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1. a. For γ =

(
a b
c d

)
∈ GL2(R) with c ̸= 0 and z ∈ C \

{
−d

c

}
we have

γ ◦ z =
az + b

cz + d
=

(az + b)(cz + d)

|cz + d|2
=

ac|z|2 + adz + bcz + bd

|cz + d|2
.

Taking imaginary parts on both sides we get

Im (γ ◦ z) = (ad− bc) · Im(z)

|cz + d|2
=

det(γ) · Im(z)

|cz + d|2
.

b. The image of the complex upper half-plane H under the action of γ is H if det(γ) > 0, and
it is H− := {z ∈ C : Im(z) < 0} if det(γ) < 0.

c. It does not define a group action on R due to the existence of poles, i.e. if γ =

(
a b
c d

)
with c ̸= 0 then γ ◦

(
−d

c

)
= ∞ ̸∈ R. The action must be defined on R∪ {∞} with the usual

conventions concerning the value of γ ◦∞ (see Lecture 2).

2. a. We have

f

(
aτ + b

cτ + d

)
= F

((
aτ + b

cτ + d

)
Z+ Z

)
= (cτ + d)kF

(
(aτ + b)Z+ (cτ + d)Z

)
.

Since

(
a b
c d

)
∈ SL2(Z) we have (aτ + b)Z+ (cτ + d)Z = τZ+ Z (see Lecture 1), thus

f

(
aτ + b

cτ + d

)
= (cτ + d)kF (τZ+ Z) = (cτ + d)kf(τ).

b. Given f : H → C define Ff : L → C by

Ff (ω1Z+ ω2Z) := ω−k
2 f

(
ω1

ω2

)
, for {ω1, ω2} basis of R2 with

ω2

ω1
∈ H.

The function Ff is well defined since ω′
1Z+ ω′

2Z = ω1Z+ ω2Z with
ω′

1

ω′
2
∈ H implies(

ω′
1

ω′
2

)
= γ

(
ω1

ω2

)
for some matrix γ =

(
a b
c d

)
∈ SL2(Z),

hence

(ω′
2)

−kf

(
ω′
1

ω′
2

)
= (cω1 + dω2)

−kf

(
γ ◦ ω1

ω2

)
= (cω1 + dω2)

−k

(
c
ω1

ω2
+ d

)k

f

(
ω1

ω2

)
= ω−1

2 f

(
ω1

ω2

)
.

This proves that Ff is well defined. Now, for λ ∈ C× and L = ω1Z+ ω2Z ∈ L we have

Ff (λL) = Ff (λω1Z+ λω2Z) = (λω2)
−kf

(
λω1

λω2

)
= λ−kω−k

2 f

(
ω1

ω2

)
= λ−kFf (L).

This proves that Ff satisfies the required transformation property.
We will now show that f 7→ Ff is the inverse map of F 7→ fF . Indeed, if F = Ff then

fF (τ) = F (τZ+ Z) = 1−kf
(τ
1

)
= f(τ),

and if f = fF then we have

Ff (ω1Z+ ω2Z) = ω−k
2 f

(
ω1

ω2

)
= ω−k

2 F

(
ω1

ω2
Z+ Z

)
= F (ω1Z+ ω2Z).
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3. a. We observe that hyperbolas (resp. ellipses, parabolas) are mapped to hyperbolas
(resp. ellipses, parabolas) under the linear action of SL2(R) on R2. Indeed, this can be
proven algebraically by noting that a quadratic curve of the form

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0, (1)

can also be written as(
x y

)( A B/2
B/2 C

)(
x
y

)
+

(
D E

)(x
y

)
+ F = 0,

hence the image of (1) under γ =

(
a b
c d

)
is the quadratic curve

(
x y

)( A′ B′/2
B′/2 C ′

)(
x
y

)
+

(
D′ E′)(x

y

)
+ F = 0,

where(
A′ B′/2

B′/2 C ′

)
= (γ−1)t

(
A B/2

B/2 C

)
γ−1, and

(
D′ E′) = (

D E
)
γ−1.

This implies

det

(
A B/2

B/2 C

)
= det

(
A′ B′/2

B′/2 C ′

)
,

hence B2 − 4AC = (B′)2 − 4(A′)(C ′). By the distinction of conics according to the sign of
the discriminant B2 − 4AC we conclude that hyperbolas (resp. ellipses, parabolas) are
mapped to hyperbolas (resp. ellipses, parabolas).

Now, let γ ∈ SL2(R) be a matrix different from ±
(
1 0
0 1

)
. If M ∈ SL2(R) then the

invariant sets of MγM−1 are all of the form M ◦ Y where Y is an invariant set of γ. Thus,
it is enough to prove the result for MγM−1. In what follows we use some results presented
in Lecture 2 of the course.

If γ is elliptic, then it is conjugated to a matrix of the form

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
with θ ∈ R.

This acts on R2 as a rotation around the origin, hence all circles (which are special cases of
ellipses) centered at (0, 0) are invariant.

If γ is hyperbolic, then it is conjugated to matrix of the form

(
λ 0
0 λ−1

)
with

λ ∈ R, λ ̸= 0, 1,−1. This acts on R2 leaving invariant each hyperbola of equation xy = t,
with t ∈ R, t ̸= 0 a parameter.

b. If γ is parabolic, then it is conjugated to matrix of the form

(
1 λ
0 1

)
with λ ∈ R, λ ̸= 0.

This acts on R2 leaving invariant each line of equation y = t, with t ∈ R a parameter.

4. Put γ =

(
4 −9

−11 25

)
. We follow the algorithm presented in Lecture 3. First we write

25 = (−11) · (−2) + 3

and compute

γT 2S =

(
4 −1

−11 3

)
S =

(
−1 −4
3 11

)
.

Now we write 11 = 3 · 3 + 2 and compute

γT 2ST−3S =

(
−1 −1
3 2

)
S =

(
−1 1
2 −3

)
.

We write −3 = 2 · (−2) + 1 and compute

γT 2ST−3ST 2S =

(
−1 −1
2 1

)
S =

(
−1 1
1 −2

)
.

Finally, we write −2 = 1 · (−2) and compute

γT 2ST−3ST 2ST 2S =

(
−1 −1
1 0

)
S =

(
−1 1
0 −1

)
= S2T−1.

We get γ = S2T−1ST−2ST−2ST 3ST−2.
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5. a. The group Γθ contains the subgroup

Γ(2) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡

(
1 0
0 1

)
mod 2

}
,

which is of index 6 in SL2(Z) since it is the kernel of the reduction mod 2 map to
SL2(Z/2Z), and the group SL2(Z/2Z) is the image of the set{(

1 0
0 1

)
,

(
1 1
0 1

)
,

(
1 0
1 1

)
,

(
1 −1
1 0

)
,

(
0 1
−1 0

)
,

(
0 1
−1 1

)}
⊆ SL2(Z).

We have

Γθ = Γ(2) ∪
(

0 1
−1 0

)
Γ(2),

hence [Γθ : Γ(2)] = 2. It follows that Γθ has index 3 in SL2(Z).
b. A set of representatives for Γθ\SL2(Z) is given by the matrices{(

1 0
0 1

)
, T =

(
1 1
0 1

)
, TS =

(
1 −1
1 0

)}
.

Hence, letting F = {τ ∈ H : |τ | ≥ 1, |Re(τ)| ≤ 1
2} be the usual fundamental domain for

SL2(Z) (see Lecture 3), we get that a fundamental domain for Γθ is

F ′ = F ∪ T (F ) ∪ TS(F ).

Figure 1. Fundamental domain F ′

We note that F ′ = F1 ∪ F2 where

F1 :=

{
τ ∈ H : |τ | ≥ 1,−1

2
≤ Re(τ) ≤ 1

}
, F2 :=

{
τ ∈ H : |τ − 2| ≥ 1, 1 ≤ Re(τ) ≤ 3

2

}
.

Figure 2. Decomposition of F ′ into F1 and F2

We have
Fθ = F1 ∪ T−2F2,

hence Fθ is a fundamental domain for Γθ.
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Figure 3. Fundamental domain Fθ

c. We will use that Fθ is a fundamental domain for Γθ, hence for every point z in the interior
of Fθ we have

γ0 ∈ Γθ, γ0 ◦ z ∈ Fθ ⇒ γ0 = ±
(
1 0
0 1

)
.

Let γ ∈ Γθ and choose z a point in the interior of Fθ (e.g. z = 2i). Put z0 = γ ◦ z. Choose
n1 ∈ Z so that z1 := T 2n1 ◦ z0 lies in R := {τ ∈ H : |Re(τ)| ≤ 1}. If |z1| < 1 then apply S
to z1 and choose n2 ∈ Z so that z2 := T 2n2S ◦ z1 ∈ R. Repeat this process as many times
as necessary to end up with a point of the form

zk = (T 2nkS · · ·T 2n3ST 2n2ST 2n1) ◦ z0
in Fθ. Note that this process must end after finitely many steps since

Im(zt+1) =
Im(zt)

|zt|2
, for all t ∈ {1, . . . , k − 1} if k ≥ 1,

hence Im(z0) = Im(z1) < Im(z2) < . . ., but

Im(M ◦ z0) =
Im(z0)

|cz0 + d|2
, if M =

(
a b
c d

)
∈ Γθ,

and |cz0 + d| < 1 gives finitely many possibilities for the integers c and d. Since zk is in Fθ

and it is Γθ-equivalent to z0 we conclude

T 2nkS · · ·T 2n3ST 2n2ST 2n1γ = ±
(
1 0
0 1

)
.

Since S2 =

(
−1 0
0 −1

)
, this implies that γ is in the group generated by T 2 and S.


