Exercise Sheet 2

1. The purpose of this exercise is to prove the identity

$$
\begin{equation*}
\pi \cot (\pi z)=\frac{1}{z}+\sum_{n \in \mathbb{Z} \backslash\{0\}}\left(\frac{1}{z+n}-\frac{1}{n}\right) \text { for } z \in \mathbb{C} \backslash \mathbb{Z} \tag{1}
\end{equation*}
$$

and to deduce from it the formula

$$
\begin{equation*}
\zeta(k)=-\frac{(2 \pi i)^{k}}{2(k!)} B_{k} \text { for } k \in \mathbb{Z}^{+} \text {even } \tag{2}
\end{equation*}
$$

where the k-th Bernoulli number B_{k} is defined by

$$
\begin{equation*}
\frac{z}{e^{z}-1}=\sum_{k=0}^{\infty} \frac{B_{k}}{k!} z^{k} \tag{3}
\end{equation*}
$$

a. Start by proving the identity

$$
\begin{equation*}
\frac{\sin (z)}{z}=\prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2} \pi^{2}}\right) \text { for } z \in \mathbb{C} \backslash\{0\} \tag{4}
\end{equation*}
$$

Hint: Use that

$$
\frac{\sin (z)}{z}=\frac{e^{i z}-e^{-i z}}{2 i z}=\lim _{n \rightarrow \infty} f_{n}(z)
$$

where

$$
f_{n}(z):=\frac{\left(1+\frac{i z}{n}\right)^{n}-\left(1-\frac{i z}{n}\right)^{n}}{2 i z}
$$

and show that

$$
f_{n}(z)=\prod_{k=1}^{m}\left(1-\frac{z^{2}}{n^{2}}\left(\frac{1+\cos \left(\frac{2 k \pi}{n}\right)}{1-\cos \left(\frac{2 k \pi}{n}\right)}\right)\right) \text { whenever } n=2 m+1, m \in \mathbb{Z}^{+}
$$

b. Take logarithmic derivatives $\1 on both sides of (4) to deduce (1).
c. Use (1) to prove

$$
\pi z \cot (\pi z)=1-2 \sum_{k=1}^{\infty} \zeta(2 k) z^{2 k} \text { for } z \in \mathbb{C} \text { with }|z|<1
$$

d. Find an alternative Taylor expansion for $\pi z \cot (\pi z)$ around 0 , using (3), and obtain (2) by comparing Taylor coefficients.
2. The purpose of this exercise is to prove that the Eisenstein series $G_{2}: \mathbb{H} \rightarrow \mathbb{C}$ defined by

$$
G_{2}(\tau):=\frac{\pi^{2}}{3}-8 \pi^{2} \sum_{n=1}^{\infty} \sigma_{1}(n) q^{n}
$$

where $\sigma_{s}(n):=\sum_{d \mid n, d>0} d^{s}$ and $q:=e^{2 \pi i \tau}$, satisfies

$$
G_{2}\left(-\frac{1}{\tau}\right)=\tau^{2} G_{2}(\tau)-2 \pi i \tau
$$

[^0]In order to do this, consider the functions

$$
\begin{aligned}
& F_{1}(\tau)=\sum_{n \in \mathbb{Z}} \sum_{m \in \mathbb{Z}}{ }^{\prime} \frac{1}{(m+n \tau)^{2}}, \\
& F_{2}(\tau)=\sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}}{ }^{\prime} \frac{1}{(m+n \tau)^{2}}, \\
& H_{1}(\tau)=\sum_{n \in \mathbb{Z}} \sum_{m \in \mathbb{Z}}{ }^{\prime} \frac{1}{(m-1+n \tau)(m+n \tau)}, \\
& H_{2}(\tau)=\sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}}{ }^{\prime} \frac{1}{(m-1+n \tau)(m+n \tau)},
\end{aligned}
$$

where the sign \sum^{\prime} indicates that (m, n) runs through all $m \in \mathbb{Z}, n \in \mathbb{Z}$ with $(m, n) \neq(0,0)$ for F_{1} and F_{2}, and $(m, n) \neq(0,0),(1,0)$ for H_{1} and H_{2} (mind the order of the summations).
a. Show that

$$
H_{1}(\tau)=2 \text { and } H_{2}(\tau)=2-\frac{2 \pi i}{\tau}
$$

and

$$
F_{1}(\tau)-H_{1}(\tau)=F_{2}(\tau)-H_{2}(\tau)
$$

b. Use a. to prove that

$$
F_{1}(\tau)-F_{2}(\tau)=H_{1}(\tau)-H_{2}(\tau)=\frac{2 \pi i}{\tau}
$$

and deduce the identity

$$
F_{1}\left(-\frac{1}{\tau}\right)=\tau^{2} F_{1}(\tau)-2 \pi i \tau
$$

c. Prove that $F_{1}(\tau)=G_{2}(\tau)$.
3. Show that the normalized Eisenstein series $E_{4}, E_{6}, E_{8}, E_{10}, E_{14}$ (see Lecture 5) satisfy the relations $E_{4}^{2}=E_{8}, E_{4} E_{6}=E_{10}$ and $E_{6} E_{8}=E_{14}$, and use these to derive relations between the arithmetic functions $\sigma_{3}(n), \sigma_{5}(n), \sigma_{7}(n), \sigma_{9}(n)$ and $\sigma_{13}(n)$.
4. Define the normalized Eisenstein series of weight 2 as

$$
E_{2}(\tau):=1-24 \sum_{n=1}^{\infty} \sigma_{1}(n) q^{n}
$$

a. Given f in the space M_{k} of modular forms of weight k for $\mathrm{SL}_{2}(\mathbb{Z})$ define

$$
g(\tau)=\frac{1}{2 \pi i} f^{\prime}(\tau)-\frac{k}{12} E_{2}(\tau) f(\tau)
$$

where $f^{\prime}=\frac{\partial f}{\partial \tau}$. Prove that $g \in M_{k+2}$ and that g is cuspidal if and only f is cuspidal.
b. Compute g explicitly when $f=E_{4}, E_{6}$ or Δ and derive relations between the arithmetic functions $\sigma_{3}(n), \sigma_{5}(n), \sigma_{7}(n)$ and $\tau(n)$ (the n-th Fourier coefficient of Δ).

[^0]: ${ }^{1}$ Given a differentiable function $f(z)$ its logarithmic derivative at a point z with $f(z) \neq 0$ is defined as $\log (f(z))^{\prime}=\frac{f^{\prime}(z)}{f(z)}$.

