where
$$K := Ker \left(G \xrightarrow{2x} G \right) \subset G$$

 $B_i = \left(\begin{array}{c} 0 & i = n \\ 0 & 0 < i = even \le n \end{array} \right)$
 $B_i = \left(\begin{array}{c} 0 & i = n \\ 0 & 0 < i = even \le n \end{array} \right)$
 $2G \cdot e^{(i)} & 0 < i = odd < n \\ 0 & i = 0 \\ 0 & i < 0 \text{ or } i > n \end{array}$
Now we can calculate homology groups

$$H_{i}^{GW}(RP^{n};G) \cong \begin{cases} K & 0 \le even \le n \\ G/2G & 0 \le i = odd \le n \\ G & i = 0 \\ 0 & i \le 0 \end{cases}$$

$$H_n^{\omega}(\mathbb{R}P^n;G) \cong K$$
 $h=even$
 G $n=odd$

Several intrasting examples of G(1) G = Z 2G = 2Z C ZK = 0

 $H_{i}^{\text{CW}}(\mathbb{R}\mathbb{P}^{n}; \mathbb{G}) \cong \begin{cases} 0 & 0 \le i \le \text{even} \le n \\ \mathbb{Z}_{2}^{7} & 0 \le i \le \text{odd} \le n \\ \mathbb{Z}_{2}^{7} & i = 0 \\ 0 & i \le 0 \end{cases}$ Conclusion: $H_n(\mathbb{R}P^n;\mathbb{Z}) = \langle \mathbb{Z}n \text{ odd} \rangle$ 2) Assume tgeG, F!heG s.t. Juniquen 2h=g(eg. G=R, G=R)G=C or any field of char $\neq 2$) Then G^{2×}>G is an isomorphism.

In this case K = 0, 2G = G, so G/2G = 0. $H_0(\mathbb{RP}^n;G) \cong G$, $H_i(\mathbb{RP}^n;G) = 0$ or i < n $H_n(\mathbb{RP}^n;G) = \int_0^\infty 0$ n = evenG = n = odd

3) $G = Z_2$ In this case $2G = 0, K = Z_2, G/2G = Z_2$ $H_i(RP^n; Z_2) \cong Z_2 + 0 \le i \le n$

APPLICATION : BORSUK - ULAM THEOREM

THEOREM / vector-valued function Let $f:S^n \rightarrow R^n$ be a continuous map \Rightarrow $\exists x \in S^n$ s.t. f(x) = f(-x).

EXAMPLE
Take
$$n=2$$
, $S^2 = surface of Earth 2 at fixed
 $f(x) = (temp(x)) press(x)) to$
 $t_0$$

IMPORTANT to keep in mind. PROOF Let $\gamma: x \to 1$ $H_i(\mathbb{R}^p) \mathbb{Z}_2 \cong \mathbb{Z}_2$ $\forall 0 \leq \hat{L} \leq \Lambda.$ be a 2:1 covering. Let $\Theta: X \rightarrow X$ be the unique deck transformation s.t. $\Theta \neq id$ So $\Theta(x) \neq X \forall x \in X$. $\Theta \circ \Theta = id$ Example. $X = S^n, Y = \mathbb{R}P^n = \frac{S^n}{x^{n-x}} \quad \Theta(x) = -X.$ We'll work now with $S_{o}(X; \mathbb{Z}_{2})$ and $S_{\circ}(Y; Z_2)$. Let $\lambda: \Delta^k \to X$ be a k-simplex. =) 00% is a different simplex Let 6: DK -> Y be a k-simplex in Y. \mathcal{C} can be lighted to $\mathcal{C}: \Delta^{k} \longrightarrow X$. I exactly two possible such liftings: Zante O°Z. (I a lifting since is simply connected)

 $T: S. (Y; \mathbb{Z}_2) \rightarrow S.(X; \mathbb{Z}_2)$ Define W $\mathcal{C} \xrightarrow{\mathsf{T}} \mathcal{C} \xrightarrow{\mathsf{N}} \mathcal{C} \xrightarrow{\mathsf{N}} \mathcal{C}$ (this is independent of the choice of the (5 stal

CLAIM

T is a chain map. Proof Exercise. CLAIM T fits into the following SES of chain complexes $0 \rightarrow S_{\bullet}(Y_{j}Z_{2}) \xrightarrow{T} S_{\bullet}(X_{j}Z_{2}) \xrightarrow{T_{\bullet}} S_{\bullet}(Y_{j}Z_{2}) \rightarrow 0$

For the exactness it is crucial to work with \mathbb{Z}_2 -coefficients ($\mathbb{T}_c \circ T(2) = 23$). Proof Exercise.

This SES induces a LES in homology: $\xrightarrow{} H_{\kappa}(\underline{Y}; \mathbb{Z}_{2}) \xrightarrow{T_{\star}} H_{\kappa}(\underline{x}; \mathbb{Z}_{2}) \xrightarrow{T_{\star}} H_{\kappa}(\underline{Y}; \mathbb{Z}_{2}) \xrightarrow{J_{\star}} H_{\kappa-1}(\underline{Y}; \mathbb{Z}_{2}) \xrightarrow{J} H_{\kappa}(\underline{Y}; \mathbb{Z}_{2}) \xrightarrow{J} H_{\kappa-1}(\underline{Y}; \mathbb{Z}_{2}) \xrightarrow{J} H_{\kappa}(\underline{Y}; \mathbb{Z}_{2}) \xrightarrow{J} H_{\kappa-1}(\underline{Y}; \mathbb{Z}_{2}) \xrightarrow{J} H_{\kappa}(\underline{Y}; \mathbb$

Suppose we have two coverings, each of them 2:1. $X \xrightarrow{T'} I$ $X' \xrightarrow{T'} I'$

and we have the deck transformations $Q: X \to X, \Theta': X' \to X'.$ Let $f: X \to X'$ be a map s.t. $f \circ \Theta = \Theta' \circ f$ (f is an odd map in the previous example)

f descends to $\overline{f}: \underline{Y} \to \underline{Y}'$ We get a map of SESs induced by $f \& \overline{f}:$ $0 \to S.(\underline{Y}; \underline{Z}_2) \xrightarrow{T} S.(\underline{X}, \underline{Z}_2) \xrightarrow{T} S.(\underline{Y}; \underline{Z}_2) \underbrace{T} S.(\underline{Y}; \underline{Z}_2) \underbrace{T}$

Exercise: Check the commutativity of this diagram.

Take $X = S^n, Y = \mathbb{RP}^n, X^l = S^n, Y^{l} = \mathbb{RP}^n$ Θ, Θ^l are antipodal maps.

THEOREM

Let $\phi: S^n \longrightarrow S^n$ be an odd map (i.e. $\phi(-x) = -\phi(x)$, or equiv. $\phi = \theta' \cdot \phi$). Then $n \leq m$.

PROOF

Assume by contradiction that n > m. WLOG assume that m > 0, bc. if m = 0, the statement is obvious: I odd map $S^n \rightarrow S^o$ if n > 0. Consider $S^o \stackrel{}{\pm} S^m$ $T \int \int T'$ $\mathbb{RP}^n \xrightarrow{} \mathbb{RP}^m$ \overline{T}

Consider the LES, discussed before, for $S^m \rightarrow \mathbb{R}^{pm}$:

 $0 \rightarrow H_m(RP^m; \mathbb{Z}_2) \xrightarrow{T_2} H_m(S^m; \mathbb{Z}_2) \xrightarrow{\mathbb{T}_2} H_m(RP^m; \mathbb{Z}_2) \xrightarrow{\mathbb{T}_2}$ $\rightarrow H_m(\mathbb{R}^{pm}; \mathbb{Z}_2) \xrightarrow{T_*} H_m(\mathbb{S}^m; \mathbb{Z}_2) \xrightarrow{\mathbb{T}_*} H_m(\mathbb{R}^m; \mathbb{Z}_2) \xrightarrow{\mathbb{T}_*} H_$ $\rightarrow H_1(\mathbb{R}^{pm}; \mathbb{Z}_2) \xrightarrow{T_1} H_1(\mathbb{S}^m; \mathbb{Z}_2) \xrightarrow{\mathbb{T}_1} H_1(\mathbb{R}^p; \mathbb{Z}_2) \xrightarrow{\mathbb{T}_1} H_1(\mathbb{R}^p; \mathbb{Z}_2) \xrightarrow{\mathbb{T}_2} H_$ $\rightarrow H_{o}(\mathbb{R}P^{m};\mathbb{Z}_{2}) \xrightarrow{T_{1}} H_{o}(\mathbb{S}^{m};\mathbb{Z}_{2}) \xrightarrow{\mathbb{T}_{1}} H_{o}(\mathbb{R}P^{m};\mathbb{Z}_{2}) \rightarrow 0$ CLAIM $\partial_{\chi} : H_{\kappa}(\mathbb{R}\mathbb{P}^{m};\mathbb{Z}_{2}) \rightarrow H_{\kappa-1}(\mathbb{R}\mathbb{P}^{m};\mathbb{Z}_{2})$ is an iso $\forall 1 \leq k \leq m$. injective $Z_2 \Rightarrow Z_2$ map is iso Z_2 $0 \rightarrow H_m(RP^m; Z_2) \xrightarrow{\sim} H_m(S^m; Z_2) \xrightarrow{\sim} H_m(RP^m; Z_2)$ \rightarrow Hm (RPm; Z2) $\xrightarrow{T_1}$ Hm (S^m; Z2) $\xrightarrow{T_1}$ Hm (RP^m, Z2) $\xrightarrow{T_1}$ $\rightarrow H_1(\mathbb{R}^m, \mathbb{Z}_2) \xrightarrow{T_1} H_1(\mathbb{S}^m, \mathbb{Z}_2) \xrightarrow{\mathbb{T}_1} H_1(\mathbb{R}^m, \mathbb{Z}_2) \xrightarrow{\mathbb{T}_1} H_1(\mathbb{R}^m, \mathbb{Z}_2) \xrightarrow{\mathbb{T}_2}$ $\rightarrow H_{o}(\mathbb{RPm};\mathbb{Z}_{2}) \xrightarrow{T_{1}} H_{o}(\mathbb{Sm};\mathbb{Z}_{2}) \xrightarrow{\mathbb{T}_{2}} H_{o}(\mathbb{RPm};\mathbb{Z}_{2}) \rightarrow 0$

Exercise : white down the proof carefully.
The same happens for the sequence

$$S^n \rightarrow RPn$$
 (this time the range is
 $0 \le k \le n$).
Now we look at the relationship between
the signenes:
 $H_i(RPn; Z_2) \xrightarrow{\partial_X} H_{i-1}(RPn; Z_2)$
 $\overline{\mathbb{P}}_{\times} \int \mathbb{P}_{\times} \int \mathbb{P}_{\times} + H_i(RPn; Z_2) \xrightarrow{\partial_X} H_{i-1}(RPn; Z_2)$
Begin with $i=1: \overline{\mathbb{P}}_{\times}$ on RHS is an iso.
Because ∂_X are isos we get that $\overline{\mathbb{P}}_{\times}$ on LHS
is also an eso. Applying this argument
repeatedly we get that
 $\overline{\mathbb{P}}_{\times}:H_i(RPn; Z_2) \rightarrow H_i(RPm, Z_2)$
for all $0 \le i \le m$.

In particular,

$$\begin{split}
\overline{\Phi}_{*} : H_{m}(\mathbb{RP}^{n}; \mathbb{Z}_{2}) \to H_{m}(\mathbb{RP}^{m}; \mathbb{Z}_{2}) \\
\text{is an uso.} \\
\xrightarrow{\mu} \\
H_{m}(\mathbb{RP}^{n}; \mathbb{Z}_{2}) \xrightarrow{\tau_{*}} H_{m}(\mathbb{S}^{n}; \mathbb{Z}_{2}) \\
& \int \overline{\Phi}_{*} \stackrel{\simeq}{=} \\
H_{m}(\mathbb{RP}^{m}; \mathbb{Z}_{2}) \stackrel{\cong}{=} \\
H_{m}(\mathbb{RP}^{m}; \mathbb{Z}_{2}) \stackrel{\cong}{=} \\
H_{m}(\mathbb{S}^{m}; \mathbb{Z}_{2}) \\
& \downarrow \overline{\Phi}_{*} \\
& H_{m}(\mathbb{RP}^{m}; \mathbb{Z}_{2}) \xrightarrow{\mu} \\
& H_{m}(\mathbb{RP}^{m}; \mathbb{Z}_{2}) \\
& \downarrow \overline{\Phi}_{*} \\
& H_{m}(\mathbb{RP}^{m}; \mathbb{Z}_{2}) \stackrel{\cong}{=} \\
& H_{m}(\mathbb{RP}^{m}; \mathbb{Z}_{2}) \stackrel{\cong}{=} \\
& H_{m}(\mathbb{RP}^{m}; \mathbb{Z}_{2}) \stackrel{\cong}{=} \\
& H_{m}(\mathbb{RP}^{m}; \mathbb{Z}_{2}) \xrightarrow{\mu} \\
& H_{m}(\mathbb{RP}^{m}; \mathbb{Z}_{2}) \xrightarrow{\mu} \\
& H_{m}(\mathbb{RP}^{m}; \mathbb{Z}_{2}) \stackrel{\cong}{=} \\
& H_{m}(\mathbb{RP}^{$$

PROOF OF THE BORSUK-ULAM THEOREM Let $f: S^n \rightarrow R^n$. Assume by contradiction that $f(x) \neq f(-x) \neq x \in S^n$. Define $\Psi: S^n \rightarrow S^{n-1}$