Solutions Sheet 1

1. a. For $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{R})$ with $c \neq 0$ and $z \in \mathbb{C} \backslash\left\{-\frac{d}{c}\right\}$ we have

$$
\gamma \circ z=\frac{a z+b}{c z+d}=\frac{(a z+b)(c \bar{z}+d)}{|c z+d|^{2}}=\frac{a c|z|^{2}+a d z+b c \bar{z}+b d}{|c z+d|^{2}} .
$$

Taking imaginary parts on both sides we get

$$
\operatorname{Im}(\gamma \circ z)=\frac{(a d-b c) \cdot \operatorname{Im}(z)}{|c z+d|^{2}}=\frac{\operatorname{det}(\gamma) \cdot \operatorname{Im}(z)}{|c z+d|^{2}}
$$

b. The image of the complex upper half-plane \mathbb{H} under the action of γ is \mathbb{H} if $\operatorname{det}(\gamma)>0$, and it is $\mathbb{H}^{-}:=\{z \in \mathbb{C}: \operatorname{Im}(z)<0\}$ if $\operatorname{det}(\gamma)<0$.
c. It does not define a group action on \mathbb{R} due to the existence of poles, i.e. if $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $c \neq 0$ then $\gamma \circ\left(-\frac{d}{c}\right)=\infty \notin \mathbb{R}$. The action must be defined on $\mathbb{R} \cup\{\infty\}$ with the usual conventions concerning the value of $\gamma \circ \infty$ (see Lecture 2).
2. a. We have
$f\left(\frac{a \tau+b}{c \tau+d}\right)=F\left(\left(\frac{a \tau+b}{c \tau+d}\right) \mathbb{Z}+\mathbb{Z}\right)=(c \tau+d)^{k} F((a \tau+b) \mathbb{Z}+(c \tau+d) \mathbb{Z})$.
Since $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ we have $(a \tau+b) \mathbb{Z}+(c \tau+d) \mathbb{Z}=\tau \mathbb{Z}+\mathbb{Z}$ (see Lecture 1), thus

$$
f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} F(\tau \mathbb{Z}+\mathbb{Z})=(c \tau+d)^{k} f(\tau)
$$

b. Given $f: \mathbb{H} \rightarrow \mathbb{C}$ define $F_{f}: \mathcal{L} \rightarrow \mathbb{C}$ by

$$
F_{f}\left(\omega_{1} \mathbb{Z}+\omega_{2} \mathbb{Z}\right):=\omega_{2}^{-k} f\left(\frac{\omega_{1}}{\omega_{2}}\right), \text { for }\left\{\omega_{1}, \omega_{2}\right\} \text { basis of } \mathbb{R}^{2} \text { with } \frac{\omega_{2}}{\omega_{1}} \in \mathbb{H}
$$

The function F_{f} is well defined since $\omega_{1}^{\prime} \mathbb{Z}+\omega_{2}^{\prime} \mathbb{Z}=\omega_{1} \mathbb{Z}+\omega_{2} \mathbb{Z}$ with $\frac{\omega_{1}^{\prime}}{\omega_{2}^{\prime}} \in \mathbb{H}$ implies

$$
\binom{\omega_{1}^{\prime}}{\omega_{2}^{\prime}}=\gamma\binom{\omega_{1}}{\omega_{2}} \text { for some matrix } \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})
$$

hence

$$
\left(\omega_{2}^{\prime}\right)^{-k} f\left(\frac{\omega_{1}^{\prime}}{\omega_{2}^{\prime}}\right)=\left(c \omega_{1}+d \omega_{2}\right)^{-k} f\left(\gamma \circ \frac{\omega_{1}}{\omega_{2}}\right)=\left(c \omega_{1}+d \omega_{2}\right)^{-k}\left(c \frac{\omega_{1}}{\omega_{2}}+d\right)^{k} f\left(\frac{\omega_{1}}{\omega_{2}}\right)=\omega_{2}^{-1} f\left(\frac{\omega_{1}}{\omega_{2}}\right) .
$$

This proves that F_{f} is well defined. Now, for $\lambda \in \mathbb{C}^{\times}$and $L=\omega_{1} \mathbb{Z}+\omega_{2} \mathbb{Z} \in \mathcal{L}$ we have

$$
F_{f}(\lambda L)=F_{f}\left(\lambda \omega_{1} \mathbb{Z}+\lambda \omega_{2} \mathbb{Z}\right)=\left(\lambda \omega_{2}\right)^{-k} f\left(\frac{\lambda \omega_{1}}{\lambda \omega_{2}}\right)=\lambda^{-k} \omega_{2}^{-k} f\left(\frac{\omega_{1}}{\omega_{2}}\right)=\lambda^{-k} F_{f}(L)
$$

This proves that F_{f} satisfies the required transformation property.
We will now show that $f \mapsto F_{f}$ is the inverse map of $F \mapsto f_{F}$. Indeed, if $F=F_{f}$ then

$$
f_{F}(\tau)=F(\tau \mathbb{Z}+\mathbb{Z})=1^{-k} f\left(\frac{\tau}{1}\right)=f(\tau)
$$

and if $f=f_{F}$ then we have

$$
F_{f}\left(\omega_{1} \mathbb{Z}+\omega_{2} \mathbb{Z}\right)=\omega_{2}^{-k} f\left(\frac{\omega_{1}}{\omega_{2}}\right)=\omega_{2}^{-k} F\left(\frac{\omega_{1}}{\omega_{2}} \mathbb{Z}+\mathbb{Z}\right)=F\left(\omega_{1} \mathbb{Z}+\omega_{2} \mathbb{Z}\right)
$$

3. a. We observe that hyperbolas (resp. ellipses, parabolas) are mapped to hyperbolas (resp. ellipses, parabolas) under the linear action of $\mathrm{SL}_{2}(\mathbb{R})$ on \mathbb{R}^{2}. Indeed, this can be proven algebraically by noting that a quadratic curve of the form

$$
\begin{equation*}
A x^{2}+B x y+C y^{2}+D x+E y+F=0 \tag{1}
\end{equation*}
$$

can also be written as

$$
\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{cc}
A & B / 2 \\
B / 2 & C
\end{array}\right)\binom{x}{y}+\left(\begin{array}{ll}
D & E
\end{array}\right)\binom{x}{y}+F=0
$$

hence the image of (1) under $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is the quadratic curve

$$
\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{cc}
A^{\prime} & B^{\prime} / 2 \\
B^{\prime} / 2 & C^{\prime}
\end{array}\right)\binom{x}{y}+\left(\begin{array}{ll}
D^{\prime} & E^{\prime}
\end{array}\right)\binom{x}{y}+F=0
$$

where

$$
\left(\begin{array}{cc}
A^{\prime} & B^{\prime} / 2 \\
B^{\prime} / 2 & C^{\prime}
\end{array}\right)=\left(\gamma^{-1}\right)^{t}\left(\begin{array}{cc}
A & B / 2 \\
B / 2 & C
\end{array}\right) \gamma^{-1}, \text { and }\left(\begin{array}{ll}
D^{\prime} & E^{\prime}
\end{array}\right)=\left(\begin{array}{ll}
D & E
\end{array}\right) \gamma^{-1} .
$$

This implies

$$
\operatorname{det}\left(\begin{array}{cc}
A & B / 2 \\
B / 2 & C
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
A^{\prime} & B^{\prime} / 2 \\
B^{\prime} / 2 & C^{\prime}
\end{array}\right)
$$

hence $B^{2}-4 A C=\left(B^{\prime}\right)^{2}-4\left(A^{\prime}\right)\left(C^{\prime}\right)$. By the distinction of conics according to the sign of the discriminant $B^{2}-4 A C$ we conclude that hyperbolas (resp. ellipses, parabolas) are mapped to hyperbolas (resp. ellipses, parabolas).
Now, let $\gamma \in \mathrm{SL}_{2}(\mathbb{R})$ be a matrix different from $\pm\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. If $M \in \mathrm{SL}_{2}(\mathbb{R})$ then the invariant sets of $M \gamma M^{-1}$ are all of the form $M \circ Y$ where Y is an invariant set of γ. Thus, it is enough to prove the result for $M \gamma M^{-1}$. In what follows we use some results presented in Lecture 2 of the course.
If γ is elliptic, then it is conjugated to a matrix of the form $\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right)$ with $\theta \in \mathbb{R}$.
This acts on \mathbb{R}^{2} as a rotation around the origin, hence all circles (which are special cases of ellipses) centered at $(0,0)$ are invariant.
If γ is hyperbolic, then it is conjugated to matrix of the form $\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$ with
$\lambda \in \mathbb{R}, \lambda \neq 0,1,-1$. This acts on \mathbb{R}^{2} leaving invariant each hyperbola of equation $x y=t$, with $t \in \mathbb{R}, t \neq 0$ a parameter.
b. If γ is parabolic, then it is conjugated to matrix of the form $\left(\begin{array}{ll}1 & \lambda \\ 0 & 1\end{array}\right)$ with $\lambda \in \mathbb{R}, \lambda \neq 0$. This acts on \mathbb{R}^{2} leaving invariant each line of equation $y=t$, with $t \in \mathbb{R}$ a parameter.
4. Put $\gamma=\left(\begin{array}{cc}4 & -9 \\ -11 & 25\end{array}\right)$. We follow the algorithm presented in Lecture 3. First we write

$$
25=(-11) \cdot(-2)+3
$$

and compute

$$
\gamma T^{2} S=\left(\begin{array}{cc}
4 & -1 \\
-11 & 3
\end{array}\right) S=\left(\begin{array}{cc}
-1 & -4 \\
3 & 11
\end{array}\right)
$$

Now we write $11=3 \cdot 3+2$ and compute

$$
\gamma T^{2} S T^{-3} S=\left(\begin{array}{cc}
-1 & -1 \\
3 & 2
\end{array}\right) S=\left(\begin{array}{cc}
-1 & 1 \\
2 & -3
\end{array}\right)
$$

We write $-3=2 \cdot(-2)+1$ and compute

$$
\gamma T^{2} S T^{-3} S T^{2} S=\left(\begin{array}{cc}
-1 & -1 \\
2 & 1
\end{array}\right) S=\left(\begin{array}{cc}
-1 & 1 \\
1 & -2
\end{array}\right)
$$

Finally, we write $-2=1 \cdot(-2)$ and compute

$$
\gamma T^{2} S T^{-3} S T^{2} S T^{2} S=\left(\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right) S=\left(\begin{array}{cc}
-1 & 1 \\
0 & -1
\end{array}\right)=S^{2} T^{-1}
$$

We get $\gamma=S^{2} T^{-1} S T^{-2} S T^{-2} S T^{3} S T^{-2}$.
5. a. The group Γ_{θ} contains the subgroup

$$
\Gamma(2)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}):\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \bmod 2\right\}
$$

which is of index 6 in $\mathrm{SL}_{2}(\mathbb{Z})$ since it is the kernel of the reduction mod 2 map to $\mathrm{SL}_{2}(\mathbb{Z} / 2 \mathbb{Z})$, and the group $\mathrm{SL}_{2}(\mathbb{Z} / 2 \mathbb{Z})$ is the image of the set

$$
\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right)\right\} \subseteq \mathrm{SL}_{2}(\mathbb{Z})
$$

We have

$$
\Gamma_{\theta}=\Gamma(2) \cup\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \Gamma(2),
$$

hence $\left[\Gamma_{\theta}: \Gamma(2)\right]=2$. It follows that Γ_{θ} has index 3 in $\mathrm{SL}_{2}(\mathbb{Z})$.
b. A set of representatives for $\Gamma_{\theta} \backslash \mathrm{SL}_{2}(\mathbb{Z})$ is given by the matrices

$$
\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), T S=\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right)\right\} .
$$

Hence, letting $F=\left\{\tau \in \mathbb{H}:|\tau| \geq 1,|\operatorname{Re}(\tau)| \leq \frac{1}{2}\right\}$ be the usual fundamental domain for $\mathrm{SL}_{2}(\mathbb{Z})$ (see Lecture 3), we get that a fundamental domain for Γ_{θ} is

$$
F^{\prime}=F \cup T(F) \cup T S(F)
$$

Figure 1. Fundamental domain F^{\prime}
We note that $F^{\prime}=F_{1} \cup F_{2}$ where
$F_{1}:=\left\{\tau \in \mathbb{H}:|\tau| \geq 1,-\frac{1}{2} \leq \operatorname{Re}(\tau) \leq 1\right\}, F_{2}:=\left\{\tau \in \mathbb{H}:|\tau-2| \geq 1,1 \leq \operatorname{Re}(\tau) \leq \frac{3}{2}\right\}$.

Figure 2. Decomposition of F^{\prime} into F_{1} and F_{2}
We have

$$
F_{\theta}=F_{1} \cup T^{-2} F_{2},
$$

hence F_{θ} is a fundamental domain for Γ_{θ}.

Figure 3. Fundamental domain F_{θ}
c. We will use that F_{θ} is a fundamental domain for Γ_{θ}, hence for every point z in the interior of F_{θ} we have

$$
\gamma_{0} \in \Gamma_{\theta}, \gamma_{0} \circ z \in F_{\theta} \Rightarrow \gamma_{0}= \pm\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Let $\gamma \in \Gamma_{\theta}$ and choose z a point in the interior of F_{θ} (e.g. $z=2 i$). Put $z_{0}=\gamma \circ z$. Choose $n_{1} \in \mathbb{Z}$ so that $z_{1}:=T^{2 n_{1}} \circ z_{0}$ lies in $R:=\{\tau \in \mathbb{H}:|\operatorname{Re}(\tau)| \leq 1\}$. If $\left|z_{1}\right|<1$ then apply S to z_{1} and choose $n_{2} \in \mathbb{Z}$ so that $z_{2}:=T^{2 n_{2}} S \circ z_{1} \in R$. Repeat this process as many times as necessary to end up with a point of the form

$$
z_{k}=\left(T^{2 n_{k}} S \cdots T^{2 n_{3}} S T^{2 n_{2}} S T^{2 n_{1}}\right) \circ z_{0}
$$

in F_{θ}. Note that this process must end after finitely many steps since

$$
\operatorname{Im}\left(z_{t+1}\right)=\frac{\operatorname{Im}\left(z_{t}\right)}{\left|z_{t}\right|^{2}}, \text { for all } t \in\{1, \ldots, k-1\} \text { if } k \geq 1
$$

hence $\operatorname{Im}\left(z_{0}\right)=\operatorname{Im}\left(z_{1}\right)<\operatorname{Im}\left(z_{2}\right)<\ldots$, but

$$
\operatorname{Im}\left(M \circ z_{0}\right)=\frac{\operatorname{Im}\left(z_{0}\right)}{\left|c z_{0}+d\right|^{2}}, \text { if } M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma_{\theta},
$$

and $\left|c z_{0}+d\right|<1$ gives finitely many possibilities for the integers c and d. Since z_{k} is in F_{θ} and it is Γ_{θ}-equivalent to z_{0} we conclude

$$
T^{2 n_{k}} S \cdots T^{2 n_{3}} S T^{2 n_{2}} S T^{2 n_{1}} \gamma= \pm\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Since $S^{2}=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$, this implies that γ is in the group generated by T^{2} and S.

