Forcing

Musterlösung Serie 12

On the Consistency of $\omega_1 = \mathfrak{s} = \mathfrak{b} < \mathfrak{d} = \mathfrak{c}$

- 35. This is Proposition 18.3 in [1], to which we refer for the details. We solve simultaneously (a) and (b) by showing that for every non-zero countable ordinal γ we have $\mathbb{C} \approx \mathbb{C}\gamma$ and that for every ordinal λ we have the three equivalences $\mathbb{C}^{\lambda} \approx \mathbb{C}_{\lambda}$, $\mathbb{C}^{\lambda} \approx \mathbb{C}^{|\lambda|}$ and $\mathbb{C}_{\lambda} \approx \mathbb{C}_{|\lambda|}$. It would suffice to find a dense embedding for each of these pairs, but we'll actually describe isomorphisms between the corresponding partially ordered sets.
- $\mathbb{C} \approx \mathbb{C}\gamma$: Given that γ is countable, we can fix a bijection between $\omega \times \gamma$ and ω , which induces an isomorphism between the possible domains in \mathbb{C} and $\mathbb{C}\gamma$.
- $\mathbb{C}^{\lambda} \approx \mathbb{C}_{\lambda}$: Since \mathbb{C}^{λ} is defined as a finite support product, each \mathbb{C}^{λ} -condition p has finite domain, so it can be bijectively mapped to an element of $\operatorname{Fn}(\omega \times \lambda, 2)$.
- $\mathbb{C}_{\lambda} \approx \mathbb{C}_{|\lambda|}$: Fix a bijection between λ and $|\lambda|$. This induces an isomorphism between the finite subsets of $\omega \times \lambda$ and $\omega \times |\lambda|$, as well as an order-isomorphism between \mathbb{C}^{λ} -conditions and $\mathbb{C}^{|\lambda|}$ -conditions, which finishes the proof.
 - 36. This is Lemma 22.12 in [1]. Let f be a function in ^ωω^{V[G]}, and let f be a name such that there is a C^{ω1}-condition p̃ ∈ G with p̃ ⊢ f ∈ ^ωω. Fixed the name f, we can define in the ground model for each C^{ω1}-condition p̃ ≥ p̃ a function in ^ωω as follows:

$$f_p(n) = \min\{k \in \omega : \exists q \ge p (q \vdash f(n) = k)\}.$$

We'd like to remark that we haven't so far used any particular property of the forcing notion \mathbb{C}^{ω_1} . Consider the family $\mathscr{F} = \{f_p : p \ge \tilde{p} \text{ is a } \mathbb{C}^{\omega_1}\text{-condition}\}$. Since $|\mathscr{F}| = \omega_1$ and by assumption $\omega_1 < \mathfrak{b}^{\mathbf{V}}$, we can find in the ground model a function $g_f \in {}^{\omega}\omega$ which dominates \mathscr{F} . We get by choice of g_f and construction of each f_p that for all $\mathbb{C}^{\omega_1}\text{-conditions } p \ge \tilde{p}$, we have that if for some $h \in {}^{\omega}\omega^{\mathbf{V}}$, $p \Vdash h <^* f$, then $h <^* f_p$, and consequently $h <^* g_f$. This means that, in order to dominate every function, a family in the generic extension must be at least as large as a dominating family in the ground model, finishing the proof.

37. This is Proposition 22.13 in [1]. Following the hint, start with a model V |= ZFC + p = ω₁ < c, and force with C^{ω₁}, obtaining a family C = {c_α : α ∈ ω₁} of Cohen reals. More strongly: each c_γ is a Cohen real over V[⟨c_α : α ∈ γ⟩], see Lemma 22.9 in [1] for a proof. Since C^{ω₁} satisfies ccc, we know that ω₁^{V[G]} = ω₁^V < c^V ≤ c^{V[G]}. Moreover, we know that at stage ω₁ we do no add any new real, that is, every real belonging to V[G] appears at some countable stage (see Lemma 18.9 in [1]). We can then deduce that given any f ∈ ^ωω^{V[G]}, say appearing at stage γ ∈ ω₁, f can not be dominating c_{γ+1}, as

HS 2023

Cohen reals are unbounded. This shows that \mathscr{C} is unbounded and hence $\mathfrak{b} \leq \omega_1$, which clearly implies $\mathfrak{b} = \omega_1$. Repeating the same argument together with Lemma 22.3 in [1] yields $\mathfrak{s} = \omega_1$. On the other hand, we know that we didn't add *too many* new reals and hence $\mathfrak{c}^{\mathbf{V}} = \mathfrak{c}^{\mathbf{V}[G]}$, so we can conclude by Exercise 36 that $\mathfrak{d}^{\mathbf{V}} = \mathfrak{d}^{\mathbf{V}[G]}$, concluding the proof.

Literatur

[1] Lorenz Halbeisen, **Combinatorial Set Theory: With a Gentle Introduction to Forcing**, (revised and extended second edition), [Springer Monographs in Mathematics], Springer, London, 2017.