Solutions Sheet 2

1. a. For $z \in \mathbb{C} \backslash\{0\}$ have

$$
\frac{\sin (z)}{z}=\frac{e^{i z}-e^{-i z}}{2 i z}=\lim _{n \rightarrow \infty} f_{n}(z)
$$

where

$$
f_{n}(z)=\frac{\left(1+\frac{i z}{n}\right)^{n}-\left(1-\frac{i z}{n}\right)^{n}}{2 i z} .
$$

If $n=2 m+1$ with $m \in \mathbb{Z}^{+}$then $f_{n}(x)$ is a polynomial of degree $n-1=2 m$ with constant term 1 and whose roots are of the form

$$
z=- \text { in }\left(\frac{\zeta-1}{\zeta+1}\right) \text { where } \zeta^{n}=1, \zeta \neq 1 .
$$

If follows that

$$
f_{n}(z)=\prod_{\zeta^{n}=1, \zeta \neq 1}\left(1-\frac{i z}{n}\left(\frac{\zeta+1}{\zeta-1}\right)\right) .
$$

Writing $\zeta=e^{2 \pi i k / n}$ with $k \in\{1, \ldots, n-1=2 m\}$ we get

$$
\begin{aligned}
f_{n}(z) & =\prod_{k=1}^{m}\left(1-\frac{i z}{n}\left(\frac{e^{2 \pi i k / n}+1}{e^{2 \pi i k / n}-1}\right)\right)\left(1-\frac{i z}{n}\left(\frac{e^{-2 \pi i k / n}+1}{e^{-2 \pi i k / n}-1}\right)\right) \\
& =\prod_{k=1}^{m}\left(1-\frac{z^{2}}{n^{2}}\left(\frac{1+\cos (2 \pi k / n)}{1-\cos (2 \pi k / n)}\right)\right) .
\end{aligned}
$$

This implies

$$
\begin{equation*}
\frac{\sin (z)}{z}=\lim _{n=2 m+1} \prod_{k=1}^{m}\left(1-\frac{z^{2}}{n^{2}}\left(\frac{1+\cos (2 \pi k / n)}{1-\cos (2 \pi k / n)}\right)\right) \text { for all } z \in \mathbb{C} \backslash\{0\} . \tag{1}
\end{equation*}
$$

Now, in order to get the desired infinite product, let us introduce the following auxiliary functions

$$
\begin{aligned}
g_{n, r}(x) & :=\prod_{k=1}^{r}\left(1+\frac{x^{2}}{n^{2}}\left(\frac{1+\cos (2 \pi k / n)}{1-\cos (2 \pi k / n)}\right)\right), \\
g_{n}(x) & :=\prod_{k=1}^{m}\left(1+\frac{x^{2}}{n^{2}}\left(\frac{1+\cos (2 \pi k / n)}{1-\cos (2 \pi k / n)}\right)\right)=g_{n, m}(x),
\end{aligned}
$$

for $x \in \mathbb{R}$ where $1 \leq r \leq m$ are integers and $n=2 m+1$. Note that by (1) we have

$$
\begin{equation*}
\frac{\sin (i x)}{i x}=\lim _{n \rightarrow \infty} g_{n}(x) \text { for all } x \in \mathbb{R} \backslash\{0\} \tag{2}
\end{equation*}
$$

Now, we compute

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{n^{2}}\left(\frac{1+\cos (2 \pi k / n)}{1-\cos (2 \pi k / n)}\right) & =\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \frac{(1+\cos (2 \pi k / n))^{2}}{\sin (2 \pi k / n)^{2}} \\
& =(2 \pi k)^{-2} \lim _{n \rightarrow \infty}\left(\frac{2 \pi k}{n}\right)^{2} \frac{(1+\cos (2 \pi k / n))^{2}}{\sin (2 \pi k / n)^{2}} \\
& =\frac{1}{\pi^{2} k^{2}}
\end{aligned}
$$

Hence, since $g_{n, r}(x) \leq g_{n}(x)$, taking $n \rightarrow \infty$ with r fixed and using (2) we get

$$
\prod_{k=1}^{r}\left(1+\frac{x^{2}}{k^{2} \pi^{2}}\right) \leq \frac{\sin (i x)}{i x}
$$

and taking $r \rightarrow \infty$ gives

$$
\prod_{k=1}^{\infty}\left(1+\frac{x^{2}}{k^{2} \pi^{2}}\right) \leq \frac{\sin (i x)}{i x}
$$

Now, one can check that the function $t \mapsto t^{2}\left(\frac{1+\cos (t)}{1-\cos (t)}\right)$ is decreasing for $\left.t \in\right] 0, \pi[$ (e.g., using derivatives). This implies that

$$
\frac{1}{n^{2}}\left(\frac{1+\cos (2 \pi k / n)}{1-\cos (2 \pi k / n)}\right) \leq \frac{1}{\pi^{2} k^{2}} \text { for } 1 \leq k \leq m
$$

hence

$$
g_{n}(x) \leq \prod_{k=1}^{m}\left(1+\frac{x^{2}}{k^{2} \pi^{2}}\right)
$$

and taking $n \rightarrow \infty$, using (2) again, gives the inequality

$$
\frac{\sin (i x)}{i x} \leq \prod_{k=1}^{\infty}\left(1+\frac{x^{2}}{k^{2} \pi^{2}}\right)
$$

We conclude that

$$
\begin{equation*}
\frac{\sin (i x)}{i x}=\prod_{n=1}^{\infty}\left(1+\frac{x^{2}}{n^{2} \pi^{2}}\right) \text { for all } x \in \mathbb{R} \backslash\{0\} \tag{3}
\end{equation*}
$$

Since the functions

$$
\frac{\sin (z)}{z} \text { and } \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2} \pi^{2}}\right)
$$

are analytic for $z \in \mathbb{C} \backslash\{0\}$ (see Complex Analysis by S. Lang (Springer 1999), chapter XIII), and they coincide for $z \in \overline{i(\mathbb{R} \backslash\{0\}) \text {, we conclude that }}$

$$
\begin{equation*}
\frac{\sin (z)}{z}=\prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2} \pi^{2}}\right) \text { for } z \in \mathbb{C} \backslash\{0\} \tag{4}
\end{equation*}
$$

Added comment: Instead of using the analyticity of infinite products, one can extend the above computations and prove that (4) holds directly. Indeed, we already proved (3). Extending the definitions of $g_{n, r}(x)$ and $g_{n}(x)$ to any $x=z \in \mathbb{C} \backslash\{0\}$ we have

$$
\begin{aligned}
\left|g_{n}(z)-g_{n, r}(z)\right| & =\left|g_{n, r}(z)\right| \cdot\left|\prod_{k=r+1}^{m}\left(1+\frac{z^{2}}{n^{2}}\left(\frac{1+\cos (2 \pi k / n)}{1-\cos (2 \pi k / n)}\right)\right)-1\right| \\
& \leq g_{n, r}(|z|) \cdot\left(\prod_{k=r+1}^{m}\left(1+\frac{|z|^{2}}{n^{2}}\left(\frac{1+\cos (2 \pi k / n)}{1-\cos (2 \pi k / n)}\right)\right)-1\right) \\
& =g_{n}(|z|)-g_{n, r}(|z|)
\end{aligned}
$$

Taking $n \rightarrow \infty$ with r fixed and using (2) we get

$$
\left|\frac{\sin (i z)}{i z}-\prod_{k=1}^{r}\left(1+\frac{z^{2}}{k^{2} \pi^{2}}\right)\right| \leq \frac{\sin (i|z|)}{i|z|}-\prod_{k=1}^{r}\left(1+\frac{|z|^{2}}{k^{2} \pi^{2}}\right)
$$

As $r \rightarrow \infty$ the right hand side converges to 0 by 3 hence

$$
\frac{\sin (i z)}{i z}=\prod_{k=1}^{\infty}\left(1+\frac{z^{2}}{k^{2} \pi^{2}}\right)
$$

Replacing z by $-i z$ gives (4).
b. Taking logarithmic derivatives on both sides of (4) we get

$$
\begin{aligned}
\cot (z)-\frac{1}{z} & =\sum_{n=1}^{\infty} \frac{-2 z}{n^{2} \pi^{2}}\left(1-\frac{z^{2}}{n^{2} \pi^{2}}\right)^{-1} \\
& =-2 z \sum_{n=1}^{\infty} \frac{1}{n^{2} \pi^{2}-z^{2}} \\
& =\sum_{n=1}^{\infty}\left(\frac{1}{n \pi+z}-\frac{1}{n \pi-z}\right) \\
& =\sum_{n=1}^{\infty}\left(\frac{1}{n \pi+z}-\frac{1}{\pi n}\right)-\sum_{n=1}^{\infty}\left(\frac{1}{n \pi-z}-\frac{1}{\pi n}\right) \\
& =\sum_{n \geq 1}\left(\frac{1}{n \pi+z}-\frac{1}{\pi n}\right)+\sum_{n \leq-1}\left(\frac{1}{n \pi+z}-\frac{1}{\pi n}\right) \\
& =\sum_{n \in \mathbb{Z} \backslash\{0\}}\left(\frac{1}{n \pi+z}-\frac{1}{\pi n}\right) .
\end{aligned}
$$

Replacing z by πz we get

$$
\begin{equation*}
\pi \cot (\pi z)=\frac{1}{z}+\sum_{n \in \mathbb{Z} \backslash\{0\}}\left(\frac{1}{z+n}-\frac{1}{n}\right) \tag{5}
\end{equation*}
$$

c. From (5) we have

$$
\begin{aligned}
\pi z \cot (\pi z) & =1+z \sum_{n \in \mathbb{Z} \backslash\{0\}}\left(\frac{1}{z+n}-\frac{1}{n}\right) \\
& =1+z \sum_{n=1}^{\infty}\left(\frac{1}{z+n}+\frac{1}{z-n}\right) \\
& =1+2 z^{2} \sum_{n=1}^{\infty}\left(\frac{1}{z^{2}-n^{2}}\right) \\
& =1-2 z^{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}}\left(\frac{1}{1-(z / n)^{2}}\right) \\
& =1-2 z^{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \sum_{k=0}^{\infty}\left(\frac{z}{n}\right)^{2 k} \\
& =1-2 z^{2} \sum_{k=0}^{\infty} \zeta(2 k+2) z^{2 k} \\
& =1-2 \sum_{k=1}^{\infty} \zeta(2 k) z^{2 k} .
\end{aligned}
$$

d. We have

$$
\begin{equation*}
\cot (\pi z)=\frac{\cos (\pi z)}{\sin (\pi z)}=i \frac{e^{\pi i z}+e^{-\pi i z}}{e^{\pi i z}-e^{-\pi i z}}=i+\frac{2 i}{e^{2 \pi i z}-1} \tag{6}
\end{equation*}
$$

For $z \in \mathbb{H}$ we get
$\pi z \cot (\pi z)=\pi i z+\frac{2 \pi i z}{e^{2 \pi i z}-1}=\pi i z+\sum_{k=0}^{\infty} \frac{B_{k}}{k!}(2 \pi i z)^{k}=B_{0}+\pi i\left(1+2 B_{1}\right) z+\sum_{k=2}^{\infty} \frac{(2 \pi i)^{k} B_{k}}{k!} z^{k}$.
Hence

$$
1-2 \sum_{k=1}^{\infty} \zeta(2 k) z^{2 k}=B_{0}+\pi i\left(1+2 B_{1}\right) z+\sum_{k=2}^{\infty} \frac{(2 \pi i)^{k} B_{k}}{k!} z^{k},
$$

which implies

$$
-2 \zeta(k)=\frac{(2 \pi i)^{k} B_{k}}{k!} \text { for } k \in \mathbb{Z}^{+} \text {even. }
$$

2. a. We have

$$
\frac{1}{(m-1+n \tau)(m+n \tau)}=\frac{1}{(m-1+n \tau)}-\frac{1}{(m+n \tau)}
$$

By recognizing telescopic series, we get

$$
\sum_{m \in \mathbb{Z}}^{\prime} \frac{1}{(m-1+n \tau)(m+n \tau)}= \begin{cases}0 & \text { if } n \neq 0 \tag{7}\\ 2 & \text { if } n=0\end{cases}
$$

This implies that $H_{1}(\tau)=2$. Now, in order to compute $H_{2}(\tau)$ we assume $m \neq 0,1$ and write

$$
\begin{aligned}
& \sum_{n \in \mathbb{Z}} \frac{1}{(m-1+n \tau)(m+n \tau)} \\
= & \tau^{-1}\left(\sum_{n \neq 0}\left(\frac{1}{\left((m-1) \tau^{-1}+n\right)}-\frac{1}{n}\right)-\sum_{n \neq 0}\left(\frac{1}{\left(m \tau^{-1}+n\right)}-\frac{1}{n}\right)\right)+\left(\frac{1}{m-1}-\frac{1}{m}\right) .
\end{aligned}
$$

Using (5) we get

$$
\begin{aligned}
& \sum_{n \in \mathbb{Z}} \frac{1}{(m-1+n \tau)(m+n \tau)} \\
= & \tau^{-1}\left(\pi \cot \left(\frac{\pi(m-1)}{\tau}\right)-\frac{\tau}{m-1}-\pi \cot \left(\frac{\pi m}{\tau}\right)+\frac{\tau}{m}\right)+\left(\frac{1}{m-1}-\frac{1}{m}\right) \\
= & \tau^{-1}\left(\pi \cot \left(\frac{\pi(m-1)}{\tau}\right)-\pi \cot \left(\frac{\pi m}{\tau}\right)\right) .
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
& \sum_{m \in\{0,1\}} \sum_{n \in \mathbb{Z} \backslash\{0\}} \frac{1}{(m-1+n \tau)(m+n \tau)} \\
= & \tau^{-1}\left(\sum_{n \neq 0}\left(\frac{1}{\left(-\tau^{-1}+n\right)}-\frac{1}{n}\right)-\sum_{n \neq 0}\left(\frac{1}{\left(\tau^{-1}+n\right)}-\frac{1}{n}\right)\right) \\
= & \tau^{-1}\left(\pi \cot \left(\frac{\pi(-1)}{\tau}\right)-\pi \cot \left(\frac{\pi}{\tau}\right)+2 \tau\right) \\
= & \tau^{-1}\left(\pi \cot \left(\frac{\pi(-1)}{\tau}\right)-\pi \cot \left(\frac{\pi}{\tau}\right)\right)+2 .
\end{aligned}
$$

Hence, by recognizing telescopic series again, we get

$$
H_{2}(\tau)=2+\tau^{-1} \pi\left(\lim _{N \rightarrow-\infty} \cot \left(\frac{\pi N}{\tau}\right)-\lim _{M \rightarrow \infty} \cot \left(\frac{\pi M}{\tau}\right)\right)=2-\frac{2 \pi i}{\tau}
$$

where, in the computation of the limits, we used (6).
Finally, the identity $F_{1}-H_{1}=F_{2}-H_{2}$ follows from the fact that

$$
\frac{1}{(m+n \tau)^{2}}-\frac{1}{(m-1+n \tau)(m+n \tau)}=-\frac{1}{(m+n \tau)^{2}(m-1+n \tau)}
$$

is absolutely summable over (n, m), hence the corresponding double series can be re-arranged at our convenience.
b. It follows directly from a. that $F_{1}(\tau)-F_{2}(\tau)=H_{1}(\tau)-H_{2}(\tau)=\frac{2 \pi i}{\tau}$. We now compute

$$
\begin{aligned}
F_{1}\left(-\frac{1}{\tau}\right) & =\tau^{2} \sum_{n \in \mathbb{Z}} \sum_{m \in \mathbb{Z}}{ }^{\prime} \frac{1}{(\tau m-n)^{2}} \\
& =\tau^{2} \sum_{n \in \mathbb{Z}} \sum_{m \in \mathbb{Z}}{ }^{\prime} \frac{1}{(n+m \tau)^{2}} \\
& =\tau^{2} F_{2}(\tau) \\
& =\tau^{2}\left(F_{1}(\tau)-\frac{2 \pi i}{\tau}\right) \\
& =\tau^{2} F_{1}(\tau)-2 \pi i \tau
\end{aligned}
$$

c. We follow the computation of the Fourier expansion of Eisenstein series given in Lecture 5 . From the first equality in (6) with $z=\tau \in \mathbb{H}$ we have

$$
\cot (\pi \tau)=-i-2 i \sum_{k=1}^{\infty} e^{2 \pi i k \tau}
$$

Taking derivatives on both sides and using (5) we get

$$
\sum_{m \in \mathbb{Z}} \frac{1}{(\tau+m)^{2}}=4 \pi \sum_{k=1}^{\infty} k e^{2 \pi i k \tau}
$$

This implies

$$
\begin{aligned}
F_{1}(\tau) & =2 \sum_{m=1}^{\infty} \frac{1}{m^{2}}+2 \sum_{n=1}^{\infty} \sum_{m \in \mathbb{Z}} \frac{1}{(n \tau+m)^{2}} \\
& =2 \zeta(2)+8 \pi \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} k e^{2 \pi i k n \tau} \\
& =\frac{\pi^{2}}{3}+8 \pi \sum_{N=1}^{\infty} \sigma_{1}(N) e^{2 \pi i N \tau} \\
& =G_{2}(\tau)
\end{aligned}
$$

3. E_{4}^{2}, E_{8} are non-zero vectors in M_{8} and this space has dimension 1 , hence $E_{4}^{2}=\lambda E_{8}$ for some $\lambda \in \mathbb{C}^{\times}$. Since E_{4} and E_{8} are normalized to have 0 -th Fourier coefficient equal to 1 , we have $\lambda=1$. Similar arguments, using that the spaces M_{10} and M_{14} are one dimensional, imply that $E_{4} E_{6}=E_{10}$ and $E_{6} E_{8}=E_{14}$. Using

$$
\begin{aligned}
& E_{4}(\tau)=1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n} \\
& E_{8}(\tau)=1+480 \sum_{n=1}^{\infty} \sigma_{7}(n) q^{n}
\end{aligned}
$$

(see Lecture 5) we get from $E_{4}^{2}=E_{8}$ the identity

$$
480 \sigma_{7}(n)=480 \sigma_{3}(n)+(240)^{2} \sum_{k=1}^{n-1} \sigma_{3}(n-k) \sigma_{3}(k) \text { for all integers } n \geq 2
$$

which simplifies to

$$
\sigma_{7}(n)=\sigma_{3}(n)+120 \sum_{k=1}^{n-1} \sigma_{3}(n-k) \sigma_{3}(k) \text { for all integers } n \geq 2
$$

In a similar way, identities $E_{4} E_{6}=E_{10}$ and $E_{6} E_{8}=E_{14}$ imply

$$
\begin{aligned}
11 \sigma_{9}(n) & =21 \sigma_{5}(n)-10 \sigma_{3}(n)+5040 \sum_{k=1}^{n-1} \sigma_{3}(n-k) \sigma_{5}(k) \\
\sigma_{13}(n) & =21 \sigma_{5}(n)-20 \sigma_{7}(n)+10080 \sum_{k=1}^{n-1} \sigma_{5}(n-k) \sigma_{7}(k)
\end{aligned}
$$

for all integers $n \geq 2$.
4. a. We have $E_{2}=\frac{3}{\pi^{2}} G_{2}$ hence

$$
E_{2}\left(-\frac{1}{\tau}\right)=\tau^{2} E_{2}(\tau)-\frac{6 i}{\pi} \tau
$$

Given f in M_{k} we have

$$
f\left(-\frac{1}{\tau}\right)=\tau^{k} f(\tau)
$$

hence

$$
E_{2}\left(-\frac{1}{\tau}\right) f\left(-\frac{1}{\tau}\right)=\tau^{k+2} E_{2}(\tau) f(\tau)-\frac{6 i}{\pi} \tau^{k+1} f(\tau)
$$

and

$$
f^{\prime}\left(-\frac{1}{\tau}\right) \frac{1}{\tau^{2}}=k \tau^{k-1} f(\tau)+\tau^{k} f^{\prime}(\tau)
$$

This implies

$$
\begin{aligned}
g\left(-\frac{1}{\tau}\right) & =\frac{1}{2 \pi i}\left(k \tau^{k+1} f(\tau)+\tau^{k+2} f^{\prime}(\tau)\right)-\frac{k}{12}\left(\tau^{k+2} E_{2}(\tau) f(\tau)-\frac{6 i}{\pi} \tau^{k+1} f(\tau)\right) \\
& =\frac{1}{2 \pi i} \tau^{k+2} f^{\prime}(\tau)-\frac{k}{12} \tau^{k+2} E_{2}(\tau) f(\tau) \\
& =\tau^{k+2} g(\tau)
\end{aligned}
$$

Since we also have $g(\tau+1)=g(\tau)$ (since f, f^{\prime} and E_{2} are invariant under $\tau \mapsto \tau+1$), and $\mathrm{SL}_{2}(\mathbb{Z})$ is generated by $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, we conclude that g transforms like a modular form of weight $k+2$ for $\mathrm{SL}_{2}(\mathbb{Z})$. By construction, g is clearly holomorphic in \mathbb{H}. Finally, since f^{\prime} has no constant term in its Fourier expansion, we get

$$
\lim _{\tau \rightarrow i \infty} g(\tau)=-\frac{k}{12} a_{0}
$$

where a_{0} is the 0 -th Fourier coefficient of f. This proves that g is holomorphic at $i \infty$, hence $g \in M_{k+2}$, and also that g is cuspidal if and only if f is cuspidal.
b. When $f=E_{4}$ we have $g \in M_{6}$ with 0 -th Fourier coefficient $-\frac{1}{3}$. Since M_{6} is one dimensional, we have $g=-\frac{1}{3} E_{6}$. Similarly, one prove that $g=-\frac{1}{2} E_{8}$ when $f=E_{6}$ and $g=0$ when $f=\Delta$. This implies

$$
\begin{aligned}
21 \sigma_{5}(n) & =(30 n-10) \sigma_{3}(n)-\sigma_{1}(n)+240 \sum_{m=1}^{n-1} \sigma_{1}(n-m) \sigma_{3}(m) \\
20 \sigma_{7}(n) & =(42 n-21) \sigma_{5}(n)-\sigma_{1}(n)+504 \sum_{m=1}^{n-1} \sigma_{1}(n-m) \sigma_{5}(m), \\
(n-1) \tau(n) & =-24 \sum_{m=1}^{n-1} \sigma_{1}(n-m) \tau(m)
\end{aligned}
$$

for all integers $n \geq 2$.

