \quad \begin{cases}0 & i>n \\ \mathbb{Z} & i=n \\ 0 & 2 \leq i=\text { even } \leqslant n \\ H_{i}\left(\mathbb{R} P^{n} ; \mathbb{Z}\right) \cong & 1 \leq i=\text { odd }<n \\ \mathbb{Z} & i=0\end{cases}
$$

What happen for other G's?

$$
\begin{aligned}
& C_{i}^{a w}\left(\mathbb{R} P^{n} ; G\right)=G \cdot e^{(i)} \\
& \forall 0 \leq i \leq n, C_{i}^{a w}=0 \text { for } i>n \\
& \& i \leq 0
\end{aligned}
$$

$\partial: c_{i}^{a s} \rightarrow c_{i-1}^{a}$ is multiplication by 2 as before. \Rightarrow

$$
d=C_{i}^{w_{1}}\left(\mathbb{R}^{P^{n}} ; G\right) \rightarrow C_{i=1}^{\omega_{1}}\left(\mathbb{R} P^{n} ; G\right)
$$

If $0<_{i=}=$ even $\leq n \quad d\left(a \cdot e^{(i)}\right)=2 a e^{(i-1)} \quad \forall a \in G$. If $0<i=o d d \leq n \Rightarrow d\left(a e^{(i)}\right)=0$

$$
Z_{i}= \begin{cases}k \cdot e^{(i)} & 0<i=\text { even } \leq n \\ G \cdot e^{(i)} & 0<i=o d d \leq n \\ G \cdot e^{(0)} & i=0 \\ 0 & i<0 \text { or } i>n\end{cases}
$$

where $k:=\operatorname{ken}(G \xrightarrow{2 x} G) \subset G$

$$
\quad B_{i}=\left\{\begin{array} { c l }
{ 0 } & { i = n } \\
{ 0 } & { 0 < i = \operatorname { e v e n } \leq n } \\
{ d (C _ { i + 1 }) } \\
{ \text { boundaries } }
\end{array} \left\{\begin{array}{cl}
/ G \cdot e^{(i)} & 0<i=o d d<n \\
0 & i=0 \\
0 & i<0 \text { or } i>n
\end{array}\right.\right.
$$

Now we can calculate homology groups

$$
H_{i}^{a v}\left(\mathbb{R P}^{n} ; G\right) \cong\left\{\begin{array}{cl}
K & 0<i=\text { even }<n \\
G / 2 G & 0<i=o d d<n \\
G & i=0 \\
0 & i<0 \text { or } i>n
\end{array}\right.
$$

