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1. a. Write p(X,Y ) =
∑

a,b≥0

ca,bX
aY b. There exists N ∈ Z+ such that

p(X,Y ) =

N∑
k=0

pk(X,Y ) where pk(X,Y ) :=
∑
a,b≥0

4a+6b=k

ca,bX
aY b.

Then fk := pk(E4, E6) is a modular form of weight k for SL2(Z). We first show that fk = 0
for all k. The result is clear if N = 0, so we can assume N ≥ 1. From p(E4, E6) = 0 we have

N∑
k=0

fk(τ) = 0.

Using that fk

(
−1

τ

)
= τkfk(τ) we get

N∑
k=0

τkfk(τ) = 0.

Now, replacing τ by τ + t for t ∈ {0, . . . , N}, we get

M(τ) ·


f0
f1
...
fN

 =


0
0
...
0


where

M(τ) :=


1 τ · · · τN

1 τ + 1 · · · (τ + 1)N

...
... · · ·

...
1 τ +N · · · (τ +N)N

 .

The matrix M(τ) is of Vandermonde type. Since 1, τ, τ + 1, . . . , τ +N are all different, we
have det(M(τ)) ̸= 0. This implies fk = 0 for all k.
Now, since pk(E4, E6) = fk = 0 we have∑

a,b≥0
4a+6b=k

ca,b(E4)
a(E6)

b = 0.

Let U ⊆ H be a small open disk containing no zeroes of E4 and no zeroes of E6 (actually,
using the valence formula from Lecture 6, one can prove that the only zeroes of E4 and of

E6 are the points which are SL2(Z)-equivalent to −1+i
√
3

2 and to i, respectively). Then, we

can consider the holomorphic functions f := E
1/2
4 and g := E

1/3
6 on U satisfying∑

a,b≥0
4a+6b=k

ca,bf
2ag3b = 0.

Dividing by gk/2 gives

Pk

(
f

g

)
= 0, where Pk(X) :=

∑
a,b≥0

4a+6b=k

ca,bX
2a.

If the polynomial Pk(X) is non-zero, then it has finitely many roots, and the above

equality implies f
g = λ in U for some root λ of Pk(X). This implies that E3

4 = λ6E2
6 in U ,

hence also in H by the identity principle. But E3
4 and E2

6 are linearly independent in M12

(this can be seen easily comparing the Fourier expansions of these two forms, or by

evaluating at −1+i
√
3

2 and i). We conclude that Pk(X) = 0, which implies pk(X) = 0.
1
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b. By part a. we know that all elements in the set

{Ea
4E

b
6 : a, b ∈ Z+

0 , 4a+ 6b = k} (1)

are linearly independent. The number of such products of Eisenstein series is

#{(a, b) ∈ (Z+
0 )

2 : 4a+ 6b = k} = #{n ∈ {0, 1, . . . , k} : n ≡ 0 ( mod 4) and n ≡ k ( mod 6)}.

If k ≡ 0, 2, 4, 6, 8, 10 (mod 12), let k′ := 0, 8, 4, 0, 8, 4 respectively. Then

n ≡ 0 (mod 4) and n ≡ k (mod 6) ⇔ n ≡ k′ (mod 12).

If r is the rest of dividing k by 12, so r ≡ k (mod 12), we get

#{(a, b) ∈ (Z+
0 )

2 : 4a+ 6b = k}
= #{n ∈ {0, 1, . . . , k} : n ≡ 0 (mod 4) and n ≡ k (mod 6)}
= #{n ∈ {0, 1, . . . , k} : n ≡ k′ (mod 12}

=

⌊
k

12

⌋
+#{n ∈ {0, 1, . . . , r} : n ≡ k′ (mod 12)}

=

⌊
k

12

⌋
+

{
1 if k ≡ 0, 4, 6, 8, 10 (mod 12),
0 if k ≡ 2 (mod 12).

This equals the dimension of Mk, hence the set (1) is a basis of Mk.

2. a. The logarithmic derivative of F is

log(F (τ))′ = 2πi+ 24

∞∑
n=1

(−2πin)
qn

1− qn

= 2πi

(
1− 24

∞∑
n=1

n

∞∑
k=1

qkn

)

= 2πi

(
1− 24

∞∑
N=1

σ1(N)qN

)
= 2πiE2(τ).

b. Since

E2

(
−1

τ

)
= τ2E2(τ)−

6i

π
τ

we have

log

(
F

(
−1

τ

)
τ−12

)′

=

(
log

(
F

(
−1

τ

))
− 12 log(τ)

)′

= 2πiE2

(
−1

τ

)
1

τ2
− 12

1

τ

= 2πi

(
τ2E2(τ)−

6i

π
τ

)
1

τ2
− 12

1

τ

= 2πiE2 (τ)

= log(F (τ))′.

This implies that F
(−1

τ

)
τ−12 = λF (τ) for some λ ∈ C. Evaluating at τ = i we see that

λ = 1. Since F (τ) is also invariant under τ 7→ τ + 1, because it is defined in terms of
q = e2πiτ , we conclude that F ∈ S12.

c. We have S12 = C∆ and both F and ∆ have first Fourier coefficient equal to 1, hence
F = ∆. This completes the proof of the identity

∆(τ) = q

∞∏
n=1

(1− qn)24 where q := e2πiτ . (2)
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3. a. We have

E6(τ) = 1− 504

∞∑
n=1

σ5(n)q
n,

E12(τ) = 1 +
65520

691

∞∑
n=1

σ11(n)q
n,

hence E12 − E2
6 is in S12 and has first Fourier coefficient

c =
65520

691
+ 2 · 504 =

26 35 72

691
.

Since S12 = C∆, we conclude that E12 − E2
6 = c∆.

b. Let a(n) denote the n-th Fourier coefficient of E2
6 . Since E6 has Fourier coefficients in Z,

we have that a(n) ∈ Z for all n. From a. we have

65520σ11(n)− 691 a(n) = (26 35 72)τ(n) for all n ∈ Z+.

Since 65520 ≡ 26 35 72 ̸≡ 0 (mod 691), and 691 is prime, we conclude

σ11(n) ≡ τ(n) (mod 691) for all n ∈ Z+.

4. a. By definition (see Lecture 7)

j(τ) =
E4(τ)

3

∆(τ)
.

We mentioned in 1.a that E4(ρ) = 0 where ρ := − 1
2 + i

√
3
2 , hence j (ρ) = 0. By the

definition of ∆ we also have

j(τ) = 1728
E4(τ)

3

E4(τ)3 − E6(τ)2
,

hence evaluating at τ = i, using that E6(i) = 0 and E4(i) ̸= 0, we get j(i) = 1728. Finally,
the infinite product expansion (2) and the Fourier expansion

E4(τ) = 1 + 240

∞∑
n=1

σ3(n)q
n

imply that j(τ) has Fourier expansion

j(τ) =
1

q
+

∞∑
n=0

c(n)qn with c(n) ∈ Z+
0 .

Hence

j(τ) =
1

q
+

∞∑
n=0

c(n)qn.

Since q = e2πi(−τ) we get j(τ) = j(−τ).
b. For t > 0 we have

j(it) = e2πt +

∞∑
n=0

c(n)e−2πnt > 0.

Since j is continuous, injective when restricted to C, j(i) = 1728 and

lim
t→∞

j(it) = ∞,

we conclude that j(C) =]1728,∞[. Now, for τ ∈ B we have, using j(τ) = j(−τ), the
equalities

j(τ) = j

(
−1

τ

)
= j(−τ) = j(τ).

This proves that j(B) ⊆ R. As before, since j is continuous, injective when restricted to B,
j(i) = 1728 and j(ρ) = 0, we conclude that j(B) =]0, 1728[. Finally, for t > 0 we have

j

(
−1

2
+ it

)
= j

(
−1

2
+ it+ 1

)
= j

(
1

2
+ it

)
.
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Using j(τ) = j(−τ) we get

j

(
−1

2
+ it

)
= j

(
−1

2
+ it

)
.

This implies that j(A) ⊆ R. Moreover, we have

j

(
1

2
+ it

)
= −e2πt +

∞∑
n=0

c(n)(−1)ne−2πnt

which implies

lim
t→∞

j

(
1

2
+ it

)
= −∞.

Using similar arguments as before, we conclude that j(A) =]−∞, 0[.
c. Recall that j induces a bijection between SL2(Z)\H and C. Since

A ∪B ∪ C ∪ {ρ, i} ∪ F1 ∪ F2 has exactly one representative of each SL2(Z) orbit in H, and

j(A ∪B ∪ C ∪ {ρ, i}) = R,
we have that j(F1) = H and j(F2) = H−, or j(F1) = H− and j(F2) = H. Since j is
holomorphic, it preserves orientations. Hence j(F1) = H and j(F2) = H−.


