Exercise Sheet 4

1. Let $\Gamma(s)$ denote Euler Gamma function (see Lecture 9). The purpose of this exercise is to prove the duplication formula

$$
\begin{equation*}
\Gamma(s) \Gamma\left(s+\frac{1}{2}\right)=2^{1-2 s} \sqrt{\pi} \Gamma(2 s) \tag{1}
\end{equation*}
$$

a. Show that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$ by computing

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}-y^{2}} d x d y
$$

in two different ways.
b. For $s_{1}, s_{2} \in H:=\{s \in \mathbb{C}: \operatorname{Re}(s)>0\}$ show that

$$
B\left(s_{1}, s_{2}\right):=\frac{\Gamma\left(s_{1}\right) \Gamma\left(s_{2}\right)}{\Gamma\left(s_{1}+s_{2}\right)}=\int_{0}^{1} u^{s_{1}-1}(1-u)^{s_{2}-1} d u
$$

c. For $s \in H$ show that

$$
B(s, s)=2^{2-2 s} \int_{0}^{1}\left(1-u^{2}\right)^{s-1} d u=2^{1-2 s} B\left(\frac{1}{2}, s\right)
$$

and deduce from this the desired duplication formula (1).
2. Given an even integer $k \geq 4$ define

$$
\begin{equation*}
L_{k}(s):=\zeta(s) \zeta(s-k+1) \text { for } s \in \mathbb{C} \text { with } \operatorname{Re}(s)>k \tag{2}
\end{equation*}
$$

a. Use the meromorphic continuation and functional equation of $\zeta(s)$ to show that $L_{k}(s)$ has meromorphic continuation to \mathbb{C} satisfying the functional equation

$$
\Lambda_{k}(s):=(2 \pi)^{-s} \Gamma(s) L_{k}(s)=(-1)^{k / 2} \Lambda_{k}(k-s)
$$

(Hint: use the duplication formula (1) and the identity $\Gamma(s+1)=s \Gamma(s)$.)
b. Show that $\Lambda_{k}(s)$ is holomorphic in $\mathbb{C} \backslash\{0, k\}$ and has simple poles at $s=0$ and $s=k$.
c. Show that

$$
L_{k}(s)=\sum_{n=1}^{\infty} \frac{\sigma_{k-1}(n)}{n^{s}}
$$

and conclude that $L_{k}(s)$ is the L-function of a multiple of the normalized Eisenstein series E_{k}. What happens if $k=2$?
3. a. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of complex numbers with $a_{1} \neq 0$ and such that $\sum_{n} a_{n}$ converges absolutely. Assume that the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is multiplicative, i.e. $a_{n m}=a_{n} a_{m}$ for all positive integers n, m with g.c.d. $(n, m)=1$. Show that

$$
\sum_{n=1}^{\infty} a_{n}=\prod_{p}\left(1+a_{p}+a_{p^{2}}+\ldots\right)
$$

where the product is taken over all primes and the convergence is absolute.
b. Show that the function $L_{k}(s)$ defined by (2) admits the infinite product representation

$$
L_{k}(s)=\prod_{p}\left(\left(1-p^{-s}\right)\left(1-p^{k-1-s}\right)\right)^{-1} \text { for } s \in \mathbb{C} \text { with } \operatorname{Re}(s)>k
$$

4. Let $f_{1}:=\Delta^{2}$ and $f_{2}:=\Delta E_{6}^{2}$, where Δ is the discriminant modular form and E_{6} is the normalized Eisenstein series of weight 6 .
a. Show that $\left\{f_{1}, f_{2}\right\}$ is a basis for S_{24}.
b. With the help of a calculator, find the matrix of T_{2} in the basis $\left\{f_{1}, f_{2}\right\}$.
c. Express in terms of f_{1} and f_{2} the basis for S_{24} consisting of normalized eigenforms for all Hecke operators T_{n}.
