NUMBER THEORY II: INTRODUCTION TO MODULAR FORMS I Lecturer: Prof. Dr. Özlem Imamoglu - Coordinator: Dr. Sebastián Herrero

Solutions Sheet 3

1. **a.** Write $p(X, Y) = \sum_{a,b \ge 0} c_{a,b} X^a Y^b$. There exists $N \in \mathbb{Z}^+$ such that

$$p(X,Y) = \sum_{k=0}^{N} p_k(X,Y) \text{ where } p_k(X,Y) := \sum_{\substack{a,b \ge 0\\4a+6b=k}} c_{a,b} X^a Y^b.$$

Then $f_k := p_k(E_4, E_6)$ is a modular form of weight k for $SL_2(\mathbb{Z})$. We first show that $f_k = 0$ for all k. The result is clear if N = 0, so we can assume $N \ge 1$. From $p(E_4, E_6) = 0$ we have

$$\sum_{k=0}^{N} f_k(\tau) = 0.$$

Using that $f_k\left(-\frac{1}{\tau}\right) = \tau^k f_k(\tau)$ we get

$$\sum_{k=0}^{N} \tau^k f_k(\tau) = 0.$$

Now, replacing τ by $\tau + t$ for $t \in \{0, \ldots, N\}$, we get

 4ϵ

4

$$M(\tau) \cdot \begin{pmatrix} f_0 \\ f_1 \\ \vdots \\ f_N \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

where

$$M(\tau) := \begin{pmatrix} 1 & \tau & \cdots & \tau^{N} \\ 1 & \tau + 1 & \cdots & (\tau + 1)^{N} \\ \vdots & \vdots & \cdots & \vdots \\ 1 & \tau + N & \cdots & (\tau + N)^{N} \end{pmatrix}$$

The matrix $M(\tau)$ is of Vandermonde type. Since $1, \tau, \tau + 1, \ldots, \tau + N$ are all different, we have $\det(M(\tau)) \neq 0$. This implies $f_k = 0$ for all k. Now, since $p_k(E_4, E_6) = f_k = 0$ we have

$$\sum_{\substack{a,b\geq 0\\a+6b=k}} c_{a,b} (E_4)^a (E_6)^b = 0.$$

Let $U \subseteq \mathbb{H}$ be a small open disk containing no zeroes of E_4 and no zeroes of E_6 (actually, using the valence formula from Lecture 6, one can prove that the only zeroes of E_4 and of E_6 are the points which are $\mathrm{SL}_2(\mathbb{Z})$ -equivalent to $\frac{-1+i\sqrt{3}}{2}$ and to *i*, respectively). Then, we can consider the holomorphic functions $f := E_4^{1/2}$ and $g := E_6^{1/3}$ on U satisfying

$$\sum_{\substack{a,b\geq 0\\a+6b=k}} c_{a,b} f^{2a} g^{3b} = 0$$

Dividing by $g^{k/2}$ gives

$$P_k\left(\frac{f}{g}\right) = 0$$
, where $P_k(X) := \sum_{\substack{a,b \ge 0\\4a+6b=k}} c_{a,b} X^{2a}$.

If the polynomial $P_k(X)$ is non-zero, then it has finitely many roots, and the above equality implies $\frac{f}{g} = \lambda$ in U for some root λ of $P_k(X)$. This implies that $E_4^3 = \lambda^6 E_6^2$ in U, hence also in \mathbb{H} by the identity principle. But E_4^3 and E_6^2 are linearly independent in M_{12} (this can be seen easily comparing the Fourier expansions of these two forms, or by evaluating at $\frac{-1+i\sqrt{3}}{2}$ and i). We conclude that $P_k(X) = 0$, which implies $p_k(X) = 0$.

FS 2023

b. By part **a**, we know that all elements in the set

$$\{E_4^a E_6^b : a, b \in \mathbb{Z}_0^+, 4a + 6b = k\}$$
(1)

are linearly independent. The number of such products of Eisenstein series is

 $\#\{(a,b)\in (\mathbb{Z}_0^+)^2: 4a+6b=k\} = \#\{n\in\{0,1,\ldots,k\}: n\equiv 0 \pmod{4} \text{ and } n\equiv k \pmod{6}\}.$

If $k \equiv 0, 2, 4, 6, 8, 10 \pmod{12}$, let k' := 0, 8, 4, 0, 8, 4 respectively. Then

$$n \equiv 0 \pmod{4}$$
 and $n \equiv k \pmod{6} \Leftrightarrow n \equiv k' \pmod{12}$

If r is the rest of dividing k by 12, so $r \equiv k \pmod{12}$, we get

$$\#\{(a,b) \in (\mathbb{Z}_0^+)^2 : 4a + 6b = k\}$$

$$= \#\{n \in \{0,1,\ldots,k\} : n \equiv 0 \pmod{4} \text{ and } n \equiv k \pmod{6}\}$$

$$= \#\{n \in \{0,1,\ldots,k\} : n \equiv k' \pmod{12}\}$$

$$= \left\lfloor \frac{k}{12} \right\rfloor + \#\{n \in \{0,1,\ldots,r\} : n \equiv k' \pmod{12}\}$$

$$= \left\lfloor \frac{k}{12} \right\rfloor + \left\{ \begin{array}{cc} 1 & \text{if } k \equiv 0, 4, 6, 8, 10 \pmod{12}, \\ 0 & \text{if } k \equiv 2 \pmod{12}. \end{array} \right\}$$

This equals the dimension of M_k , hence the set (1) is a basis of M_k .

2. **a**. The logarithmic derivative of F is

$$\log(F(\tau))' = 2\pi i + 24 \sum_{n=1}^{\infty} (-2\pi i n) \frac{q^n}{1-q^n}$$

= $2\pi i \left(1 - 24 \sum_{n=1}^{\infty} n \sum_{k=1}^{\infty} q^{kn} \right)$
= $2\pi i \left(1 - 24 \sum_{N=1}^{\infty} \sigma_1(N) q^N \right)$
= $2\pi i E_2(\tau).$

b. Since

$$E_2\left(\frac{-1}{\tau}\right) = \tau^2 E_2(\tau) - \frac{6i}{\pi}\tau$$

we have

$$\log\left(F\left(\frac{-1}{\tau}\right)\tau^{-12}\right)' = \left(\log\left(F\left(\frac{-1}{\tau}\right)\right) - 12\log(\tau)\right)'$$
$$= 2\pi i E_2\left(\frac{-1}{\tau}\right)\frac{1}{\tau^2} - 12\frac{1}{\tau}$$
$$= 2\pi i \left(\tau^2 E_2(\tau) - \frac{6i}{\pi}\tau\right)\frac{1}{\tau^2} - 12\frac{1}{\tau}$$
$$= 2\pi i E_2(\tau)$$
$$= \log(F(\tau))'.$$

This implies that $F\left(\frac{-1}{\tau}\right)\tau^{-12} = \lambda F(\tau)$ for some $\lambda \in \mathbb{C}$. Evaluating at $\tau = i$ we see that $\lambda = 1$. Since $F(\tau)$ is also invariant under $\tau \mapsto \tau + 1$, because it is defined in terms of $q = e^{2\pi i \tau}$, we conclude that $F \in S_{12}$.

c. We have $S_{12} = \mathbb{C}\Delta$ and both F and Δ have first Fourier coefficient equal to 1, hence $F = \Delta$. This completes the proof of the identity

$$\Delta(\tau) = q \prod_{n=1}^{\infty} (1 - q^n)^{24} \text{ where } q := e^{2\pi i \tau}.$$
 (2)

a. We have 3.

$$E_6(\tau) = 1 - 504 \sum_{n=1}^{\infty} \sigma_5(n) q^n,$$

$$E_{12}(\tau) = 1 + \frac{65520}{691} \sum_{n=1}^{\infty} \sigma_{11}(n) q^n,$$

hence $E_{12} - E_6^2$ is in S_{12} and has first Fourier coefficient

$$c = \frac{65520}{691} + 2 \cdot 504 = \frac{2^6 \, 3^5 \, 7^2}{691}$$

Since $S_{12} = \mathbb{C}\Delta$, we conclude that $E_{12} - E_6^2 = c\Delta$. **b.** Let a(n) denote the *n*-th Fourier coefficient of E_6^2 . Since E_6 has Fourier coefficients in \mathbb{Z} , we have that $a(n) \in \mathbb{Z}$ for all n. From **a**. we have

$$65520\,\sigma_{11}(n) - 691\,a(n) = (2^6\,3^5\,7^2)\tau(n) \text{ for all } n \in \mathbb{Z}^+.$$

Since $65520 \equiv 2^6 3^5 7^2 \neq 0 \pmod{691}$, and 691 is prime, we conclude

 $\sigma_{11}(n) \equiv \tau(n) \pmod{691}$ for all $n \in \mathbb{Z}^+$.

a. By definition (see Lecture 7) **4**.

$$j(\tau) = \frac{E_4(\tau)^3}{\Delta(\tau)}.$$

We mentioned in **1.a** that $E_4(\rho) = 0$ where $\rho := -\frac{1}{2} + i\frac{\sqrt{3}}{2}$, hence $j(\rho) = 0$. By the definition of Δ we also have

$$j(\tau) = 1728 \frac{E_4(\tau)^3}{E_4(\tau)^3 - E_6(\tau)^2},$$

hence evaluating at $\tau = i$, using that $E_6(i) = 0$ and $E_4(i) \neq 0$, we get j(i) = 1728. Finally, the infinite product expansion (2) and the Fourier expansion

$$E_4(\tau) = 1 + 240 \sum_{n=1}^{\infty} \sigma_3(n) q^n$$

imply that $j(\tau)$ has Fourier expansion

$$j(\tau) = \frac{1}{q} + \sum_{n=0}^{\infty} c(n)q^n \text{ with } c(n) \in \mathbb{Z}_0^+.$$

Hence

$$\overline{j(\tau)} = \frac{1}{\overline{q}} + \sum_{n=0}^{\infty} c(n)\overline{q}^n.$$

Since $\overline{q} = e^{2\pi i(-\overline{\tau})}$ we get $\overline{j(\tau)} = j(-\overline{\tau})$. **b**. For t > 0 we have

$$j(it) = e^{2\pi t} + \sum_{n=0}^{\infty} c(n)e^{-2\pi nt} > 0.$$

Since j is continuous, injective when restricted to C, j(i) = 1728 and

$$\lim_{t \to \infty} j(it) = \infty.$$

we conclude that $j(C) = [1728, \infty[$. Now, for $\tau \in B$ we have, using $j(\tau) = \overline{j(-\overline{\tau})}$, the equalities

$$j(\tau) = j\left(-\frac{1}{\tau}\right) = j(-\overline{\tau}) = \overline{j(\tau)}.$$

This proves that $j(B) \subseteq \mathbb{R}$. As before, since j is continuous, injective when restricted to B, j(i) = 1728 and $j(\rho) = 0$, we conclude that j(B) =]0, 1728[. Finally, for t > 0 we have

$$j\left(-\frac{1}{2}+it\right) = j\left(-\frac{1}{2}+it+1\right) = j\left(\frac{1}{2}+it\right).$$

Using $j(\tau) = \overline{j(-\overline{\tau})}$ we get

$$j\left(-\frac{1}{2}+it\right) = \overline{j\left(-\frac{1}{2}+it\right)}.$$

This implies that $j(A) \subseteq \mathbb{R}$. Moreover, we have

$$j\left(\frac{1}{2} + it\right) = -e^{2\pi t} + \sum_{n=0}^{\infty} c(n)(-1)^n e^{-2\pi nt}$$

which implies

$$\lim_{t \to \infty} j\left(\frac{1}{2} + it\right) = -\infty.$$

Using similar arguments as before, we conclude that $j(A) =] - \infty, 0[$. c. Recall that j induces a bijection between $SL_2(\mathbb{Z}) \setminus \mathbb{H}$ and \mathbb{C} . Since

 $A \cup B \cup C \cup \{\rho, i\} \cup \mathcal{F}_1 \cup \mathcal{F}_2$ has exactly one representative of each $\mathrm{SL}_2(\mathbb{Z})$ orbit in \mathbb{H} , and

$$j(A \cup B \cup C \cup \{\rho, i\}) = \mathbb{R}$$

we have that $j(\mathcal{F}_1) = \mathbb{H}$ and $j(\mathcal{F}_2) = \mathbb{H}^-$, or $j(\mathcal{F}_1) = \mathbb{H}^-$ and $j(\mathcal{F}_2) = \mathbb{H}$. Since j is holomorphic, it preserves orientations. Hence $j(\mathcal{F}_1) = \mathbb{H}$ and $j(\mathcal{F}_2) = \mathbb{H}^-$.