In particular,

$$\begin{split}
\overline{\Phi}_{*} : H_{m}(\mathbb{RP}^{n}; \mathbb{Z}_{2}) \to H_{m}(\mathbb{RP}^{m}; \mathbb{Z}_{2}) \\
\text{is an uso.} \\
\xrightarrow{\mu} \\
H_{m}(\mathbb{RP}^{n}; \mathbb{Z}_{2}) \xrightarrow{\tau_{*}} H_{m}(\mathbb{S}^{n}; \mathbb{Z}_{2}) \\
& \int \overline{\Phi}_{*} \stackrel{\simeq}{=} \\
H_{m}(\mathbb{RP}^{m}; \mathbb{Z}_{2}) \stackrel{\cong}{=} \\
H_{m}(\mathbb{RP}^{m}; \mathbb{Z}_{2}) \stackrel{\cong}{=} \\
H_{m}(\mathbb{S}^{m}; \mathbb{Z}_{2}) \\
& \downarrow \overline{\Phi}_{*} \\
& H_{m}(\mathbb{RP}^{m}; \mathbb{Z}_{2}) \xrightarrow{\mu} \\
& H_{m}(\mathbb{RP}^{m}; \mathbb{Z}_{2}) \\
& \downarrow \overline{\Phi}_{*} \\
& H_{m}(\mathbb{RP}^{m}; \mathbb{Z}_{2}) \stackrel{\cong}{=} \\
& H_{m}(\mathbb{RP}^{m}; \mathbb{Z}_{2}) \stackrel{\cong}{=} \\
& H_{m}(\mathbb{RP}^{m}; \mathbb{Z}_{2}) \stackrel{\cong}{=} \\
& H_{m}(\mathbb{RP}^{m}; \mathbb{Z}_{2}) \xrightarrow{\mu} \\
& H_{m}(\mathbb{RP}^{m}; \mathbb{Z}_{2}) \xrightarrow{\mu} \\
& H_{m}(\mathbb{RP}^{m}; \mathbb{Z}_{2}) \stackrel{\cong}{=} \\
& H_{m}(\mathbb{RP}^{$$

PROOF OF THE BORSUK-ULAM THEOREM Let $f: S^n \rightarrow R^n$. Assume by contradiction that $f(x) \neq f(-x) \neq x \in S^n$. Define $\Psi: S^n \rightarrow S^{n-1}$

$$\phi(x) := \frac{f(x) - f(-x)}{|f(x) - f(-x)|} \in S^{n-1}$$

Clearly, $\varphi(-x) = -\varphi(x)$. By the previous theorem, $n \le n - 1$. Contradiction.

APPLICATION OF BORSUK-ULAM THEOREM: THEOREM (LUSTERNIK-SCHNIRELMANN) Let An., A, CSn be l closed subsets s.t. $A_1 \cup A_2 \cup \dots \cup A_e = S^n$. If $l \leq n+1$, then Fi s.t. A: contains a pair of antipodal points. Proof WLOG l=n+1 (otherwise add empty subsets: A_{l+1} , $A_{n+1} = \phi$). Assume $A_{i} \cap (-A_{i}) = \phi \quad \forall i \leq i \leq n$ 1 image under the

antipodal map and we'll show that $A_{n+1} \cap (-A_{n+1}) \neq \emptyset$ Reminder: We will need: IF X Tz + compact, URYSOHN LEMMA (sn is normal) Let x be a normal space and CCX closed, U an open subst containing C. then Za continuous function $f: X \rightarrow [0, 1] \text{ s.t. } f \models 0$ and $f \int_{X \setminus T} = 1$. By the Urysonn lemma 7 a continuous Junction $f_i: X \to [0,1]$ s.t. $f|_{A_i} \equiv 0$ and f = 1. Take the functions $f_{\Lambda_1}f_{2_1\cdots_1}f_m$ and define $f: S^n \rightarrow \mathbb{R}^h$, $f(x) = (f_{\lambda}(x), ..., f_{n}(x))$

By Borsuk-Ulam
$$\exists x_0 \in S^n$$
 s.t.
 $\exists (x_0) = \exists (-x_0)$.

Clearly, $x_0 \notin A_i$ $\forall 1 \leq i \leq n$. Similarly - $x_0 \notin A_i$ $\forall 1 \leq i \leq n$. Since A_i are a covering, $x_0, \neg x_0 \in S^n \setminus (A_1 \cup \cup A_n) \subset A_{n+1}$

A ham sandwich consists of two pieces of bread & one piece of ham. The following theorem says thost one can always relie it with a straight cut of a knife so as to cut each slice of bread exactly in two and the same for the ham.

APPLICATION: THE HAM SANDWICH THEOREM Let A, Az, Am be Lebesgue measurable bounded subsets of RM. then there exists an affine (m-i)-plane HCR^m which divides each A; into pieces of epual measure. Proof Regard R^m as R^m x E13C R^{m+1}.

ie. the subset $\{(x_1, ..., x_{m+1}) | x_{m+1} = 1\}$. For a unit vector $x \in \mathbb{R}^{m+1}$, let $V_x = \mathbb{R}^m \times \{1\} \cap \{y \in \mathbb{R}^{m+1} | \langle x, y \rangle \ge 0\}$

and

 $H_{x} = \mathbb{R}^{m} \times \{1\} \cap \{y \in \mathbb{R}^{m+1} \mid \langle x, y \rangle = 0\}$

Let f_i =measure $(\chi \cap A_i)$ which is continuous since A_i is bounded. Then put $f=(f_1,..,f_m): S^m \rightarrow R^m$. By the Borsuk-Viam theorem, there is such a vector X_0 s.t. $f(x_0) = f(-x)$. Then H_{X_0} is the desired hyperplane.