Forcing

 $\mathrm{HS}\ 2023$

Prof. Lorenz Halbeisen

D-MATH

Musterlösung Serie 7

Set Models

- 22. (b) Consider $\mathbf{M} = (\omega_1, \in)$. Following the enumeration in Chapter 3:
 - ZFC_0 : We do have the *real* empty set $\emptyset^{\mathbf{V}} \in \omega_1$.
 - ZFC_1 : ω_1 is transitive, and every transitive subset of \mathbf{V} is extensional. Alternatively, one can argue that for every x, y distinct elements of ω_1 we have either $x \in y$ or $y \in x$, which again proves extensionality.
 - ZFC_2 : The Axiom of Pairing does not hold, as for instance there is no element of ω_1 which **M** sees as $\{0, 2\}$. More formally,

$$\mathbf{M} \models \nexists x \,\forall y \; (y \in x \leftrightarrow (y = 0 \lor y = 2)).$$

- ZFC_3 : We have that $\bigcup \varnothing = \varnothing$ and that for all elements $\alpha \in \omega_1, \bigcup (\alpha + 1) = \alpha$.
- ZFC_4 : Clearly $\omega \in \omega_1$.
- ZFC_5 : The Axiom Schema of Separation does not hold. Similarly to ZFC_2 :, we have that

 $\mathbf{M} \models \nexists x \,\forall \, y \; (y \in x \leftrightarrow (y \in 3 \land (y = 0 \lor y = 2))).$

 ZFC_6 : From the fact that

$$\mathbf{M} \models \forall \, x \, \forall \, y \; (x \subseteq y \leftrightarrow x \in y),$$

it follows that $\mathbf{M} \models \forall x \ (\mathcal{P}(x) = x \cup \{x\}).$

- ZFC_7 : Since ω_1 is regular, given an element $\mu \in \omega_1$ and a definable function $f: \mu \to \omega_1$, we can find an upper bound $\lambda \in \omega_1$ such that for all $\alpha \in \mu$ we have that $f(\alpha) < \mu$. This proves the Axiom Schema of Replacement in the form in which it appears in Chapter 3 of the book.
- ZFC_8 : Every subset of V (with the standard \in relation) satisfies the Axiom of Foundation, hence M does as well.
- ZFC_9 : For any \mathcal{F} , we have that $C = \{\emptyset\}$ satisfies the Axiom of Choice in the form appearing in the statement, as for all $x \in \omega_1 \setminus \{\emptyset\}$ we have that $\emptyset \in x$.