Solutions Sheet 3

1. a. Write $p(X, Y)=\sum_{a, b \geq 0} c_{a, b} X^{a} Y^{b}$. There exists $N \in \mathbb{Z}^{+}$such that

$$
p(X, Y)=\sum_{k=0}^{N} p_{k}(X, Y) \text { where } p_{k}(X, Y):=\sum_{\substack{a, b \geq 0 \\ 4 a+6 b=k}} c_{a, b} X^{a} Y^{b}
$$

Then $f_{k}:=p_{k}\left(E_{4}, E_{6}\right)$ is a modular form of weight k for $\mathrm{SL}_{2}(\mathbb{Z})$. We first show that $f_{k}=0$ for all k. The result is clear if $N=0$, so we can assume $N \geq 1$. From $p\left(E_{4}, E_{6}\right)=0$ we have

$$
\sum_{k=0}^{N} f_{k}(\tau)=0
$$

Using that $f_{k}\left(-\frac{1}{\tau}\right)=\tau^{k} f_{k}(\tau)$ we get

$$
\sum_{k=0}^{N} \tau^{k} f_{k}(\tau)=0
$$

Now, replacing τ by $\tau+t$ for $t \in\{0, \ldots, N\}$, we get

$$
M(\tau) \cdot\left(\begin{array}{c}
f_{0} \\
f_{1} \\
\vdots \\
f_{N}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

where

$$
M(\tau):=\left(\begin{array}{cccc}
1 & \tau & \cdots & \tau^{N} \\
1 & \tau+1 & \cdots & (\tau+1)^{N} \\
\vdots & \vdots & \cdots & \vdots \\
1 & \tau+N & \cdots & (\tau+N)^{N}
\end{array}\right)
$$

The matrix $M(\tau)$ is of Vandermonde type. Since $1, \tau, \tau+1, \ldots, \tau+N$ are all different, we have $\operatorname{det}(M(\tau)) \neq 0$. This implies $f_{k}=0$ for all k.
Now, since $p_{k}\left(E_{4}, E_{6}\right)=f_{k}=0$ we have

$$
\sum_{\substack{a, b \geq 0 \\ 4 a+6 b=k}} c_{a, b}\left(E_{4}\right)^{a}\left(E_{6}\right)^{b}=0 .
$$

Let $U \subseteq \mathbb{H}$ be a small open disk containing no zeroes of E_{4} and no zeroes of E_{6} (actually, using the valence formula from Lecture 6, one can prove that the only zeroes of E_{4} and of E_{6} are the points which are $\mathrm{SL}_{2}(\mathbb{Z})$-equivalent to $\frac{-1+i \sqrt{3}}{2}$ and to i, respectively). Then, we can consider the holomorphic functions $f:=E_{4}^{1 / 2}$ and $g:=E_{6}^{1 / 3}$ on U satisfying

$$
\sum_{\substack{a, b \geq 0 \\ a a+6 b=k}} c_{a, b} f^{2 a} g^{3 b}=0
$$

Dividing by $g^{k / 2}$ gives

$$
P_{k}\left(\frac{f}{g}\right)=0, \text { where } P_{k}(X):=\sum_{\substack{a, b \geq 0 \\ 4 a+6 b=k}} c_{a, b} X^{2 a}
$$

If the polynomial $P_{k}(X)$ is non-zero, then it has finitely many roots, and the above equality implies $\frac{f}{g}=\lambda$ in U for some root λ of $P_{k}(X)$. This implies that $E_{4}^{3}=\lambda^{6} E_{6}^{2}$ in U, hence also in \mathbb{H} by the identity principle. But E_{4}^{3} and E_{6}^{2} are linearly independent in M_{12} (this can be seen easily comparing the Fourier expansions of these two forms, or by evaluating at $\frac{-1+i \sqrt{3}}{2}$ and i. We conclude that $P_{k}(X)=0$, which implies $p_{k}(X)=0$.
b. By part a. we know that all elements in the set

$$
\begin{equation*}
\left\{E_{4}^{a} E_{6}^{b}: a, b \in \mathbb{Z}_{0}^{+}, 4 a+6 b=k\right\} \tag{1}
\end{equation*}
$$

are linearly independent. The number of such products of Eisenstein series is
$\#\left\{(a, b) \in\left(\mathbb{Z}_{0}^{+}\right)^{2}: 4 a+6 b=k\right\}=\#\{n \in\{0,1, \ldots, k\}: n \equiv 0(\bmod 4)$ and $n \equiv k(\bmod 6)\}$.
If $k \equiv 0,2,4,6,8,10(\bmod 12)$, let $k^{\prime}:=0,8,4,0,8,4$ respectively. Then

$$
n \equiv 0(\bmod 4) \text { and } n \equiv k(\bmod 6) \Leftrightarrow n \equiv k^{\prime}(\bmod 12) .
$$

If r is the rest of dividing k by 12 , so $r \equiv k(\bmod 12)$, we get

$$
\begin{aligned}
& \#\left\{(a, b) \in\left(\mathbb{Z}_{0}^{+}\right)^{2}: 4 a+6 b=k\right\} \\
= & \#\{n \in\{0,1, \ldots, k\}: n \equiv 0(\bmod 4) \text { and } n \equiv k(\bmod 6)\} \\
= & \#\left\{n \in\{0,1, \ldots, k\}: n \equiv k^{\prime}(\bmod 12\}\right. \\
= & \left\lfloor\frac{k}{12}\right\rfloor+\#\left\{n \in\{0,1, \ldots, r\}: n \equiv k^{\prime}(\bmod 12)\right\} \\
= & \left\lfloor\frac{k}{12}\right\rfloor+ \begin{cases}1 & \text { if } k \equiv 0,4,6,8,10(\bmod 12), \\
0 & \text { if } k \equiv 2(\bmod 12) .\end{cases}
\end{aligned}
$$

This equals the dimension of M_{k}, hence the set (1) is a basis of M_{k}.
2. a. The logarithmic derivative of F is

$$
\begin{aligned}
\log (F(\tau))^{\prime} & =2 \pi i+24 \sum_{n=1}^{\infty}(-2 \pi i n) \frac{q^{n}}{1-q^{n}} \\
& =2 \pi i\left(1-24 \sum_{n=1}^{\infty} n \sum_{k=1}^{\infty} q^{k n}\right) \\
& =2 \pi i\left(1-24 \sum_{N=1}^{\infty} \sigma_{1}(N) q^{N}\right) \\
& =2 \pi i E_{2}(\tau)
\end{aligned}
$$

b. Since

$$
E_{2}\left(\frac{-1}{\tau}\right)=\tau^{2} E_{2}(\tau)-\frac{6 i}{\pi} \tau
$$

we have

$$
\begin{aligned}
\log \left(F\left(\frac{-1}{\tau}\right) \tau^{-12}\right)^{\prime} & =\left(\log \left(F\left(\frac{-1}{\tau}\right)\right)-12 \log (\tau)\right)^{\prime} \\
& =2 \pi i E_{2}\left(\frac{-1}{\tau}\right) \frac{1}{\tau^{2}}-12 \frac{1}{\tau} \\
& =2 \pi i\left(\tau^{2} E_{2}(\tau)-\frac{6 i}{\pi} \tau\right) \frac{1}{\tau^{2}}-12 \frac{1}{\tau} \\
& =2 \pi i E_{2}(\tau) \\
& =\log (F(\tau))^{\prime}
\end{aligned}
$$

This implies that $F\left(\frac{-1}{\tau}\right) \tau^{-12}=\lambda F(\tau)$ for some $\lambda \in \mathbb{C}$. Evaluating at $\tau=i$ we see that $\lambda=1$. Since $F(\tau)$ is also invariant under $\tau \mapsto \tau+1$, because it is defined in terms of $q=e^{2 \pi i \tau}$, we conclude that $F \in S_{12}$.
c. We have $S_{12}=\mathbb{C} \Delta$ and both F and Δ have first Fourier coefficient equal to 1 , hence $F=\Delta$. This completes the proof of the identity

$$
\begin{equation*}
\Delta(\tau)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24} \text { where } q:=e^{2 \pi i \tau} \tag{2}
\end{equation*}
$$

3. a. We have

$$
\begin{aligned}
E_{6}(\tau) & =1-504 \sum_{n=1}^{\infty} \sigma_{5}(n) q^{n} \\
E_{12}(\tau) & =1+\frac{65520}{691} \sum_{n=1}^{\infty} \sigma_{11}(n) q^{n}
\end{aligned}
$$

hence $E_{12}-E_{6}^{2}$ is in S_{12} and has first Fourier coefficient

$$
c=\frac{65520}{691}+2 \cdot 504=\frac{2^{6} 3^{5} 7^{2}}{691}
$$

Since $S_{12}=\mathbb{C} \Delta$, we conclude that $E_{12}-E_{6}^{2}=c \Delta$.
b. Let $a(n)$ denote the n-th Fourier coefficient of E_{6}^{2}. Since E_{6} has Fourier coefficients in \mathbb{Z}, we have that $a(n) \in \mathbb{Z}$ for all n. From a. we have

$$
65520 \sigma_{11}(n)-691 a(n)=\left(2^{6} 3^{5} 7^{2}\right) \tau(n) \text { for all } n \in \mathbb{Z}^{+}
$$

Since $65520 \equiv 2^{6} 3^{5} 7^{2} \not \equiv 0(\bmod 691)$, and 691 is prime, we conclude

$$
\sigma_{11}(n) \equiv \tau(n)(\bmod 691) \text { for all } n \in \mathbb{Z}^{+} .
$$

4. a. By definition (see Lecture 7)

$$
j(\tau)=\frac{E_{4}(\tau)^{3}}{\Delta(\tau)}
$$

We mentioned in 1.a that $E_{4}(\rho)=0$ where $\rho:=-\frac{1}{2}+i \frac{\sqrt{3}}{2}$, hence $j(\rho)=0$. By the definition of Δ we also have

$$
j(\tau)=1728 \frac{E_{4}(\tau)^{3}}{E_{4}(\tau)^{3}-E_{6}(\tau)^{2}},
$$

hence evaluating at $\tau=i$, using that $E_{6}(i)=0$ and $E_{4}(i) \neq 0$, we get $j(i)=1728$. Finally, the infinite product expansion (2) and the Fourier expansion

$$
E_{4}(\tau)=1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n}
$$

imply that $j(\tau)$ has Fourier expansion

$$
j(\tau)=\frac{1}{q}+\sum_{n=0}^{\infty} c(n) q^{n} \text { with } c(n) \in \mathbb{Z}_{0}^{+} .
$$

Hence

$$
\overline{j(\tau)}=\frac{1}{\bar{q}}+\sum_{n=0}^{\infty} c(n) \bar{q}^{n} .
$$

Since $\bar{q}=e^{2 \pi i(-\bar{\tau})}$ we get $\overline{j(\tau)}=j(-\bar{\tau})$.
b. For $t>0$ we have

$$
j(i t)=e^{2 \pi t}+\sum_{n=0}^{\infty} c(n) e^{-2 \pi n t}>0
$$

Since j is continuous, injective when restricted to $C, j(i)=1728$ and

$$
\lim _{t \rightarrow \infty} j(i t)=\infty
$$

we conclude that $j(C)=] 1728, \infty[$. Now, for $\tau \in B$ we have, using $j(\tau)=\overline{j(-\bar{\tau})}$, the equalities

$$
j(\tau)=j\left(-\frac{1}{\tau}\right)=j(-\bar{\tau})=\overline{j(\tau)}
$$

This proves that $j(B) \subseteq \mathbb{R}$. As before, since j is continuous, injective when restricted to B, $j(i)=1728$ and $j(\rho)=0$, we conclude that $j(B)=] 0,1728[$. Finally, for $t>0$ we have

$$
j\left(-\frac{1}{2}+i t\right)=j\left(-\frac{1}{2}+i t+1\right)=j\left(\frac{1}{2}+i t\right) .
$$

Using $j(\tau)=\overline{j(-\bar{\tau})}$ we get

$$
j\left(-\frac{1}{2}+i t\right)=\overline{j\left(-\frac{1}{2}+i t\right)}
$$

This implies that $j(A) \subseteq \mathbb{R}$. Moreover, we have

$$
j\left(\frac{1}{2}+i t\right)=-e^{2 \pi t}+\sum_{n=0}^{\infty} c(n)(-1)^{n} e^{-2 \pi n t}
$$

which implies

$$
\lim _{t \rightarrow \infty} j\left(\frac{1}{2}+i t\right)=-\infty
$$

Using similar arguments as before, we conclude that $j(A)=]-\infty, 0[$.
c. Recall that j induces a bijection between $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}$ and \mathbb{C}. Since
$A \cup B \cup C \cup\{\rho, i\} \cup \mathcal{F}_{1} \cup \mathcal{F}_{2}$ has exactly one representative of each $\mathrm{SL}_{2}(\mathbb{Z})$ orbit in \mathbb{H}, and

$$
j(A \cup B \cup C \cup\{\rho, i\})=\mathbb{R}
$$

we have that $j\left(\mathcal{F}_{1}\right)=\mathbb{H}$ and $j\left(\mathcal{F}_{2}\right)=\mathbb{H}^{-}$, or $j\left(\mathcal{F}_{1}\right)=\mathbb{H}^{-}$and $j\left(\mathcal{F}_{2}\right)=\mathbb{H}$. Since j is holomorphic, it preserves orientations. Hence $j\left(\mathcal{F}_{1}\right)=\mathbb{H}$ and $j\left(\mathcal{F}_{2}\right)=\mathbb{H}^{-}$.

