Exercise Sheet 1

1. a. For $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{R})$ with $c \neq 0$ and $z \in \mathbb{C} \backslash\left\{-\frac{d}{c}\right\}$ show that

$$
\operatorname{Im}(\gamma \circ z)=\frac{\operatorname{det}(\gamma) \cdot \operatorname{Im}(z)}{|c z+d|^{2}}, \text { where } \gamma \circ z:=\frac{a z+b}{c z+d}
$$

b. Determine the image of the complex upper half-plane \mathbb{H} under the action of γ.
c. Does $(\gamma, z) \mapsto \gamma \circ z$ define an action of $\mathrm{GL}_{2}(\mathbb{R})$ on \mathbb{R} ?
2. Let \mathcal{L} be the set of all lattices in \mathbb{C}, where \mathbb{C} is seen as a vector space over \mathbb{R}, and consider the action of $\mathbb{C}^{\times}:=\mathbb{C} \backslash\{0\}$ on \mathcal{L} given by scalar multiplication. Given a function $F: \mathcal{L} \rightarrow \mathbb{C}$ define $f_{F}: \mathbb{H} \rightarrow \mathbb{C}$ by

$$
f_{F}(\tau):=F(\tau \mathbb{Z}+\mathbb{Z})
$$

a. For $k \in \mathbb{Z}$ show that if $F: \mathcal{L} \rightarrow \mathbb{C}$ satisfies

$$
\begin{equation*}
F(\lambda L)=\lambda^{-k} F(L), \text { for all } L \in \mathcal{L} \text { and } \lambda \in \mathbb{C}^{\times} \tag{1}
\end{equation*}
$$

then f_{F} satisfies

$$
f_{F}(\gamma \circ \tau)=(c \tau+d)^{k} f_{F}(\tau), \text { for all } \gamma=\left(\begin{array}{ll}
a & b \tag{2}\\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}) \text { and } \tau \in \mathbb{H} .
$$

b. Show that $F \mapsto f_{F}$ defines a bijection between the set of all functions $F: \mathcal{L} \rightarrow \mathbb{C}$ satisfying (1) and the set of all functions $f: \mathbb{H} \rightarrow \mathbb{C}$ satisfying (2).
3. Parabolas, ellipses (circles being special cases of ellipses) and hyperbolas are called conic sections since they can be obtained from a cone's surface intersecting a plane. Algebraically, they can be realized as quadratic curves of the form

$$
\begin{equation*}
A x^{2}+B x y+C y^{2}+D x+E y+F=0 \tag{3}
\end{equation*}
$$

with $A, B, C, D, E, F \in \mathbb{R}, A, B, C$ not all zero. The corresponding conic section is an ellipse (resp. a parabola, a hyperbola) if $B^{2}-4 A C<0$ (resp. $B^{2}-4 A C=0, B^{2}-4 A C>0$). Note, however, that a general quadratic equation (3) may have no real solutions, represent a single point, two intersecting lines, a pair of parallel lines, or one single line (of multiplicity two) ${ }_{-}^{1}$
Now, recall that a matrix $\gamma \in \mathrm{SL}_{2}(\mathbb{R})$ different from $\pm\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is called elliptic (resp. parabolic, hyperbolic) if $|\operatorname{tr}(\gamma)|<2$ (resp. $|\operatorname{tr}(\gamma)|=2,|\operatorname{tr}(\gamma)|>2)$.
a. Show that $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{R})$ is elliptic (resp. hyperbolic) if and only if the linear action of γ on \mathbb{R}^{2} given by

$$
\gamma \circ(x, y):=(a x+b y, c x+d y),
$$

leaves infinitely many ellipses (resp. hyperbolas) invariant. (An invariant subset of a map $f: X \mapsto X$ is a subset $Y \subseteq X$ such that $f(Y) \subseteq Y$.)
b. What are the invariant subsets of \mathbb{R}^{2} under a parabolic transformation?
4. Write the matrix $\left(\begin{array}{cc}4 & -9 \\ -11 & 25\end{array}\right)$ in terms of $S:=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $T:=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
5. Consider the group $\Gamma_{\theta}:=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}):\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \equiv\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \bmod 2\right.$ or $\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \equiv\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \bmod 2\right\}$.
a. Compute the group index of Γ_{θ} in $\mathrm{SL}_{2}(\mathbb{Z})$.
b. Show that $F_{\theta}:=\{\tau \in \mathbb{H}:|\tau| \geq 1,|\operatorname{Re}(\tau)| \leq 1\}$ is a fundamental domain for Γ_{θ}.
c. Show that Γ_{θ} is generated by S and T^{2}.

[^0]
[^0]: ${ }^{1}$ See the book Analytic Geometry by A. C. Bourdette (Academic Press 1971) chapters 6 and 7.

