Exercise Sheet 3

1. a. Show that the normalized Eisenstein series E_{4} and E_{6} are algebraically independent over \mathbb{C}. This is, if $p(X, Y) \in \mathbb{C}[X, Y]$ satisfies $p\left(E_{4}, E_{6}\right)=0$, then $p(X, Y)=0$.
b. Show that for every integer k the set

$$
\left\{E_{4}^{a} E_{6}^{b}: a, b \in \mathbb{Z}_{0}^{+}, 4 a+6 b=k\right\}
$$

is a basis of M_{k}.
2. The purpose of this exercise is to show that the discriminant modular form, defined as

$$
\Delta(\tau):=\frac{E_{4}^{3}(\tau)-E_{6}^{2}(\tau)}{1728} \text { for } \tau \in \mathbb{H}
$$

admits the infinite product expansion

$$
\begin{equation*}
\Delta(\tau)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24} \text { where } q:=e^{2 \pi i \tau} \tag{1}
\end{equation*}
$$

a. Let $F: \mathbb{H} \rightarrow \mathbb{C}$ be the function defined by the right hand side of 11 . Show that the logarithmic derivative of F equals $2 \pi i E_{2}$.
b. Use the transformation properties of E_{2} with respect to the action of $\mathrm{SL}_{2}(\mathbb{Z})$ to show that F belongs to the space S_{12} of cuspidal modular forms of weight 12 for $\mathrm{SL}_{2}(\mathbb{Z})$.
c. Use dimension formulas to conclude that $F=\Delta$.
3. a. Show that $E_{12}-E_{6}^{2}=c \Delta$ where $c=\frac{2^{6} 3^{5} 7^{2}}{691}$. Use this to derive an expression for $\tau(n)$
(the n-th Fourier coefficient of Δ) in terms of σ_{11} and σ_{5}.
b. Prove Ramanujan's congruence relation

$$
\tau(n) \equiv \sigma_{11}(n)(\bmod 691) \text { for all } n \in \mathbb{Z}^{+} .
$$

4. Show that the j modular function (see Lecture 7) satisfies the following properties.
a. $j\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)=0, j(i)=1728$ and $j(-\bar{\tau})=\overline{j(\tau)}$ for all $\tau \in \mathbb{H}$.
b. The image under j of the sets

$$
\begin{aligned}
A & :=\left\{-\frac{1}{2}+i t: t \in\right] \frac{\sqrt{3}}{2}, \infty[\} \\
B & :=\left\{e^{i t}: t \in\right] \frac{\pi}{2}, \frac{2 \pi}{3}[\} \\
C & :=\{i t: t \in] 1, \infty[\}
\end{aligned}
$$

are $j(A)=]-\infty, 0[, j(B)=] 0,1728[$ and $j(C)=] 1728, \infty[$.
c. The image under j of the sets

$$
\begin{aligned}
& \mathcal{F}_{1}:=\left\{\tau \in \mathbb{H}:-\frac{1}{2}<\operatorname{Re}(\tau)<0,|z|>1\right\} \\
& \mathcal{F}_{2}:=\left\{\tau \in \mathbb{H}: 0<\operatorname{Re}(\tau)<\frac{1}{2},|z|>1\right\}
\end{aligned}
$$

are $j\left(\mathcal{F}_{1}\right)=\mathbb{H}$ and $j\left(\mathcal{F}_{2}\right)=\mathbb{H}^{-}$, where \mathbb{H}^{-}denotes the complex lower half-plane.

