PROPOSITION (1) Ext $(H \oplus H^{1}, G) \cong Ext(H, G) \oplus Ext(H^{1}, G)$ (2) If H is a free abelian groups then $Ext(H,G) = 0 \forall groups G.$ (3) $Ext(Z_{n}, G) \cong G'_{nG}(nG - \{ng : geG\}CG)$ Remark: The above 3 statements are enough in order to calculate Ext(H,G) for all finitely generated abelian groups H. This is because we have a SES

PROOF

D Let $F. \rightarrow H$ be a free resolution of $H & F.' \rightarrow H'$ a free resolution of H'. => $F.' \rightarrow H'$ a free resolution of H'. => $F. \oplus F.'$ is a free resolution of $H \oplus H'$.

 $Ext(H\oplus H',G) = H'(F, \oplus F';G) \cong H'(F,jG) \oplus H'(F';G)$ $= Ext(H,G) \oplus Ext(H',G)$ P H is free, then we can we $\therefore 0 \to 0 \to H \xrightarrow{id} H \to 0 \quad as$ $F_{i} = F_{i} = F_{i}$

a free resolution of H. $E \times H(H, G) = H^{1}(F; G) = 0.$ (3) Considering the following resolution of \mathbb{Z}_{n} : $i(\alpha) := n\alpha$ $i(\alpha) := n\alpha$ $i(\alpha) := n\alpha$

Apply hom
$$(-,G)$$
:
 F_2^* , determined
 $I_1F_1^*$, I_2 , I_1 , I_2 , I_2
 I_1Z , I_2Z , I_2

=
$$7 \text{ Ext}(Z_{n},G) = H^{1}(F^{*}) = \frac{G}{hG}$$
.

GROLLARY Let C. be a chain complex of free abelian groups. Suppose $H_n(C.) \& H_{n-1}(C.)$ are finitely generated. Denote by Tn-1 CHn-1 (C.) the torsion subgroup of the (C.). then

$$H^{n}(C; Z) \cong H_{n}(C) \bigoplus T_{n-1}.$$

The splitting is not canonical.

Exercise: general structure + provious result.

CONCLUSION Assume that Ho(C.) is free. Then $H^1(C; Z)$ is free. The septence $0 \rightarrow \text{Ext}(H_{n-1}(C), G) \rightarrow H^{n}(C, G) \rightarrow \text{hom}(H_{n}(C), G) \rightarrow 0$ is natural with respect to chain maps (& homo's of G) in the following server If $d:C. \rightarrow C'$ is a chain map, then we have a commutative diagram $0 \rightarrow Ext (H_{n-1}(C),G) \rightarrow M^{n}(C,G) \rightarrow hom(H_{n}(C),G) \rightarrow hom(H_{n}(C),G) \rightarrow H^{n}(C,G) \rightarrow hom(H_{n}(C),G) \rightarrow hom(H_{n}(C)$ $\int d_n^{\text{ext}} \int d^* \int d_n^*$ $0 \longrightarrow \text{Ext} (H_{n-1}(C'),G) \longrightarrow M^{n}(C',G) \longrightarrow \text{hom}(H_{n}(C),G) \rightarrow 0$ x'n: Hn(c)→Hn(c'), xn* is the dual of I map induced by x x*= the map induced in cohomology from a de = map on Ext induced by dn

Exercise: Prove thus. EXAMPLE FROM TOPOLOGY $X = \mathbb{R}P^{n}, G = \mathbb{Z}_{2}$ $0 \rightarrow \text{Ext}(H_{i-1}(\mathbb{R}\mathbb{P}^n),\mathbb{Z}_2) \rightarrow H^i(\mathbb{R}\mathbb{P}^n,\mathbb{Z}_2) \rightarrow \text{hom}(H_i(\mathbb{R}\mathbb{P}^n),\mathbb{Z}_2) \rightarrow 0$ Assume n=even >0. $H_0(x) = Z, H_1(x) = Z_2$, $H_{2}(x) = 0, ..., H_{2k-1}(x) = \mathbb{Z}_{2}, H_{2k}(x) = 0, ... H_{n}(x) = 0.$ $3 \le 2k - 1 \le n - 1$ s calculate Ext $(H_j(X), ZZ_2) = \begin{cases} 0 & j=0 \\ Z_2 & 1 \le j=0 \\ 0 & 0 \le j=0 \end{cases}$ Let us calculate $hom(H_{i}(x), Z_{2}) = \begin{cases} Z_{2} & i=0\\ Z_{2} & 1 \le i = 0 \\ Z_{2}$ $0 < \hat{\lambda} = even$ $= H^{i}(X; \mathbb{Z}_{2})^{2} \in \mathsf{Ext}(H_{i-1}(X), \mathbb{Z}_{2}) \oplus \mathsf{hom}(H_{i}(X), \mathbb{Z}_{2})$ $\tilde{z}\mathbb{Z}_2 \neq 0 \leq i \leq h$ Exercise: Carry out the calculation of

Hi (RPn; Z2) for n=odd.

MAIN LEMMA

① Let $F. \rightarrow H$ be a free resolution of H and $F.' \rightarrow H'$ a resolution of H' (not necessarily free) Then every homo. $d: H \rightarrow H'$ can be extended to a chain map $F. \rightarrow F.'$, i.e.

$$- \rightarrow F_{2}^{f_{2}} \xrightarrow{f_{1}} F_{1} \xrightarrow{f_{2}} F_{2} \xrightarrow{f_{1}} \xrightarrow{f_{2}} F_{3} \xrightarrow{f_{1}} \xrightarrow{f_{2}} \xrightarrow{f_{2}} \xrightarrow{f_{1}} \xrightarrow{f_{1}} \xrightarrow{f_{1}} \xrightarrow{f_{2}} \xrightarrow{f_{1}} \xrightarrow{f_{1}} \xrightarrow{f_{1}} \xrightarrow{f_{2}} \xrightarrow{f_{1}} \xrightarrow{f_{1}}$$

Moreover, any two such extensions are chain homotopic.

(2) For every two free resolutions F, & F'of H, F canonical isomorphisms $H^{n}(F;G) \cong H^{n}(F';G) \forall n \geq 0.$

In other words, $H^{n}(F;G) = 0, 1, 2, ...$

depend only on H&G (and Not on the Choice of F.). Proof of the lemma $f := \mathcal{E}$ f';=E' We will define d_i by induction $d_1 := d$ For is free, so we choose a basis $\{ X_s \}$. fo= el is surjective, so $\exists x_s' \in F_s'$ s.t. $f_{o}'(X_{s}') = \lambda f_{o}(X_{s})$. Define $\alpha_{o}(X_{s}) = X_{s}'$. Since Fo is free this defines do uniquely & f. d. = d-1 fo. Now suppose we've already defined d_1, do, ..., di. $F_{i+1} \xrightarrow{f_{i+1}} F_{i} \xrightarrow{f_{i}} F_{i-1} \xrightarrow{f_{i+1}} \longrightarrow F_{i} \xrightarrow{f_{i+$ dit! Again, we choose a basis & xsy for Fit.

For every basis element Xs, difit (XS) E Im (fiti) because $d_{i}f_{i+1}(x_{s}) \in ker(f_{i}')$ (\leftarrow this is because $f_{\lambda} ' \alpha_{\lambda} f_{\lambda+1} (\chi_{s}) = \alpha_{\lambda-1} f_{i} f_{i+1} (\chi_{s}) = 0).$ Define $\alpha_{i+1}(x_s) = x_s'$, where $x_{s}' \in (f_{i+1}^{1})^{-1} (a_{i} f_{i+1} (x_{s})).$ This proves the existence of dy ty. Uniqueness up to chain homotopy If Ediga Edily are two extensions of x, we have to show that x: - xi Is chain homotopic to O. Note that Edi-dily is an extension of 0:H->H! So it's knough to prove that if EBit to an extension of $H \rightarrow H^1$ then f a chain homotopy $h_i:F_i \rightarrow F_{i+i}$, i=-1,0.

s.t.
$$f_{it+1}^{i}h_i^$$

finction
$$f_{i}(x) + h_{i-1}f_{i}(x) = B_{i}(x)$$
 $\forall x \in F_{i}$.
Choose a basis $\{x_{s}\}$ of F_{i} . If we know that $y := B_{i}(x_{s}) - h_{i-1}f_{i}(x_{s}) \in In(f_{i+1})$
then we are done: just define $f_{i-1}(x_{s}) \in In(f_{i+1})$
 $h_{i}(x_{s}) := x_{s}'$ for some choice $x_{s}' \in F_{i+1}$
 $s.t. f_{i}'(x_{s}') = y_{s}$. Indeed,
 $f_{i}'(y_{s}) = f_{i}'B_{i}(x_{s}) - f_{i}'h_{i-1}f_{i}(x_{s}) =$
 $= B_{i+1}f_{i}(x_{s}) - (B_{i-1} - h_{i-2}f_{i-1}) \circ f_{i}(x_{s})$
I.P.
 $= B_{i+1}f_{i}(x_{s}) - (B_{i-1} - h_{i-2}f_{i-1}) \circ f_{i}(x_{s})$
 $= 0$
 $\Rightarrow y_{s} \in Ker(f_{i}')$ as we wished. This
completes the induction, (this proves part 1)
Let G be on abelian group &
suppose we have two extensions $\{d_{i}\}, \{x_{s}\}$

of $\alpha: H \rightarrow H!$ Consider $\alpha^*: H'^* \rightarrow H^*$ and the cochain maps $\alpha_1^*: F_1^{*} \to F_1^{*}$, $m^*: F' \rightarrow F'^*$ $0 \to H^* \to F_a^* \to \dots$ $d^{*} \uparrow d^{*} \uparrow m^{*}$ $0 \longrightarrow H'^* \longrightarrow F_0'^* \longrightarrow \cdots$ d. ~ M. =>d.*~d. 7 chain [oochain homotopies homotoples Since =) the induced maps in cohomology coincide: $d_i^* = m_i^* : H^i(F'_i g) \rightarrow H^i(F_i g)$. In particular, we get a canonical map d^{ext} : Ext $(H',G) \rightarrow Ext(H,G)$ that dypends only on $\alpha: H \rightarrow H'$.

Now, let H, H', H" be abelian groups & F., F. ', F." resolutions of H, H', H" respectively with F&F' being free. Let HayH'BH" be a homo. $= \mathcal{A}_{\lambda}^{*} = \mathcal{A}_{\lambda}^{*} \circ \mathcal{B}_{\lambda}^{*} : \mathcal{H}^{\lambda} (\mathcal{F}_{j}^{*}, \mathcal{G}) \rightarrow \mathcal{H}^{\lambda} (\mathcal{F}_{j}, \mathcal{G})$ (*)In particular, $(\beta \circ \alpha)^{\text{ext}} = d^{\text{ext}} \circ \beta^{\text{ext}} : \text{Ext}(H'', G) \rightarrow \text{Ext}(H, G)$ the reason for this (x) is that we can choose the extension of Bod to be Brod: Fr > Fr Vi.

Issue: there are many possible resolution-why is Ext well defined? Consider now two free resolutions F. & F. of the same group H. We want to show that there is a canonical isomorphism $H^{1}(F;G) \cong H^{1}(F';G)$, hence Ext (H,G) is well-defined (i.e. independent of the free resolution of H, up to iso). Let's consider vid: H -> H. We obtain two possible extensions of this map. $d: F_{\bullet} \rightarrow F_{\bullet}'$ and $\beta: F_{\bullet}' \rightarrow F_{\bullet}$. $F \xrightarrow{f} H$ $d \xrightarrow{f'} f \xrightarrow{f'} H$ $F \xrightarrow{f'} H$ $f \xrightarrow{f'} f$ $f \xrightarrow{f'} H$ Now Bod:F→F us an extension of id Also, id : F →F is an extension of identity.

UCT FOR TENSOR PRODUCTS Recall: Let U → V & W → 0 be 2n Exact sequence of R-modules. Then V R-mod M, the sequence M&U → M&V → M&W → 0 R M&V → M&V → D is exact. But J SES 0 → U → V → W → D for which we lose exactness from the

left
$$M \otimes_{R}^{-1}$$
.
If M is free $\Rightarrow D \rightarrow M \otimes_{R} U \rightarrow M \otimes_{R} V \rightarrow M \otimes_{R} W \Rightarrow D$
is exact. Also, if $D \rightarrow U \rightarrow V \rightarrow W \rightarrow D$
splits $\Rightarrow D \rightarrow M \otimes_{R} U \rightarrow M \otimes_{R} V \rightarrow M \otimes_{R} W \rightarrow D$
is exact $\forall R \mod M$.

Let (C., 2) be a chain complex of free abelian groups. $(R = Z, \otimes = \otimes_Z)$ Question: What is the relation between $H_{*}(C, \otimes G)$ and $H_{*}(C), G^{2}$ diff.is we will denote this 2010 also by $H_{*}(C.;G)$ Like before, consider $B_K C Z_K C C_K$, denote by $\ell_k: B_k \to Z_k$ the inclusion. Consider the commutative diagram below. It is a SES of chain complexes, where on B. & Z. We take the differential O.

 $B_K \subset C_K$ is free because C_K is free => every now of the septence is split. (not necessarily the chain complex). If we tensor with G, we still obtain $\begin{array}{ccc} & i & i \\ 0 \rightarrow Z_n \otimes G \rightarrow C_n \otimes G \rightarrow B_{n-1} \otimes G \rightarrow 0 \end{array}$ SESs : to rg To $0 \to Z_{n-1} \otimes G \to C_{n-1} \otimes G \to B_{n-2} \otimes G \to 0$

Passing to homobogy we get a LES $\longrightarrow \mathcal{B}_n \mathcal{O}_G \xrightarrow{C_n} \mathcal{Z}_n \mathcal{O}_G \rightarrow \mathcal{H}_n(C;G) \rightarrow \mathcal{B}_n, \overset{\circ}{\rightarrow} G \xrightarrow{C_n} \mathcal{A}_n$ CLAIM: Cn=in Ørd, Cn-1=in-1 Ørd (exercise) (Follows from the definition of the connecting homomorpham) Now break the LES into many SESs: $0 \rightarrow coker(in \otimes id) \rightarrow H_n(C;G) \rightarrow ter(in \otimes id) \rightarrow 0$ LEMMA Let $f: \mathcal{U} \rightarrow \mathcal{V}$ be a homomorphism of R-modules. Let M be an R-module. Consider foid: UOM-)VOM. then J a canonical iso $\operatorname{coker}(f \otimes id) \cong \operatorname{coker}(f) \otimes_{R} M.$

Proof

Let N be an R-modul & ICN