CHANGE OF COEFFICIENTS Let P: G, ->G be a hom of abelian groups. Such a finduces a chain map γ^{c} : S. $(X, A; G_{1}) \rightarrow S. (X, A; G_{2})$ If f: (XA) -> (YB) is a map, then J a commutative square ¢ $S.(X,A;G_1) \xrightarrow{f_c} S.(\Sigma,B;G_1)$ φ^{c} (c) φ^{c} $S_{x}(x, A; G_{2}) \xrightarrow{J_{c}} S_{x}(\Upsilon, B; G_{2})$ => we get a commutative square m homology, $H_{\star}(X, A; G_{1}) \xrightarrow{f_{\star}} H_{\star}(I, B; G_{1})$ $\downarrow \Upsilon_{\star}$ (c) $\downarrow \Upsilon_{\star}$ $H_{\star}(X,A;G_2) \xrightarrow{f_{\star}} H_{\star}(Y,B;G_2)$

If
$$0 \rightarrow G' \rightarrow G \rightarrow G'' \rightarrow 0$$
 is a SES
of abelian groups, then we get a SES
of chain complexer
 $0 \rightarrow S(x, A; G') \rightarrow S(x, A; G) \rightarrow S(x, A; G') \rightarrow 0$
 \Rightarrow We get a LES in homology:
 $\dots \rightarrow H_n(x, A; G') \rightarrow H_n(x, A; G) \rightarrow H_n(x, A; G'')$
 $\longrightarrow H_{n-1}(x, A; G') \rightarrow \dots$
the connecting homomorphism
is called the BockSTEIN HOMOMORPHISM
Two interesting examples
 $\circledast \quad 0 \rightarrow ZZ \xrightarrow{P} ZZ \rightarrow Z/_{PZ} \rightarrow 0$
 $\circledast \quad 0 \rightarrow ZZ \xrightarrow{P} ZZ \rightarrow Z/_{PZ} \rightarrow 0$
 $\circledast \quad 0 \rightarrow ZZ \xrightarrow{P} ZZ \rightarrow Z/_{PZ} \rightarrow 0$
 $\psi \qquad k \qquad \longmapsto pk$

DEGREE THEORY WITH COEFFICIENTS IN A GROUP Recall that if $f: S^n \rightarrow S'$, then deg $f = d \in \mathbb{Z}$, when de Z is the unique integer s.t. $H_n(S^n) \xrightarrow{f_*} H_n(S^n)$ 112 1/2 $\overline{\mathcal{A}}$ $\overline{\mathcal{I}}$ $f(a) = d \cdot a$ If we take coefficients in G, we get $H_n(S^n;G) \longrightarrow H_n(S^n;G)$ 112 112 G G (Question: Can we still say that $f_{*}(a) = d \cdot a$ with dezz, as before? Ies V

we consider $\mathcal{C}_{\circ}: \Delta^n \to \Delta^n/_{\partial \mathcal{N}^n} \approx \mathcal{S}_{\circ}^n$ then we've seen that this is a generator of $H_n(S^n, *) \cong H_n(S^n) \Longrightarrow f_{\circ}$ homologous to d.G. Ŵ \Rightarrow f. 2 - d. 2 = 2 - for some $t: \Delta^{n+1} \to S^n, \quad = \mathcal{P}$ $f_c(g_{G_o}) - d(g_{G_o}) = \partial(g_t)$ in $H_n(S', *; G)$ ¥geG. Conclusion: fx [gb.]=d. [gb.] HgEG. \Rightarrow $f_{\star}(a) - d \cdot a \quad \forall a \in H_n(S^n; G)$ With this we can now define cellular homology with coefficients in G.

CELLULAR HOMOLOGY WITH ODEFFICIENTS

K CW-complex $C_{\cdot}^{(w)}(K)$ ullular chain complex (ZZ coefficients) $\neg C_{i}^{(w)}(K) \xrightarrow{d_{i}} C_{i+}^{(w)}(K) \xrightarrow{d_{i-1}} C_{i-2}^{(w)}(K) \rightarrow ...$ $C_{i}^{(w)}(K) = \bigoplus_{\substack{z \in T_{i} \\ z \in T_{i}}} ZZ \cdot Z$ $d_{i}(Z) = \sum_{\substack{z \in T_{i-1} \\ z \in T_{i-1}}} U$

What is $[\mathcal{D}:t]^{?}$ $f_{i}: \mathcal{B}^{i} \rightarrow K$ characteristic map \mathcal{D}^{i} is attached to $K^{(i-1)}$ via $f_{i}|_{\partial \mathcal{B}^{i}}$ attaching map $f_{i}|_{\partial \mathcal{B}^{i}}$ induces a map $S^{i-1} \rightarrow S^{i-1}$ as depicted below

$$F_{i} = \frac{F_{i}}{\partial B^{i}}$$

EXAMPLE Consider RPⁿ = Sⁿ/_{xw-x} ¥xesⁿ

RPN has CW structure with one cell in each dim $0 \le i \le n$. the (i-1) - skeletonof RP1 is Rpi-1. The i-th skeleton, RPI, is obtained RPI=RPI-UBI with attaching maps $f_i : \partial B^i \rightarrow RP^{i-1}$ 11 3ñ-1 by $f_{\lambda}(x) = [x]$. $\left(\begin{bmatrix} x \end{bmatrix} = \begin{bmatrix} -x \end{bmatrix} \right)$ the allular chain complex C. (RPn) has $C_i^{(W)} = \mathbb{Z} \cdot e^{(i)}$ if $0 \le i \le n$. Agenerator $\partial : C_{i} \xrightarrow{cw} \rightarrow C_{i-1} \xrightarrow{cw} \rightarrow \partial (e^{(i)}) - g \cdot e^{(i-1)}$ where $\bar{\mathcal{N}} = \mathbf{odd}$ $y = \begin{cases} 0 \\ 2 \\ 0 \end{cases}$ i=even 22 λ≤0, λ>n

So where does g come from?
Each fi has two preimages:
signs depend on the degree
of the antipo dal map:
$$(-1)^{i}$$
 for
 $S^{i-1} \rightarrow S^{i-1} \Rightarrow$ the degree of g to
 $1 + (-1)^{i}$ (the projection map is
just the identity since $\mathbb{R}^{p^{i-1}} \approx S^{i+1}$)

From here we get:
(*) If
$$n = even$$

 $H_i(RP^n; Z) \subseteq \begin{pmatrix} 0 & i > n \\ 0 & 2 \le i = even \le n \\ Z & 1 \le i = odd < n \\ Z & i = 0 \end{pmatrix}$

(*) If n=odd
Hi
$$(RP^{n}, Z) \subseteq \begin{cases} 0 & i \ge n \\ Z & i = n \\ 0 & 2 \le i = even \le n \\ Z & 1 \le i = odd < n \\ Z & i = 0 \end{cases}$$

What happen for other G's?
 $C_{i}^{CW}(RP^{n};G) = G \cdot e^{(i)}$
 $\forall 0 \le i \le n , C_{i}^{CW} = 0$ for $i \ge n$
 $\vartheta : C_{i}^{CW} - C_{i-i}^{CW}$ is multiplication by
 $\Im as before = 2$
 $d : C_{i}^{CW}(RP^{n};G) \rightarrow C_{i}^{CW}(RP^{n};G)$
If $0 \le i \le n \Rightarrow d(a e^{(i)}) = 2a e^{(i-4)} \forall a \in G.$
If $0 \le i = odd \le n \Rightarrow d(a e^{(i)}) = 0$

$$Z_{i} = \begin{cases} K \cdot e^{(i)} & 0 < i = a \cdot e_{n} \le n \\ G \cdot e^{(i)} & 0 < i = o \cdot d_{d} \le n \\ G \cdot e^{(i)} & i = 0 \\ 0 & i < 0 \text{ or } i > n \end{cases}$$
where $K := Ken \left(G \xrightarrow{2x} G \right) \subset G$

$$B_{i} = \begin{cases} 0 & i = n \\ 0 & 0 < i = n \\ 0 & 0 < i = a \cdot e_{n} \le n \\ 2G \cdot e^{(i)} & 0 < i = o \cdot d_{d} < n \\ 0 & i = 0 \\ 0 & i < 0 \text{ or } i > n \end{cases}$$
Now we can calculate homology groups
$$H_{i}^{aw}(RP^{n};G) \cong \begin{cases} K & 0 < i = a \cdot e_{n} \le n \\ G & i = 0 \\ 0 & i < 0 \text{ or } i > n \end{cases}$$