Exercise Sheet 6

1. Let G be a group and let X, Y be sets such that G acts on both X and Y. Consider the diagonal action of G on $X \times Y$ given by

$$
g \cdot(x, y)=(g \cdot x, g \cdot y)
$$

Given $x \in X$ denote by G_{x} the stabilizer subgroup of G with respect to x. Show that for every subset $S \subseteq X \times Y$ that is G-invariant (i.e. $g \cdot S \subseteq S$ for all $g \in G$) and for every $x \in X$, the set

$$
\{y \in Y:(x, y) \in S\} \subseteq Y
$$

is G_{x}-invariant and we have the equality

$$
\#(G \backslash S)=\sum_{x \in G \backslash X} \#\left(G_{x} \backslash\{y \in Y:(x, y) \in S\}\right)
$$

2. Let $z=x+i y \in \mathbb{H}$ and consider the theta function

$$
\Theta_{z}(t)=\sum_{m, n \in \mathbb{Z}} e^{-\pi t \frac{|m z+n|^{2}}{y}} \text { for } t \in \mathbb{R}^{+}
$$

Show that Θ_{z} satisfies the functional equation

$$
\Theta_{z}(t)=\frac{1}{t} \Theta_{z}\left(\frac{1}{t}\right)
$$

3. For $z=x+i y \in \mathbb{H}$ and $s \in \mathbb{C}$ with $\operatorname{Re}(s)>1$ define

$$
E(z, s):=\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} \operatorname{Im}(\gamma z)=\frac{1}{2} \sum_{\substack{c, d \in \mathbb{Z} \\ \text { g.c.d. }(c, d)=1}} \frac{y^{s}}{|c z+d|^{2 s}}
$$

and

$$
E^{*}(z, s):=\pi^{-s} \Gamma(s) 2 \zeta(2 s) E(z, s)=\pi^{-s} \Gamma(s) \sum_{\substack{m, n \in \mathbb{Z} \\(m, n) \neq(0,0)}} \frac{y^{s}}{|m z+n|^{2 s}}
$$

a. Check that $E(\gamma z, s)=E(\gamma, s)$ for all $\gamma \in \Gamma$ and show that

$$
E^{*}(z, s)=\int_{0}^{\infty}\left(\Theta_{z}(t)-1\right) t^{s} \frac{d t}{t}
$$

b. Show that $E^{*}(z, s)$ has meromorphic continuation to $s \in \mathbb{C}$ with singularities only at $s=0,1$, which are simple poles with residues -1 and 1 , respectively. Moreover, show that

$$
E^{*}(z, s)=E^{*}(z, 1-s)
$$

4. Given a fundamental discriminant $D<0$ let \mathcal{Q}_{D} denote the set of all positive definite integral quadratic forms $[A, B, C]$ with $B^{2}-4 A C=D$, and for every $Q \in \mathcal{Q}_{D}$ and every integer $n \geq 0$ let $r_{Q}(n)$ denote the number of primitive representations of n by Q. Recall that Γ acts on \mathcal{Q}_{D} with finite stabilizers (see Lectures 17 and 18).
Show that for every integer $e \geq 1$ we have

$$
r_{D}\left(2^{e}\right):=\sum_{Q \in \Gamma \backslash \mathcal{Q}_{D}} \frac{r_{Q}\left(2^{e}\right)}{\left|\Gamma_{Q}\right|}= \begin{cases}0 & \text { if } e \geq 2 \text { and } D \equiv 0(\bmod 4), \\ 1+\chi_{D}(2) & \text { if } e=1 \text { or } D \equiv 1(\bmod 4),\end{cases}
$$

where

$$
\chi_{D}(2)= \begin{cases}0 & \text { if } D \equiv 0(\bmod 4) \\ 1 & \text { if } D \equiv 1(\bmod 8) \\ -1 & \text { if } D \equiv 5(\bmod 8)\end{cases}
$$

