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Solutions Sheet 1

1. a. Forvy= (Z Z) € GLy(R) with c#0 and z € C\ {—%} we have

az+b  (az+b)(cz+d)  aclz]* + adz + bz 4 bd
cz+d |ez + d|? B |ez + d|?

Yoz =

Taking imaginary parts on both sides we get
(ad —bc) -Im(z)  det(y) - Im(z)
lez + dJ? ez +dJ?

Im(yoz)=

b. The image of the complex upper half-plane H under the action of v is H if det(y) > 0, and
it is H™ :={z € C: Im(z) < 0} if det() < 0.

c. It does not define a group action on R due to the existence of poles, i.e. if v = <Z Z)
with ¢ # 0 then yo (—%) = co ¢ R. The action must be defined on R U {oco} with the usual
conventions concerning the value of v o 0o (see Lecture 2).

2. a. We have
f(m+b>=F(<miﬁ)Z+Z):@v+whwmr+wz+@r+@@.

ct+d cT

Since (Ccl Z) € SLo(Z) we have (aT + b)Z + (¢7 + d)Z = 7Z + 7Z (see Lecture 1), thus

f (Z:i;) — (1 + AFF(rZ +Z) = (e1 + d)* f(7).

b. Given f : H — C define Fy : L — C by

Fr(wiiZ +wiZ) i=wy " f (b;) , for {wy,ws} basis of R? with % € H.
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The function Fy is well defined since w{Z + wyZ = w1Z + weZ with Z—i € H implies

Wll . w1 . _ a b
(wé) =7 <w2> for some matrix v = (c d) € SLy(Z),
hence

/ k
(wé)_kf (cu}) = (w1 + dwg)_kf (fy ) wl) = (cwy + dwy) 7k (cwl + d) f <wl> = w;lf (m) )
Wy w2 w2 w2 w2
This proves that Fy is well defined. Now, for A € C* and L = wiZ 4 woZ € L we have

Fr(AL) = Fy( M Z + AwnZ) = (Dwa) F f (i:;) = APk f (Z;) = \"*Fp(L).

This proves that Iy satisfies the required transformation property.
We will now show that f — F is the inverse map of ' +— fr. Indeed, if F' = F; then

fr(r) = FGZ+2) =175 () = f(7),

and if f = fr then we have

w w
Fr(i1Z 4 woZ) = wy* f (c‘);) —wykF <W;Z + Z) = F(w1Z + woZ).



3.

a. We observe that hyperbolas (resp. ellipses, parabolas) are mapped to hyperbolas

(resp. ellipses, parabolas) under the linear action of SLo(R) on R2. Indeed, this can be
proven algebraically by noting that a quadratic curve of the form
Az? + Bry +Cy?> + Dz + Ey+ F =0, (1)

can also be written as
A B/2\ (x x B
(@ y)<B/2 C)(y>+(p E)<y)+FO,

hence the image of under v = (Z Z) is the quadratic curve
A" B2\ [z ’ n (& _
( v) (B,/2 4 > (y>+(p ) (F)+F =0,
where
A B2 _ A  B/2\ _ _
<B’/2 c// > =07 (B/2 04)7 'and (D7 EY) = (D E)y".

This implies
A B/2\ A B2
det(B/2 C>det<B’/2 o)
hence B2 — 4AC = (B’)? — 4(A’)(C"). By the distinction of conics according to the sign of
the discriminant B? — 4AC we conclude that hyperbolas (resp. ellipses, parabolas) are
mapped to hyperbolas (resp. ellipses, parabolas).

Now, let v € SL2(R) be a matrix different from + (é ?) If M € SL2(R) then the

invariant sets of M~yM ~! are all of the form M oY where Y is an invariant set of . Thus,
it is enough to prove the result for M~yM~!. In what follows we use some results presented
in Lecture 2 of the course. )
If v is elliptic, then it is conjugated to a matrix of the form (095(9) —sin(6)

sin(f)  cos(6)
This acts on R? as a rotation around the origin, hence all circles (which are special cases of
ellipses) centered at (0,0) are invariant.

) with 6 € R.

If + is hyperbolic, then it is conjugated to matrix of the form <8 )\(_)1> with

A €R,\A#0,1,—1. This acts on R? leaving invariant each hyperbola of equation xy = t,
with t € R, ¢ # 0 a parameter.

. If v is parabolic, then it is conjugated to matrix of the form (é i‘) with A € R, A # 0.

This acts on R? leaving invariant each line of equation y = ¢, with ¢t € R a parameter.

4 =9

4. Put v = (_11 5). We follow the algorithm presented in Lecture 3. First we write

25 = (—11) - (=2) + 3

se (4 —1\o_ (-1 —4
7TS_(11 3)S_<3 11>'

and compute

Now we write 11 = 3 - 3 4+ 2 and compute

vemie (-1 =1\, (-1 1
s (3 )s= (1)

We write —3 =2 (—2) + 1 and compute

2oopr—3am2a_ (—1 -1\ o (-1 1
st = (7 7)s= (7 L)

Finally, we write —2 =1 - (—2) and compute

sar—3ar2ar2a_ (1 1\ o_ (-1 1\ _ o1
NT2ST STSTS_(1 0>s_<0 _1)—ST .

We get v = S2T-1ST2ST~28T3ST—2.



5.

a. The group I'y contains the subgroup

() = {(i Z) € SLy(Z) : <Z Z) = (é ‘1)) mod 2},

which is of index 6 in SLo(Z) since it is the kernel of the reduction mod 2 map to
SL2(Z/27Z), and the group SLo(Z/27Z) is the image of the set

o D)6 266 (G o) (5 s
We have F9=F(2)U(_O1 (1)) I'(2),

hence [I'g : I'(2)] = 2. It follows that I'y has index 3 in SLy(Z).
b. A set of representatives for I'y\SLo(Z) is given by the matrices

o D=0 )rs=( )}

Hence, letting F = {7 € H: |7| > 1, |Re(7)| < 3} be the usual fundamental domain for
SL2(Z) (see Lecture 3), we get that a fundamental domain for T'y is

F'=FUT(F)UTS(F).

1.5 i 5 ols 15 25 35

FI1GURE 1. Fundamental domain F’
We note that I/ = F; U I, where

1
o= {TGH:|T|21,2§R6(T)§1},FQ = {TGH:|T221,1§R6(7)§

N W
—

15 i -45 ols 115 25 35

FIGURE 2. Decomposition of F’ into F; and Fy

We have
Fy = UT 2F,,
hence Fy is a fundamental domain for I'y.



15 B 45 o5 i3 25 35

FicUre 3. Fundamental domain Fjy

c. We will use that Fj is a fundamental domain for I'y, hence for every point z in the interior
of Fy we have

1
70€F97700Z€F9=>70=i(0 (1)>

Let v € Ty and choose z a point in the interior of Fy (e.g. z = 2i). Put zg = 7 o z. Choose
ni1 € Z so that 21 := T?™ o zq lies in R := {7 € H: [Re(7)| < 1}. If |21] < 1 then apply S

to z; and choose ny € Z so that zy := T?"2S 0 z; € R. Repeat this process as many times
as necessary to end up with a point of the form

25 = (TanS . T2n3 ST2n2 STin) o 2o
in Fy. Note that this process must end after finitely many steps since
Im(zt)

P ,forallte{l,...,k—1}if k> 1,
t

Im(2¢41) =

hence Im(zp) = Im(z1) < Im(z2) < ..., but

Im(zg) . a b
Im(MOZO) = m, lf M = ¢ d S Fg,
and |czg + d| < 1 gives finitely many possibilities for the integers ¢ and d. Since zj, is in Fy
and it is ['y-equivalent to zg we conclude
T2 S ... T ST?" ST My = + (é (1)> :

Since S? = <_01 _01), this implies that + is in the group generated by 72 and S.



