Exercise Sheet 5

1. Let $k \geq 4$ be an even integer. Show that the normalized Eisenstein series E_{k} can be written as

$$
E_{k}=\left.\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} 1\right|_{k} \gamma,
$$

where $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$ and $\Gamma_{\infty}=\left\{ \pm\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right): n \in \mathbb{Z}\right\}$. Use this to prove that for every cusp form $g \in S_{k}$ we have $\left\langle E_{k}, g\right\rangle=0$.
2. Let $k>2$ and $n \geq 1$ be integers and let $P_{n} \in S_{k}$ be the n-th Poincaré series defined as

$$
P_{n}(z)=\left.\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} e^{2 \pi i n z}\right|_{k} \gamma
$$

According to Theorem 5.4 in Lecture 11 for every cusp form $f \in S_{k}$ with Fourier expansion $f(z)=\sum_{n=1}^{\infty} a_{n} q^{n}$ we have

$$
\left\langle f, P_{n}\right\rangle=\frac{\Gamma(k-1)}{(4 \pi n)^{k-1}} a_{n}
$$

Is this formula valid when f is an Eisenstein series? If yes, prove it. If not, explain why.
3. Given a congruence subgroup $\Gamma^{\prime} \subseteq \Gamma=\mathrm{SL}_{2}(\mathbb{Z})$ denote by $\overline{\Gamma^{\prime}}$ its image in $\bar{\Gamma}:=\mathrm{PSL}_{2}(\mathbb{Z})$, and given two cusp forms $f, g \in S_{k}\left(\Gamma^{\prime}\right)$ define

$$
\langle f, g\rangle_{\Gamma^{\prime}}:=\frac{1}{\left[\bar{\Gamma}: \overline{\Gamma^{\prime}}\right]} \int_{\Gamma^{\prime} \backslash \mathbb{H}} f(z) \overline{g(z)} \operatorname{Im}(z)^{k} d \mu(z)
$$

where $d \mu$ is the hyperbolic measure and the integral over $\Gamma^{\prime} \backslash \mathbb{H}$ is defined as the integral over any fundamental domain F^{\prime} for Γ^{\prime}.
a. Show that if $\Gamma^{\prime \prime}$ is another congruence subgroup of Γ such that $f, g \in S_{k}\left(\Gamma^{\prime \prime}\right)$, then

$$
\langle f, g\rangle_{\Gamma^{\prime \prime}}=\langle f, g\rangle_{\Gamma^{\prime}}
$$

b. Given $\alpha \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ show that $\Gamma^{\prime}:=\Gamma \cap \alpha^{-1} \Gamma \alpha$ is a congruence subgroup of Γ.
c. Show that for any $f, g \in S_{k}(\Gamma)$ we have $\left.f\right|_{k} \alpha,\left.g\right|_{k} \alpha \in S_{k}\left(\Gamma^{\prime}\right)$ and

$$
\left\langle\left. f\right|_{k} \alpha,\left.g\right|_{k} \alpha\right\rangle_{\Gamma^{\prime}}=\langle f, g\rangle_{\Gamma}
$$

d. Use c. to give an alternative proof of the fact that Hecke operators on $S_{k}(\Gamma)$ are self-adjoint with respect to the Petersson inner product.
4. Let $14 \neq k \geq 12$ be an even integer and let $a, b \geq 0$ be integers such that $12 \neq 4 a+6 b \leq 14$ and $4 a+6 b \equiv k(\bmod 12)$. Let d be the dimension of S_{k} and for each $j \in\{1, \ldots, d\}$ define

$$
f_{j}:=\Delta^{j} E_{6}^{2(d-j)+b} E_{4}^{a} .
$$

a. Show that $f_{j} \in S_{k}$ and has Fourier expansion $f_{j}(z)=\sum_{n=1}^{\infty} a_{n}^{(j)} q^{n}$ satisfying $a_{n}^{(j)} \in \mathbb{Z}$ for all n. Moreover, show that $a_{n}^{(j)}=0$ if $n<j$ and $a_{j}^{(j)}=1$.
b. Show that $\left\{f_{1}, \ldots, f_{d}\right\}$ is a basis of S_{k}. This is called the Miller basis.
c. Show that a cusp form $g \in S_{k}$ has integral Fourier coefficients if and only if g is a \mathbb{Z}-linear combination of the Miller basis elements.

