Passing to homobogy we get a LES $\longrightarrow \mathcal{B}_n \mathcal{O}_G \xrightarrow{C_n} \mathcal{Z}_n \mathcal{O}_G \rightarrow \mathcal{H}_n(C;G) \rightarrow \mathcal{B}_n, \mathcal{O}_G \xrightarrow{C_n} \mathcal{A}_n$ CLAIM: $C_n = i_n \otimes id$, $C_{n-i} = i_{n-i} \otimes id$ (exercise) (Follows from the definition of the connecting homomorpham) Now break the LES into many SESs: $0 \rightarrow coker(in \otimes id) \rightarrow H_n(C;G) \rightarrow ter(in \otimes id) \rightarrow 0$ LEMMA Let $f: \mathcal{U} \rightarrow \mathcal{V}$ be a homomorphism of R-modules. Let M be an R-module. Consider foid: UOM-VOM. then J a canonical iso $\operatorname{coker}(f \otimes id) \cong \operatorname{coker}(f) \otimes_{R} M.$

Proof

Let N be an R-modul & ICN

a submodule, consider

$$0 \rightarrow I \stackrel{i}{\rightarrow} N \stackrel{P}{\rightarrow} N'_{I} \rightarrow 0$$

This is a SES of R-modules. Let M
be an R-modul. =>
 $I \otimes M \stackrel{i \otimes id}{\rightarrow} N \otimes M \rightarrow N'_{I} \otimes_{R} M \rightarrow 0$ is
 $P \times a \cup t$. => $N \otimes M \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$ is
 $P \times a \cup t$. => $N \otimes M \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$ is
 $P \times a \cup t$. => $N \otimes M \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$ is
 $P \times a \cup t$. => $N \otimes M \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$ is
 $P \times a \cup t$. => $N \otimes M \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$ is
 $P \times a \cup t$. => $N \otimes M \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$ is
 $P \times a \cup t$. => $N \otimes M \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$ is
 $P \times a \cup t$. => $N \otimes M \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$ is
 $P \times a \cup t$. => $N \otimes M \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$ is
 $P \times a \cup t$. => $N \otimes M \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$ is
 $P \times a \cup t$. => $N \otimes M \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$ is
 $P \times a \cup t$. => $N \otimes M \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$ is
 $P \times a \cup t$. => $N \otimes M \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$ is
 $P \times a \cup t$. => $N \otimes M \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$ is
 $P \times a \cup t$. => $N \otimes M \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$ is
 $P \times a \cup t$. => $N \otimes M \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$ is
 $P \times a \cup t$. => $N \otimes M \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$ is
 $P \times a \cup t$. => $N \otimes M \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$ is
 $P \times a \cup t$. => $N \otimes M \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$ is
 $P \times a \cup t$. => $N \otimes M \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$ is
 $P \times a \cup t$. => $N \otimes M \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$ is
 $P \times a \cup t$. => $N \otimes M \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$. =
 $= im (f \otimes id) (f \cup M) =$
 $= im (f \otimes id)$. =
 $P \otimes a \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$. =
 $= im (f \otimes id)$. =
 $P \otimes a \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$. =
 $= im (f \otimes id)$. =
 $P \otimes A \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$. =
 $= im (f \otimes id)$. =
 $P \otimes A \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$. =
 $= im (f \otimes id)$. =
 $P \otimes A \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$. =
 $= im (f \otimes id)$. =
 $P \otimes A \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$. =
 $P \otimes A \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$. =
 $= im (f \otimes id)$. =
 $P \otimes A \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$. =
 $P \otimes A \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$. =
 $P \otimes A \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$. =
 $P \otimes A \longrightarrow (N'_{I}) \otimes_{R} M \rightarrow 0$. =
 $P \otimes A \longrightarrow (N \otimes M \rightarrow 0$. =
 $P \otimes A \longrightarrow (N \otimes M \rightarrow 0$. =
 $P \otimes A \longrightarrow (N \otimes M \rightarrow 0$. =
 $P \otimes (N \otimes M \rightarrow 0$. =
 $P \otimes (N \otimes M \rightarrow 0$. =
 $P \otimes (N \otimes M \rightarrow 0$. =
 $P \otimes (N \otimes M \rightarrow 0$. =
 $P \otimes (N \otimes M \rightarrow 0$. =
 $P \otimes (N \otimes M \rightarrow 0$. =
 P

Going back to (*) or the lemma we have

coten
$$(i_n \otimes id) \cong coten (i_n) \otimes G = H_n(C) \otimes G$$

=7 $D \rightarrow H_n(C) \otimes G \rightarrow H_n(C;G) \rightarrow tert (i_{n-1} \otimes id) \rightarrow D$
 $a = [C]$ $a \otimes g \mapsto C \otimes g]$
 $g \in G$ generators
 $J \circ g$ this group
 $exercise : check$
 $Hat this holds$
Analyzing ter $(i_K \otimes id)$
Consider free resolutions $F. \stackrel{e}{\rightarrow} H \circ f a$
given abelian graup $H.$ Given another
 $abelian$ group G_1 we consider $F. \otimes G \rightarrow O$,
which is a chain complex. $\sim S$
 $H_i'(F.;G) := H_i (F. \otimes G).$
THEOREM
 $F \to Wo$ free resolutions $F. \stackrel{e}{\rightarrow} H \circ f.$
 $F = H_i (F. \otimes G).$

So, H_{*} (F;G) depends only on H&G up to cononical iso. take a very short res, Exercise 1: $H_0(F;G) \cong H \oslash G$ Exercise 2: $H_i(F;G) = 0 \quad \forall i \ge 2$ Ĵ TOK FUNCTOR Define $Tor(H,G) := H_{L}(F;G).$ $17 x: H \rightarrow H' ib a homo = 7$ I a canonical map α_{tor} : Tor $(H, G) \rightarrow Tor(H', G)$. And H ~ H' BH" ~ (Box) tor Bor dtor Consider now $H := H_{n-1}(C)$. We have a deg1 dego SES $0 \rightarrow B_{n-1} \xrightarrow{C_{n-2}} Z_{n-1} \rightarrow H_{n-1}(C) \rightarrow D$ which gives a free resolution of Hn-1(C). After - OG, and taking H1 we get $ker(i_{n-1}\otimes id) = Tor(H_{n-1}(C), G).$

THEOREM

Let (C, ∂) be a chain complex of free abelian groups, and G and abelian group. Then Za SES $0 \rightarrow H_n(c) \otimes G \rightarrow H_n(c \otimes G) \rightarrow Tor(H_{n+}(c), G) \rightarrow D$ this septence is natural with respect to chain maps $C \rightarrow C'$ as well as W.r.t. homo, $G \rightarrow G'$. Moreover, the sepuence splits (but not canonically). Proof that SES of homobogical UCT Splits

 $0 \longrightarrow H_{h}(C_{\bullet}) \otimes G \longrightarrow H_{h}(C_{\bullet} \otimes G) \rightarrow \text{Tor}(H_{h-1}(C_{\bullet}), G) \rightarrow C$

Consider the sequence $0 \rightarrow Z_{n} \xrightarrow{j_{n}} C_{n} \xrightarrow{\partial} B_{n-1} \rightarrow 0$

this sequence splits because Bn-1 is free (b,c. Cn-1 is free).

 $=) J Z_n \stackrel{P}{\leftarrow} C_n$ which is a left inverse of jn, ie. pl_=id. Compose p with the quotient map $Z_n \rightarrow H_n(C)$, and we get $\overline{p}: C_n \rightarrow H_n(C.)$ and we have $\overline{p}(z) = [Z] \forall Z \in Z_n$. This map exists In, so we can view it as a chain map $\overline{p}: \mathbb{C} \longrightarrow H_{*}(\mathbb{C})$, where $H_{*}(C.)$ is viewed as a chain complex with 0-differential (indeed $p(\partial c) = [\partial c] = 0$). Tensoring with G we get a chain map $\overline{p} \otimes id : C \otimes G \rightarrow H_{*}(C) \otimes G$ Passing to homology we get $(\overline{p} \otimes id)_{*} : H_n(C, \otimes G) \rightarrow H_n(C, \otimes G)$

CLAIM $(p \otimes id)_{x}$ is a left inverse of $H_{n}(C) \otimes G \xrightarrow{h} H_{n}(C \otimes G).$

Proof of claim
Let
$$a = [c] \in H_n(C_{\bullet})$$
, with $c \in \mathbb{Z}_n$,
and by $g \in G_{\bullet} \implies h(a \otimes g) = [c \otimes g]$
 $\implies (\overline{p} \otimes id)_* (C \otimes g]) = \overline{p}(c) \otimes g =$
 $= [c] \otimes g = a \otimes g = ?$
 $(\overline{p} \otimes id)_* \circ h = id$.

PROPERTIES OF TOR (1) Tor $(A, B) \subseteq Tor (B, A)$ (Tor is a symmetric functor) (2) If A or B are free, then Tor(A, B)=0. (3) $Tor(\bigoplus Ai, B) \subseteq \bigoplus Tor(Ai, B)$. $I \in I$

KIID.

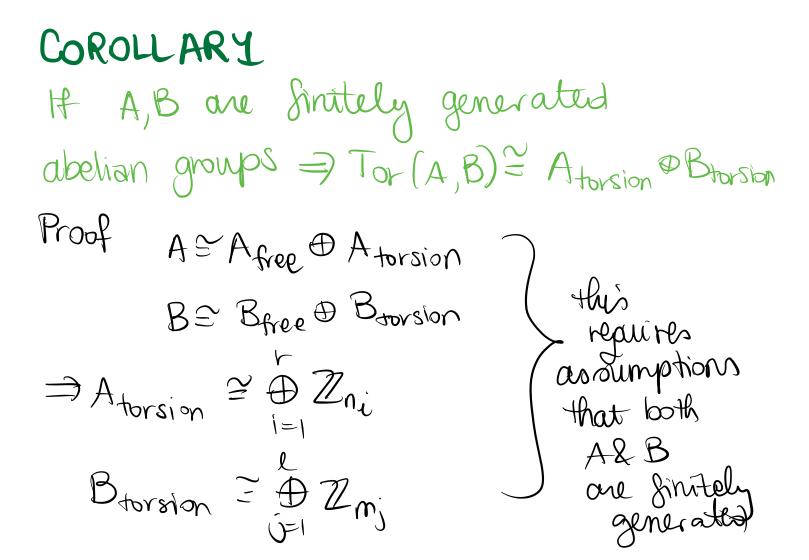
(4) Let A be finitely generated and let

Atorsion CA be the torsion subgroup of A. Then Tor (A,B) = Tor (A torsion, B) (5) Tor $(\mathbb{Z}_m, A) \stackrel{\sim}{=} \ker (A \stackrel{\times m}{\longrightarrow} A)$. $(1)-(5) \Rightarrow$ calculation of Tor (A, B)for all finitely generated abelian groups A&B, Example $Tor(Z_n, Z_m) \cong Z_k$, where k=gcd(n,m). Proof; Consider the free resolution of Zn; $0 \to \mathbb{Z} \xrightarrow{\times \mathbb{N}} \mathbb{Z} \xrightarrow{\mathcal{L}} \mathbb{Z} \xrightarrow{\mathcal{L}} \mathbb{Q} \xrightarrow{\mathcal{L}} \mathbb{Q}$ After $\emptyset \mathbb{Z}_m$ we get $0 \to \mathbb{Z}_m \to \mathbb{Z}_m \to 0$ tor non-augmented chain complex, the

 $\operatorname{Tor}\left(\mathbb{Z}_{n},\mathbb{Z}_{m}\right)^{\underline{v}}\operatorname{ker}\left(\mathbb{Z}_{m}\xrightarrow{x_{n}}\mathbb{Z}_{m}\right)$

Exercise $\int_{Z_{K}}^{\infty} Z_{K} = \gcd(n,m)$. Property 5 is proved in a very similar way. Note that also $Z_{K} \cong Z_{n} \otimes Z_{m}$

Moreover, the isos in the properties section are cononical. The ison 1,2,4 are natural w.r. to homomorphisms of groups for any two of the factors in Tor (-,-). The iso in 5 is natural w.r. to nomomorphisms of groups for the 2nd factor i.e. A' > A" gives $\begin{array}{c} \operatorname{Tor}(\mathbb{Z}_{m}, \mathbb{A}') \xrightarrow{\cong} \operatorname{ter}(\mathbb{A}^{(\times m)} \mathbb{A}^{()}) \\ \operatorname{dtor} \mathbb{J} \qquad & (\mathbb{C}) \qquad & \mathbb{J} \quad \text{induced by} \\ \operatorname{Tor}(\mathbb{Z}_{m}, \mathbb{A}^{()}) \xrightarrow{\cong} \operatorname{ter}(\mathbb{A}^{(\times m)} \mathbb{A}^{()}) \\ \xrightarrow{\cong} \end{array}$



Outline of the proofs (3) Assume A is free. We have a very short free resolution of A: $\rightarrow O \rightarrow A \xrightarrow{id} A \rightarrow O$ $dig1 \ dig0 \ dig-1$ $\Rightarrow Tor(A,B) = O \forall B$.

Assume B=free. Pick a free abelian group F which surjects onto A F Surjects A F Surjects A

Let RCF be the kernel of that surjection. R is also free abelian. ~> we get a free resolution of A $\rightarrow 0 \rightarrow R \rightarrow F \rightarrow A \rightarrow 0$ Since B is free, - @B keeps the septence exact, so the septence $0 \rightarrow R \otimes B \rightarrow F \otimes B \rightarrow A \otimes B \rightarrow 0$ dig 1 dig 0 is exact, \Rightarrow Tor (A,B) = 0. 2) Take a free resolution of each i & their direct sums. Take a tensor product & get direct sum of tensor products.

(4) $A = A_{\text{free}} \oplus A_{\text{Torsion}} + use property (3)$ (5) Take the following free resolution Ø} ℤm' After $- \oslash A : \dots \lor A \xrightarrow{\times m} A \xrightarrow{\times m} @A \xrightarrow{\to} 0$

= Tor $(\mathbb{Z}_m, A) = \operatorname{Ker}(A \xrightarrow{\times} A)$ (homology in degree 1)

To conclude the topic: EXT & TOR for other rings & modules It is not always true that a submodule of a free R-module is free, for general rings. Free resolutions don't