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1. a. For z ∈ C \ {0} have

sin(z)

z
=

eiz − e−iz

2iz
= lim

n→∞
fn(z)

where

fn(z) =

(
1 + iz

n

)n −
(
1− iz

n

)n
2iz

.

If n = 2m+ 1 with m ∈ Z+ then fn(x) is a polynomial of degree n− 1 = 2m with constant
term 1 and whose roots are of the form

z = −in

(
ζ − 1

ζ + 1

)
where ζn = 1, ζ ̸= 1.

If follows that

fn(z) =
∏

ζn=1,ζ ̸=1

(
1− iz

n

(
ζ + 1

ζ − 1

))
.

Writing ζ = e2πik/n with k ∈ {1, . . . , n− 1 = 2m} we get

fn(z) =

m∏
k=1

(
1− iz

n

(
e2πik/n + 1

e2πik/n − 1

))(
1− iz

n

(
e−2πik/n + 1

e−2πik/n − 1

))

=

m∏
k=1

(
1− z2

n2

(
1 + cos(2πk/n)

1− cos(2πk/n)

))
.

This implies

sin(z)

z
= lim

n→∞
n=2m+1

m∏
k=1

(
1− z2

n2

(
1 + cos(2πk/n)

1− cos(2πk/n)

))
for all z ∈ C \ {0}. (1)

Now, in order to get the desired infinite product, let us introduce the following auxiliary
functions

gn,r(x) :=

r∏
k=1

(
1 +

x2

n2

(
1 + cos(2πk/n)

1− cos(2πk/n)

))
,

gn(x) :=

m∏
k=1

(
1 +

x2

n2

(
1 + cos(2πk/n)

1− cos(2πk/n)

))
= gn,m(x),

for x ∈ R where 1 ≤ r ≤ m are integers and n = 2m+ 1. Note that by (1) we have

sin(ix)

ix
= lim

n→∞
gn(x) for all x ∈ R \ {0}. (2)

Now, we compute

lim
n→∞

1

n2

(
1 + cos(2πk/n)

1− cos(2πk/n)

)
= lim

n→∞

1

n2

(1 + cos(2πk/n))2

sin(2πk/n)2

= (2πk)−2 lim
n→∞

(
2πk

n

)2
(1 + cos(2πk/n))2

sin(2πk/n)2

=
1

π2k2
.

Hence, since gn,r(x) ≤ gn(x), taking n → ∞ with r fixed and using (2) we get

r∏
k=1

(
1 +

x2

k2π2

)
≤ sin(ix)

ix
,

1



2

and taking r → ∞ gives

∞∏
k=1

(
1 +

x2

k2π2

)
≤ sin(ix)

ix
.

Now, one can check that the function t 7→ t2
(

1+cos(t)
1−cos(t)

)
is decreasing for t ∈]0, π[ (e.g.,

using derivatives). This implies that

1

n2

(
1 + cos(2πk/n)

1− cos(2πk/n)

)
≤ 1

π2k2
for 1 ≤ k ≤ m,

hence

gn(x) ≤
m∏

k=1

(
1 +

x2

k2π2

)
,

and taking n → ∞, using (2) again, gives the inequality

sin(ix)

ix
≤

∞∏
k=1

(
1 +

x2

k2π2

)
.

We conclude that

sin(ix)

ix
=

∞∏
n=1

(
1 +

x2

n2π2

)
for all x ∈ R \ {0}. (3)

Since the functions

sin(z)

z
and

∞∏
n=1

(
1− z2

n2π2

)
are analytic for z ∈ C \ {0} (see Complex Analysis by S. Lang (Springer 1999), chapter
XIII), and they coincide for z ∈ i(R \ {0}), we conclude that

sin(z)

z
=

∞∏
n=1

(
1− z2

n2π2

)
for z ∈ C \ {0}. (4)

Added comment: Instead of using the analyticity of infinite products, one can extend
the above computations and prove that (4) holds directly. Indeed, we already proved (3).
Extending the definitions of gn,r(x) and gn(x) to any x = z ∈ C \ {0} we have

|gn(z)− gn,r(z)| = |gn,r(z)| ·

∣∣∣∣∣
m∏

k=r+1

(
1 +

z2

n2

(
1 + cos(2πk/n)

1− cos(2πk/n)

))
− 1

∣∣∣∣∣
≤ gn,r(|z|) ·

(
m∏

k=r+1

(
1 +

|z|2

n2

(
1 + cos(2πk/n)

1− cos(2πk/n)

))
− 1

)
= gn(|z|)− gn,r(|z|).

Taking n → ∞ with r fixed and using (2) we get∣∣∣∣∣ sin(iz)iz
−

r∏
k=1

(
1 +

z2

k2π2

)∣∣∣∣∣ ≤ sin(i|z|)
i|z|

−
r∏

k=1

(
1 +

|z|2

k2π2

)
.

As r → ∞ the right hand side converges to 0 by 3, hence

sin(iz)

iz
=

∞∏
k=1

(
1 +

z2

k2π2

)
.

Replacing z by −iz gives (4).

https://link.springer.com/book/10.1007/978-1-4757-3083-8
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b. Taking logarithmic derivatives on both sides of (4) we get

cot(z)− 1

z
=

∞∑
n=1

−2z

n2π2

(
1− z2

n2π2

)−1

= −2z

∞∑
n=1

1

n2π2 − z2

=

∞∑
n=1

(
1

nπ + z
− 1

nπ − z

)

=

∞∑
n=1

(
1

nπ + z
− 1

πn

)
−

∞∑
n=1

(
1

nπ − z
− 1

πn

)
=

∑
n≥1

(
1

nπ + z
− 1

πn

)
+
∑
n≤−1

(
1

nπ + z
− 1

πn

)

=
∑

n∈Z\{0}

(
1

nπ + z
− 1

πn

)
.

Replacing z by πz we get

π cot(πz) =
1

z
+

∑
n∈Z\{0}

(
1

z + n
− 1

n

)
. (5)

c. From (5) we have

πz cot(πz) = 1 + z
∑

n∈Z\{0}

(
1

z + n
− 1

n

)

= 1 + z

∞∑
n=1

(
1

z + n
+

1

z − n

)

= 1 + 2z2
∞∑

n=1

(
1

z2 − n2

)

= 1− 2z2
∞∑

n=1

1

n2

(
1

1− (z/n)2

)

= 1− 2z2
∞∑

n=1

1

n2

∞∑
k=0

( z
n

)2k
= 1− 2z2

∞∑
k=0

ζ(2k + 2)z2k

= 1− 2

∞∑
k=1

ζ(2k)z2k.

d. We have

cot(πz) =
cos(πz)

sin(πz)
= i

eπiz + e−πiz

eπiz − e−πiz
= i+

2i

e2πiz − 1
. (6)

For z ∈ H we get

πz cot(πz) = πiz +
2πiz

e2πiz − 1
= πiz +

∞∑
k=0

Bk

k!
(2πiz)k = B0 + πi(1 + 2B1)z +

∞∑
k=2

(2πi)kBk

k!
zk.

Hence

1− 2

∞∑
k=1

ζ(2k)z2k = B0 + πi(1 + 2B1)z +

∞∑
k=2

(2πi)kBk

k!
zk,

which implies

−2ζ(k) =
(2πi)kBk

k!
for k ∈ Z+ even.



4

2. a. We have

1

(m− 1 + nτ)(m+ nτ)
=

1

(m− 1 + nτ)
− 1

(m+ nτ)
.

By recognizing telescopic series, we get

∑
m∈Z

′ 1

(m− 1 + nτ)(m+ nτ)
=

{
0 if n ̸= 0,
2 if n = 0.

(7)

This implies that H1(τ) = 2. Now, in order to compute H2(τ) we assume m ̸= 0, 1 and
write∑
n∈Z

1

(m− 1 + nτ)(m+ nτ)

= τ−1

∑
n ̸=0

(
1

((m− 1)τ−1 + n)
− 1

n

)
−
∑
n ̸=0

(
1

(mτ−1 + n)
− 1

n

)+

(
1

m− 1
− 1

m

)
.

Using (5) we get

∑
n∈Z

1

(m− 1 + nτ)(m+ nτ)

= τ−1

(
π cot

(
π(m− 1)

τ

)
− τ

m− 1
− π cot

(πm
τ

)
+

τ

m

)
+

(
1

m− 1
− 1

m

)
= τ−1

(
π cot

(
π(m− 1)

τ

)
− π cot

(πm
τ

))
.

Similarly, we have

∑
m∈{0,1}

∑
n∈Z\{0}

1

(m− 1 + nτ)(m+ nτ)

= τ−1

∑
n ̸=0

(
1

(−τ−1 + n)
− 1

n

)
−
∑
n ̸=0

(
1

(τ−1 + n)
− 1

n

)
= τ−1

(
π cot

(
π(−1)

τ

)
− π cot

(π
τ

)
+ 2τ

)
= τ−1

(
π cot

(
π(−1)

τ

)
− π cot

(π
τ

))
+ 2.

Hence, by recognizing telescopic series again, we get

H2(τ) = 2 + τ−1π

(
lim

N→−∞
cot

(
πN

τ

)
− lim

M→∞
cot

(
πM

τ

))
= 2− 2πi

τ

where, in the computation of the limits, we used (6).
Finally, the identity F1 −H1 = F2 −H2 follows from the fact that

1

(m+ nτ)2
− 1

(m− 1 + nτ)(m+ nτ)
= − 1

(m+ nτ)2(m− 1 + nτ)

is absolutely summable over (n,m), hence the corresponding double series can be
re-arranged at our convenience.

b. It follows directly from a. that F1(τ)− F2(τ) = H1(τ)−H2(τ) =
2πi

τ
. We now compute
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F1

(
−1

τ

)
= τ2

∑
n∈Z

∑
m∈Z

′ 1

(τm− n)2
,

= τ2
∑
n∈Z

∑
m∈Z

′ 1

(n+mτ)2
,

= τ2F2(τ)

= τ2
(
F1(τ)−

2πi

τ

)
= τ2F1(τ)− 2πiτ.

c. We follow the computation of the Fourier expansion of Eisenstein series given in Lecture 5.
From the first equality in (6) with z = τ ∈ H we have

cot(πτ) = −i− 2i

∞∑
k=1

e2πikτ .

Taking derivatives on both sides and using (5) we get

∑
m∈Z

1

(τ +m)2
= 4π

∞∑
k=1

ke2πikτ .

This implies

F1(τ) = 2

∞∑
m=1

1

m2
+ 2

∞∑
n=1

∑
m∈Z

1

(nτ +m)2

= 2ζ(2) + 8π

∞∑
n=1

∞∑
k=1

ke2πiknτ

=
π2

3
+ 8π

∞∑
N=1

σ1(N)e2πiNτ

= G2(τ).

3. E2
4 , E8 are non-zero vectors in M8 and this space has dimension 1, hence E2

4 = λE8 for some
λ ∈ C×. Since E4 and E8 are normalized to have 0-th Fourier coefficient equal to 1, we have
λ = 1. Similar arguments, using that the spaces M10 and M14 are one dimensional, imply that
E4E6 = E10 and E6E8 = E14.
Using

E4(τ) = 1 + 240

∞∑
n=1

σ3(n)q
n,

E8(τ) = 1 + 480

∞∑
n=1

σ7(n)q
n,

(see Lecture 5) we get from E2
4 = E8 the identity

480σ7(n) = 480σ3(n) + (240)2
n−1∑
k=1

σ3(n− k)σ3(k) for all integers n ≥ 2,

which simplifies to

σ7(n) = σ3(n) + 120

n−1∑
k=1

σ3(n− k)σ3(k) for all integers n ≥ 2.
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In a similar way, identities E4E6 = E10 and E6E8 = E14 imply

11σ9(n) = 21σ5(n)− 10σ3(n) + 5040

n−1∑
k=1

σ3(n− k)σ5(k),

σ13(n) = 21σ5(n)− 20σ7(n) + 10080

n−1∑
k=1

σ5(n− k)σ7(k),

for all integers n ≥ 2.

4. a. We have E2 = 3
π2G2 hence

E2

(
−1

τ

)
= τ2E2(τ)−

6i

π
τ.

Given f in Mk we have

f

(
−1

τ

)
= τkf(τ),

hence

E2

(
−1

τ

)
f

(
−1

τ

)
= τk+2E2(τ)f(τ)−

6i

π
τk+1f(τ),

and

f ′
(
−1

τ

)
1

τ2
= kτk−1f(τ) + τkf ′(τ).

This implies

g

(
−1

τ

)
=

1

2πi

(
kτk+1f(τ) + τk+2f ′(τ)

)
− k

12

(
τk+2E2(τ)f(τ)−

6i

π
τk+1f(τ)

)
=

1

2πi
τk+2f ′(τ)− k

12
τk+2E2(τ)f(τ)

= τk+2g(τ).

Since we also have g(τ + 1) = g(τ) (since f, f ′ and E2 are invariant under τ 7→ τ + 1), and

SL2(Z) is generated by T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
, we conclude that g transforms like

a modular form of weight k + 2 for SL2(Z). By construction, g is clearly holomorphic in H.
Finally, since f ′ has no constant term in its Fourier expansion, we get

lim
τ→i∞

g(τ) = − k

12
a0

where a0 is the 0-th Fourier coefficient of f . This proves that g is holomorphic at i∞,
hence g ∈ Mk+2, and also that g is cuspidal if and only if f is cuspidal.

b. When f = E4 we have g ∈ M6 with 0-th Fourier coefficient − 1
3 . Since M6 is one

dimensional, we have g = − 1
3E6. Similarly, one prove that g = − 1

2E8 when f = E6 and
g = 0 when f = ∆. This implies

21σ5(n) = (30n− 10)σ3(n)− σ1(n) + 240

n−1∑
m=1

σ1(n−m)σ3(m),

20σ7(n) = (42n− 21)σ5(n)− σ1(n) + 504

n−1∑
m=1

σ1(n−m)σ5(m),

(n− 1)τ(n) = −24

n−1∑
m=1

σ1(n−m)τ(m),

for all integers n ≥ 2.


