Forcing

D-MATH Prof. Lorenz Halbeisen

Musterlösung Serie 8

On the Equality $\kappa^{\omega} = \kappa$

We will repeately use the fact that for every infinite cardinal λ , $\lambda^{\lambda} = 2^{\lambda}$, which can be proved for instance using the fact that $\lambda \cdot \lambda = \lambda$.

23. Since it is an idea that can be applied in other cases as well, we leverage the fact that ω_1 is regular, and hence every sequence of length ω admits a countable upper bound in ω_1 . For each sequence $s \colon \omega \to \omega_1$, let μ_s be the least countable infinite ordinal such that for all $n \in \omega$, $s(n) < \mu_s$. Consider now the partition of ${}^{\omega}\omega_1$ given by the classes, for $\alpha \in \omega_1 \smallsetminus \omega$,

$$D_{\alpha} = \{ s \in {}^{\omega}\omega_1 : \mu_s = \alpha \}.$$

There are ω_1 such classes and each class has cardinality \mathfrak{c} , since every $\alpha \in \omega_1 \setminus \omega$ is countable and $\omega^{\omega} = 2^{\omega} = \mathfrak{c}$. It follows that $\omega_1^{\omega} = \omega_1 \cdot \mathfrak{c} = \mathfrak{c}$, where the last equality is guaranteed by the fact that \mathfrak{c} is uncountable.

- 25. Given the argument shown in the previous exercise, we quickly prove the claim by induction on $n \in \omega$, where the base step is the fact that $\omega_0^{\omega} = \omega^{\omega} = 2^{\omega} = \mathfrak{c} = \omega_0 \cdot \mathfrak{c}$. Assume now that the claim holds for some $n \in \omega$. Then, since ω_{n+1} is regular and in particular $\mathrm{cf}(\omega_{n+1}) > \omega$, following the same reasoning as in Ex. 23 we can deduce that $\omega_{n+1}^{\omega} = \omega_{n+1} \cdot \omega_n^{\omega}$. We now use the induction hypothesis and conclude $\omega_{n+1} \cdot \omega_n^{\omega} = \omega_{n+1} \cdot \omega_n \cdot \mathfrak{c} = \max(\omega_{n+1}, \omega_n, \mathfrak{c}) = \max(\omega_{n+1}, \mathfrak{c})$, which is what we wanted to show.
- 24 (c) We give an argument that can be generalized to give an alternative proof of the fact that for any infinite cardinal λ , we have $\lambda^{\mathrm{cf}(\lambda)} > \lambda$. Let ω_{α} be a cardinal and consider $\kappa = \omega_{\alpha+\omega}$, so that we clearly have $\mathrm{cf}(\kappa) = \omega$. Let $f \colon \kappa \to \kappa^{\omega}$ be a function. We will use a diagonalization argument to show that f can not be surjective. Indeed, let $(\alpha_n)_{n\in\omega}$ be a countable sequence of ordinals which is cofinal in κ . For each $n \in \omega$, since $|\alpha_n| < \kappa$, we can find an ordinal $\beta_n \in \kappa$ such that for all $\alpha \in \alpha_n$, we have $(f(\alpha))(n) \neq \beta_n$. Since $(\alpha_n)_{n\in\omega}$ is cofinal, by construction there can not be any element $\beta \in \kappa$ such that $f(\beta) = (\beta_n)_{n\in\omega}$, which implies that f can not be surjective, and hence $\kappa < \kappa^{\omega}$.