Exercise Sheet 1

1. **a.** For $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{R})$ with $c \neq 0$ and $z \in \mathbb{C} \setminus \left\{ -\frac{d}{c} \right\}$ show that

$$\operatorname{Im}\left(\gamma \circ z\right) = \frac{\det(\gamma) \cdot \operatorname{Im}(z)}{|cz+d|^2}, \text{ where } \gamma \circ z := \frac{az+b}{cz+d}.$$

- **b**. Determine the image of the complex upper half-plane \mathbb{H} under the action of γ .
- **c.** Does $(\gamma, z) \mapsto \gamma \circ z$ define an action of $\operatorname{GL}_2(\mathbb{R})$ on \mathbb{R} ?
- **2**. Let \mathcal{L} be the set of all lattices in \mathbb{C} , where \mathbb{C} is seen as a vector space over \mathbb{R} , and consider the action of $\mathbb{C}^{\times} := \mathbb{C} \setminus \{0\}$ on \mathcal{L} given by scalar multiplication. Given a function $F : \mathcal{L} \to \mathbb{C}$ define $f_F:\mathbb{H}\to\mathbb{C}$ by

$$f_F(\tau) := F(\tau \mathbb{Z} + \mathbb{Z})$$

a. For $k \in \mathbb{Z}$ show that if $F : \mathcal{L} \to \mathbb{C}$ satisfies

$$F(\lambda L) = \lambda^{-k} F(L), \text{ for all } L \in \mathcal{L} \text{ and } \lambda \in \mathbb{C}^{\times},$$
(1)

then f_F satisfies

$$f_F(\gamma \circ \tau) = (c\tau + d)^k f_F(\tau), \text{ for all } \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}) \text{ and } \tau \in \mathbb{H}.$$
 (2)

- **b**. Show that $F \mapsto f_F$ defines a bijection between the set of all functions $F : \mathcal{L} \to \mathbb{C}$ satisfying (1) and the set of all functions $f : \mathbb{H} \to \mathbb{C}$ satisfying (2).
- **3.** Parabolas, ellipses (circles being special cases of ellipses) and hyperbolas are called *conic* sections since they can be obtained from a cone's surface intersecting a plane. Algebraically, they can be realized as *quadratic curves* of the form

$$Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0, (3)$$

with $A, B, C, D, E, F \in \mathbb{R}$, A, B, C not all zero. The corresponding conic section is an ellipse (resp. a parabola, a hyperbola) if $B^2 - 4AC < 0$ (resp. $B^2 - 4AC = 0$, $B^2 - 4AC > 0$). Note, however, that a general quadratic equation (3) may have no real solutions, represent a single point, two intersecting lines, a pair of parallel lines, or one single line (of multiplicity two).¹

Now, recall that a matrix $\gamma \in \mathrm{SL}_2(\mathbb{R})$ different from $\pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is called elliptic (resp. parabolic, hyperbolic) if $|\mathrm{tr}(\gamma)| < 2$ (resp. $|\mathrm{tr}(\gamma)| = 2$, $|\mathrm{tr}(\gamma)| > 2$).

a. Show that $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R})$ is elliptic (resp. hyperbolic) if and only if the linear action of γ on \mathbb{R}^2 given by

$$\gamma \circ (x, y) := (ax + by, cx + dy),$$

leaves infinitely many ellipses (resp. hyperbolas) invariant. (An invariant subset of a map $f: X \mapsto X$ is a subset $Y \subseteq X$ such that $f(Y) \subseteq Y$.)

b. What are the invariant subsets of \mathbb{R}^2 under a parabolic transformation?

4. Write the matrix
$$\begin{pmatrix} 4 & -9 \\ -11 & 25 \end{pmatrix}$$
 in terms of $S := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $T := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

5. Consider the group

$$\Gamma_{\theta} := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mod 2 \text{ or } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \mod 2 \right\}$$

- **a**. Compute the group index of Γ_{θ} in $SL_2(\mathbb{Z})$.
- **b.** Show that $F_{\theta} := \{\tau \in \mathbb{H} : |\tau| \ge 1, |\operatorname{Re}(\tau)| \le 1\}$ is a fundamental domain for Γ_{θ} . **c.** Show that Γ_{θ} is generated by S and T^2 .

¹See the book Analytic Geometry by A. C. Bourdette (Academic Press 1971), chapters 6 and 7.