Forcing

D-MATH Prof. Lorenz Halbeisen

Musterlösung Serie 5

PROPERTIES OF FORCING EXTENSIONS

12. We show a stronger statement, namely that if \mathbb{P} is a κ -closed partial ordering and $f: \theta \to X$ is a function in the corresponding generic extension from some cardinal $\theta \in \kappa$ to some set $X \in \mathbf{V}$ already existing in the ground model, then $f \in \mathbf{V}$ as well.

Let G be a generic filter on $\mathbb{P} = (P, \leq)$ and let $f: \theta \to X$ be a function with $f \in \mathbf{V}[G]$, together with a \mathbb{P} -name f for f. By the properties of the Forcing Relation (Thm. 15.10 (2)) we can find a condition $p \in G$ such that

$$p \Vdash f \in \overset{\theta}{\underbrace{}} X,$$

where ${}^{\theta}X$ is a name for the set of all functions from θ to X in $\mathbf{V}[G]$. We will proceed by induction, with the base step given by the fact that, according to Lemma 15.11 (b), there is a condition $p_0 \ge p$, $p_0 \in G$, which decides the image of 0 through f, that is, more formally, there is a condition $p_0 \ge p$, $p_0 \in G$, and an element $x_0 \in X$ such that $p_0 \Vdash f(0) = x_0$. We now define an analogous condition p_{λ} for all $\lambda \in \theta$. If $\lambda = \lambda' + 1$ is a successor ordinal, then repeat the base step in order to obtain a $p_{\lambda} \ge p_{\lambda'}, p_{\lambda} \in G$, and some $x_{\lambda} \in X$ with $p_{\lambda} \Vdash f(\lambda) = x_{\lambda}$. Let now $\lambda \in \theta$ be a limit ordinal. We now want to argue that we can find a condition $\tilde{p_{\lambda}} \in G$ such that for all $\mu \in \lambda$ we have that $\tilde{p_{\lambda}} \ge p_{\mu}$. Consider the set

$$D_{\lambda} = \{ p \in P : \forall \mu \in \lambda \ (p \ge p_{\mu}) \text{ or } \exists \mu \in \lambda \ (p \perp p_{\mu}) \}.$$

 D_{λ} is clearly open. In order to show that it is also dense, let $g \in P$ be an arbitrary condition not in D_{λ} such that for all conditions $h \geq g$, there is no $\mu \in \lambda$ with $h \perp p_{\mu}$. We are then able to find a condition $g_0 \in P$ with $g \leq g_0 \geq p_0$. For each successor ordinal $\mu \in \lambda$, $\mu = \mu' + 1$, define inductively g_{μ} with $g_{\mu'} \leq g_{\mu} \geq p_{\mu}$. For limit ordinals $\mu \in \lambda$, first find by κ -closedness some condition \tilde{g}_{μ} with $\tilde{g}_{\mu} \geq g_{\alpha}$ for all $\alpha \in \mu$, and then, since $\tilde{g}_{\mu} \geq g$ and $\mu \in \lambda$, we are by assumption able to find a g_{μ} with $\tilde{g}_{\mu} \leq g_{\mu} \geq p_{\mu}$. Finally, an element of D_{λ} above g is given by any upper bound of the sequence $\langle g_{\mu} : \mu \in \lambda \rangle$, whose existence is again guaranteed by \mathbb{P} being κ -closed, concluding the proof that D_{λ} is an open dense subset of P. Consider now an element in the non-empty intersection $x \in G \cap D_{\lambda}$. Since G is directed we necessarily have that x is compatible with p_{μ} for every $\mu \in \lambda$, which, by definition of D_{λ} , implies that $x \geq p_{\mu}$ for all $\mu \in \lambda$, which is what we wanted for our condition \tilde{p}_{λ} . Now apply again Lemma 15.11 (b) and get a $p_{\lambda} \in G$ with $p_{\lambda} \Vdash f(\lambda) = x_{\lambda}$. Let now $q \in P$ be any upper bound for the sequence $\langle p_{\mu} : \mu \in \theta \rangle$. We get that q decides the image through f of every element of θ , and hence, by definability of forcing, we get that we are able to define f in the ground model, which shows that $f \in \mathbf{V}$.

13. Let $\mathbb{P} = (P, \leq)$ be a partially ordered set satisfying the κ -chain-condition (in short κ -cc) for some regular cardinal κ , and let G be a generic filter on \mathbb{P} . Let λ and θ be cardinals in V satisfying $\lambda < \theta$ and $\kappa \leq \theta$. Let now $f \colon \lambda \to \theta$ be a function belonging to the generic extension $\mathbf{V}[G]$. The claim will follow by showing that f can not be surjective. Let f be a name for f and $p \in P$ a condition such that

$$p \Vdash f \in \overset{\theta}{\widetilde{\lambda}},$$

where ${}^{\theta} \lambda$ is a name for the set of all functions from θ to λ in $\mathbf{V}[G]$. Consider now for each $\alpha \in \lambda$ the set of conditions above p which decide the image of α through f, formally

$$D_{\alpha} = \{q \ge p : \exists \gamma \in \theta \ (q \Vdash \underline{f}(\alpha) = \gamma\}.$$

We'd like to show that every D_{α} is dense above p. In order to do that, fix $\alpha \in \lambda$ and consider, for each $\gamma \in \theta$, the set $\Delta_{\alpha,\gamma}$ of conditions which decide the forcing sentence $f(\alpha) = \gamma$. By Fact 15.9, each $\Delta_{\alpha,\gamma}$ is open dense in P. Assume now towards a contradiction that there is some $q \ge p$ such that for all $q' \ge q$ we have that $q' \notin D_{\alpha}$. By Definition 15.8 (c) of the forcing relation, we get that for all $\gamma \in \theta$, q is such that

$$q \Vdash f(\alpha) \neq \gamma. \tag{1}$$

On the other hand, since $q \ge p$, we also have $q \Vdash f \in {}^{\theta} \lambda$, which implies $p \Vdash f(\alpha) \in \theta$, contradicting (1), since we can assume that there is a generic filter \tilde{G} on \mathbb{P} containing q (see Chapter 16). Let us now define for each $\alpha \in \lambda$ the set

$$Y_{\alpha} = \{ \gamma \in \theta : \exists q \in D_{\alpha} \ (q \Vdash f(\alpha) = \gamma) \},\$$

which we remark belonging to the ground model V. Notice now that $|Y_{\alpha}| < \kappa$ by the fact that \mathbb{P} satisfies the κ -cc. Indeed, let μ and δ be distinct elements of Y_{α} , and let q_{μ} and q_{δ} be some respectively corresponding conditions. Clearly $q_{\mu} \perp q_{\delta}$, which proves the upper bound on $|Y_{\alpha}|$. Define now the union

$$Y = \bigcup_{\alpha \in \lambda} Y_{\alpha}.$$

If $\kappa < \theta$ then clearly $|Y| < \theta$, as $|Y| \leq \lambda \cdot \kappa = \max(\lambda, \kappa) < \theta$. If $\kappa = \theta$, we get again $|Y| < \theta$, for regularity of κ , together with $\lambda < \kappa$, implies that there is some cardinal $\mu < \theta$ such that for all $\alpha \in \lambda$ we have $|Y_{\alpha}| \leq \mu$, from which we deduce $|Y| \leq \lambda \cdot \mu = \max(\lambda, \mu) < \theta$. We conclude by noticing that $Y \subsetneq \theta$ together with

$$\forall \alpha \in \lambda \ (p \Vdash f(\alpha) \in Y)$$

implies that f can not be surjective, which means that θ is not collapsed in the generic extension.