NUMBER THEORY II: INTRODUCTION TO MODULAR FORMS FS 2023
LECTURER: PROF. DR. OZLEM IMAMOGLU - COORDINATOR: DR. SEBASTIAN HERRERO

Solutions Sheet 2

1. a. For z € C\ {0} have

sin(z) _ e £1(2)

z 21z n—o0

where
+2)"-0-2)"
fulz) = 21z
If n = 2m + 1 with m € Z* then f,(x) is a polynomial of degree n — 1 = 2m with constant
term 1 and whose roots are of the form

z=—in (g;i) where (" =1,( # 1.

mo= I (=5 (E50)

¢r=1,A1
Writing ¢ = e2™*/™ with k € {1,...,n — 1 = 2m} we get

m . 2mik/n 1 ; —2nik/n 1
ful2) (-2 S (et
n \ e2mik/n _ 1 n \ e—2mik/n _ 1

If follows that

k=1
B ﬁ . 2% (1 + cos(2rk/n)
B Pt n2 \ 1 —cos(2rk/n) ) )"
This implies
i Y 2 /1 ok
RUIC) (1 2 <+C°S(”/”))> for all z € C\ {0}. (1)
z e Bite] 1 — cos(27k/n)
Now, in order to get the desired infinite product, let us introduce the following auxiliary
functions
. 1+ cos(27k/n)
n,r = 1 — |
gn.r(2) kl;[l ( + n? ( — cos(27k/n)
e 1+ cos(27k/n)
n = 1 T a1\ n,m bl
9n(2) H ( Tz <1 — cos(27k/n) = 9nm(@)

k=1

for € R where 1 < r < m are integers and n = 2m + 1. Note that by we have

sin(ix)

= 1i n(2) for all R\ {0}. 2
P Jim_g, () for all z € R\ {0} (2)
Now, we compute
1 /1 1 (1 2
im L + cos(2mk/n) — lim 1 —l—‘cos(27rk/n))
n—oo n? \ 1 — cos(2mk/n) n—soon?  sin(2mwk/n)?
2k \? (1 + cos(2 2
— (2nk)2 Tim [ 2F (1+ cos(2mk/n))
n—00 n sm(27rk/n)2
1
T omke

Hence, since gy, »(z) < gn(z), taking n — co with r fixed and using we get

s 2 sin(ix)
1 <
I (1455 <2,

k=1

1



and taking r — co gives

oo 2 . .
x sin(ix)
1 < .

k1;[1 ( * k2772> Tz

1+4cos(t)
1—cos(t)

Now, one can check that the function ¢ — 2 ( ) is decreasing for ¢ €]0, [ (e.g.,

using derivatives). This implies that

L (Lreetm)

IN

2 for 1 <k <m,

hence

We conclude that

sin'(il‘) _ ﬁ (1 + n§7r2> for all x € R\ {0}. (3)

Since the functions

are analytic for z € C\ {0} (see Complex Analysis| by S. Lang (Springer 1999), chapter
XIII), and they coincide for z € i(R\ {0}), we conclude that

Sinz(Z) - ﬁ (1 - njjr2> for 2 € CA10) W

n=1

Added comment: Instead of using the analyticity of infinite products, one can extend
the above computations and prove that holds directly. Indeed, we already proved .
Extending the definitions of g, ,(x) and g, (z) to any z = z € C\ {0} we have

190(2) = gnr ()] = |gn,r(2)]- kzlil (1+n (W))—1
< gurlle)- (H (1 B (e )

= gn(lz]) - gn,r(|z‘)'

Taking n — oo with r fixed and using we get

H()H(”m>| SR H( i)

k=1

As r — oo the right hand side converges to 0 by [3] hence

sin(i H (1+ = 2)

Replacing z by —iz gives (4)).


https://link.springer.com/book/10.1007/978-1-4757-3083-8

b. Taking logarithmic derivatives on both sides of (4] we get

cot(z) — = =

DI

<1 522)_1
nmw

n=1
S )
_ nmw+ z ™ — nw — z
_ 1 1) ( 1
n>1 nm—+ z ™ ne1 nmw+ 2z
. ( 1 1)
nezvgoy \VTTE N

Replacing z by 7z we get

™ cot 7rz

c. From we have

d. We have . .
cot(rz) = Cf)S(?TZ) _ _em‘z Jrefmlz i 21 |
sin(mz) emiz _ g—miz o2miz _ |
For z € H we get
2mi >, By
mz cot(rz) = miz + E%Z’z = kz - ( (2miz)* = By + mi(1 4 2B;)z +

Hence

1—

which implies

7z cot(mz)

7+ 2 <z+n ;>

nez\{0}

1 1
1+z Z (Z—l—nn)
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1-227 " ((2k +2)2%

k=0

1-2) ¢(2k)2%*
k=1

2" ((2k)* =
k=1

—2¢(k) =

> (2mi)*
k!

By 4

By +mi(142B1)z+ y 2k,
k=2

(2mi)* By,

o for k € Z* even.



2.

a. We have

1 1 1

(m—1+nm)(m+n7) (m—1+n7) (m+n7)

By recognizing telescopic series, we get

/ 1 [0 ifn#0,
mzejz(m—lJrnr)(erm)_{Q if n=0. (7)

This implies that Hy(7) = 2. Now, in order to compute Ha(7) we assume m # 0,1 and
write

%(m—l+n17)(m+n7)
o
Using (5) we get

2 (m—1+n17)(m+n7)

nez

7L (ﬂ'cot (W(mT_ U) — - —mcot (@) + ;) + <ml_1 = ;)
71 (mot (W) — mcot (T)) :

Similarly, we have

1
Z Z (m—14n7)(m+n7)

me{0,1} neZ\{0}

-1
= 771 <7r cot, <7r()> — T cot <E> + 27')
T T
-1
= 71 (WCOt (ﬂ-( )> — mcot <7T>> + 2.
T T
Hence, by recognizing telescopic series again, we get
N M 2mi
Hy(t)=2+71"'x ( lim cot (71—) — lim cot (W)) =9
N——o0 T M — o0 T T

where, in the computation of the limits, we used @
Finally, the identity F; — H; = F3 — H, follows from the fact that

1 1 1

(m+nm)2 (m—1+n7)m+nt)  (m+n7)2(m—1+nT1)

is absolutely summable over (n,m), hence the corresponding double series can be

re-arranged at our convenience.
211

. It follows directly from a. that Fy(7) — Fa(7) = H1(7) — Ha(7) = —. We now compute
T



(=) - PZE T

nEZ meZ

2 / 1
-7 ZZ (n +mr)2’

neEZ mEL
= T Fy(7)

= (F1 (r) - 277”)

= T F\(1) — 2miT.

c. We follow the computation of the Fourier expansion of Eisenstein series given in Lecture 5.
From the first equality in (@ with z =7 € H we have

cot(mr) = —i — 2i i ikt
k=1
Taking derivatives on both sides and using we get
Z _ =4r i ke?mikT
e (TEm?
This implies

F(r) = QZ#HZZM

n=1mecZ

= 20(2) +8n i i ke nT

n=1 k=1
7T2 o)
— 8 E N 2miNT
3 " 7T‘N:l 01( )e

= Ga7).

3. E3, Eg are non-zero vectors in Mg and this space has dimension 1, hence E = A\Eg for some
A € C*. Since F4 and Eg are normalized to have 0-th Fourier coefficient equal to 1, we have
A = 1. Similar arguments, using that the spaces My and My, are one dimensional, imply that
E4E6 = E10 and E6E8 = E14.
Using

Eu(r) =1+240 > o3(n)q",
n=1

Es(r) =1+480 ) o7(n)q",

n=1

(see Lecture 5) we get from EF = Eg the identity

n—1
4800+7(n) = 48003(n) + (240)? Z os(n — k)os(k) for all integers n > 2,
k=1

which simplifies to

n—1
o7(n) = o3(n) + 120 Z o3(n — k)os(k) for all integers n > 2.
k=1



In a similar way, identities F4FEg = Fqg and FgFEg = Fq4 imply

n—1
log(n) = 2los(n) — 1003(n) + 5040 Y o3(n — k)os(k),
k=1
n—1
o13(n) = 21o5(n) — 2007(n) + 10080 Y _ o5(n — k)or(k),
k=1

for all integers n > 2.

4. a. We have Fy = %Gg hence

Given f in M} we have

hence . (1) ; (1) — 2R (1) f(7) — @Twlf(r),

and

This implies

1 1 k+1 k+2 1 k k+2 60 ki1
) = = - E _
1(=3) = g D+ 21 0) - 5 (FEI0) ()
L kyop k ko
= — — kg
S () R () £ (1)

= F2g(r).
Since we also have g(7 4+ 1) = g(7) (since f, f’ and Ej are invariant under 7 — 7+ 1), and
SLy(Z) is generated by T = é 1 and S = (; _01), we conclude that g transforms like

a modular form of weight k + 2 for SLy(Z). By construction, g is clearly holomorphic in H.
Finally, since f’ has no constant term in its Fourier expansion, we get

. k
Aim 9(r) =~ 3500
where ag is the 0-th Fourier coefficient of f. This proves that g is holomorphic at ico,
hence g € My2, and also that g is cuspidal if and only if f is cuspidal.
b. When f = E, we have g € Mg with 0-th Fourier coeflicient —%. Since Mg is one
dimensional, we have g = —%Eg. Similarly, one prove that g = —%Eg when f = Fg and
g =0 when f = A. This implies

n—1

2los(n) = (30n — 10)o3(n) — o1(n) + 240 Z o1(n —m)os(m),
2007(n) = (42n —21)os(n) — o1(n) + 504 i o1(n —m)os(m),

(n—171(n) = —-24 i o1(n —m)7T(m),

for all integers n > 2.



