Forcing

Musterlösung Serie 6

Models of finite fragments of ZFC

- 14. The proof goes exactly as in exercise 16 (a). Indeed, we remark that, except for the fact that it is not uncountable, ω satisfies all the requirements for being an inaccessible cardinal:
 - \aleph_0 is a limit cardinal.
 - \aleph_0 is regular.
 - For all cardinals λ , we have that $\lambda < \aleph_0$ implies $2^{\lambda} < \aleph_0$.

This allows us to use exactly the same arguments we'll use to show that V_{κ} is a model of ZFC for κ inaccessible. To avoid confusion, we remark that V_{ω} does not satisfy the Axiom of Infinity.

15. Weak solution: With the same arguments as in exercise 16 (a), one easily shows that V_{ω_1} , equipped with the standard \in -relation, satisfies the four required axioms.

Strong solution: We can actually construct a countable set-model for the four reuired axioms. Let us start considering $M_0 = \omega + 1 = \omega \cup \{\omega\}$. Our aim is to extend M_0 to some set M, and we do that according to the following definition by induction. Assume that for some $n \in \omega$, M_n is already defined. Then

$$M_{n+1} = M_n \cup \{\{x, y\} : x \in M_n \land y \in M_n \land x \neq y\},\$$

and finally $M = \bigcup_{i \in \omega} M_i$. Now, since $\omega + 1 \subseteq M$, clearly M satisfies the Axiom of Empty Set and the Axiom of Infinity. Moreover, M is transitive, as $\omega + 1$ is transitive and, for m > 0, every element added to build M_m is a subset of M_{m-1} , which implies that transitivity is preserved. We conclude that M is extensional as every transitive subset of \mathbf{V} is extensional (again, see exercise 16 (a), Axiom of Extensionality). To conclude, let x and y be two distinct elements of M. Let n_x and n_y be the least natural numbers such that $x \in M_{n_x}$ and $y \in M_{n_y}$, and assume wlog that $n_x \ge n_y$. By construction $\{x, y\} \in M_{n_x+1} \subseteq M$, which shows that (M, \in) satisfies the Axiom of Pairing.