Lecturer: Prof. Dr. Özlem Imamoglu - Coordinator: Dr. Sebastián Herrero

Solutions Sheet 4

1. a. We have

$$
\begin{aligned}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}-y^{2}} d x d y & =\int_{-\infty}^{\infty} e^{-x^{2}} d x \int_{-\infty}^{\infty} e^{-y^{2}} d y \\
& =\left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right)^{2} \\
& =\left(2 \int_{0}^{\infty} e^{-x^{2}} d x\right)^{2} \\
& =\left(\int_{0}^{\infty} e^{-t} t^{-\frac{1}{2}} d t\right)^{2} \\
& =\Gamma\left(\frac{1}{2}\right)^{2}
\end{aligned}
$$

On the other hand, using polar coordinates we have

$$
\begin{aligned}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}-y^{2}} d x d y & =\int_{\mathbb{R}^{2}} e^{-\left(x^{2}+y^{2}\right)} d x d y \\
& =\int_{0}^{2 \pi} \int_{0}^{\infty} e^{-r^{2}} r d r d \theta \\
& =\left.2 \pi \frac{-e^{-r^{2}}}{2}\right|_{r=0} ^{r=\infty} \\
& =\pi
\end{aligned}
$$

This proves that $\Gamma\left(\frac{1}{2}\right)^{2}=\pi$. Since $\Gamma\left(\frac{1}{2}\right)>0$ we conclude $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$. b. For $s_{1}, s_{2} \in H$ we have

$$
\begin{aligned}
\Gamma\left(s_{1}\right) \Gamma\left(s_{2}\right) & =\int_{0}^{\infty} e^{-x} x^{s_{1}-1} d x \int_{0}^{\infty} e^{-y} y^{s_{2}-1} d y \\
& =\int_{] 0, \infty\left[^{2}\right.} e^{-x-y} x^{s_{1}-1} y^{s_{2}-1} d x d y
\end{aligned}
$$

Using the change of variables $] 0, \infty[\times] 0,1[\rightarrow] 0, \infty\left[^{2},(u, v) \mapsto(u v, u(1-v))\right.$, we get

$$
\begin{aligned}
\Gamma\left(s_{1}\right) \Gamma\left(s_{2}\right) & =\int_{0}^{\infty} \int_{0}^{1} u e^{-u} u^{s_{1}+s_{2}-2} v^{s_{1}-1}(1-v)^{s_{2}-1} d u d v \\
& =\Gamma\left(s_{1}+s_{2}\right) \int_{0}^{1} v^{s_{1}-1}(1-v)^{s_{2}-1} d v
\end{aligned}
$$

We conclude

$$
B\left(s_{1}, s_{2}\right)=\int_{0}^{1} v_{1}^{s_{1}-1}(1-v)^{s_{2}-1} d v
$$

c. Let $s \in H$. Using the change of variables $v=\frac{1+x}{2}$ and $t=x^{2}$ we have

$$
\begin{aligned}
B(s, s) & =\int_{0}^{1} v^{s-1}(1-v)^{s-1} d v \\
& =\frac{1}{2} \int_{-1}^{1}\left(\frac{1+x}{2}\right)^{s-1}\left(\frac{1-x}{2}\right)^{s-1} d x \\
& =2^{1-2 s} \int_{-1}^{1}\left(1-x^{2}\right)^{s-1} d x \\
& =2^{2-2 s} \int_{0}^{1}\left(1-x^{2}\right)^{s-1} d x \\
& =2^{1-2 s} \int_{0}^{1} t^{-\frac{1}{2}}(1-t)^{s-1} d t \\
& =2^{1-2 s} B\left(\frac{1}{2}, s\right)
\end{aligned}
$$

We conclude

$$
\frac{\Gamma(s) \Gamma(s)}{\Gamma(2 s)}=2^{1-2 s} \frac{\Gamma\left(\frac{1}{2}\right) \Gamma(s)}{\Gamma\left(s+\frac{1}{2}\right)}
$$

Using $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$ we get

$$
\begin{equation*}
\Gamma(s) \Gamma\left(s+\frac{1}{2}\right)=2^{1-2 s} \sqrt{\pi} \Gamma(2 s) \tag{1}
\end{equation*}
$$

2. a. By the duplication formula (1) with s replaced by $\frac{s}{2}$ we have

$$
\begin{aligned}
\Lambda_{k}(s) & =(2 \pi)^{-s} \Gamma(s) \zeta(s) \zeta(s-k+1) \\
& =\frac{1}{2} \pi^{-s-\frac{1}{2}} \Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{s+1}{2}\right) \zeta(s) \zeta(s-k+1)
\end{aligned}
$$

Put $\Lambda(s):=\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s)$. Then

$$
\Lambda_{k}(s)=\frac{1}{2 \pi^{\frac{k}{2}}} \frac{\Gamma\left(\frac{s+1}{2}\right)}{\Gamma\left(\frac{s-k+1}{2}\right)} \Lambda(s) \Lambda(s-k+1)
$$

Since k is even, by repeated used of the identity $\Gamma(s+1)=s \Gamma(s)$ we get

$$
\Gamma\left(\frac{s+1}{2}\right)=\Gamma\left(\frac{s-k+1}{2}+\frac{k}{2}\right)=\Gamma\left(\frac{s-k+1}{2}\right) \prod_{n=0}^{\frac{k}{2}-1}\left(\frac{s-k+1}{2}+n\right) .
$$

Thus

$$
\Lambda_{k}(s)=\frac{1}{2 \pi^{\frac{k}{2}}} \Lambda(s) \Lambda(s-k+1) \prod_{n=0}^{\frac{k}{2}-1}\left(\frac{s-k+1}{2}+n\right)
$$

In Lecture 10 we learned that $\Lambda(s)$ has meromorphic continuation to \mathbb{C} satisfying the functional equation $\Lambda(1-s)=\Lambda(s)$. It follows that $\Lambda_{k}(s)$ has meromorphic continuation
to \mathbb{C} and

$$
\begin{aligned}
\Lambda_{k}(k-s) & =\frac{1}{2 \pi^{\frac{k}{2}}} \Lambda(k-s) \Lambda(1-s) \prod_{n=0}^{\frac{k}{2}-1}\left(\frac{1-s}{2}+n\right) \\
& =\frac{1}{2 \pi^{\frac{k}{2}}} \Lambda(1-(k-s)) \Lambda(1-(1-s)) \prod_{n=0}^{\frac{k}{2}-1}\left(\frac{1-s}{2}+n\right) \\
& =\frac{1}{2 \pi^{\frac{k}{2}}} \Lambda(s-k+1) \Lambda(s) \prod_{n=0}^{\frac{k}{2}-1}\left(\frac{1-s}{2}+\left(\frac{k}{2}-1-n\right)\right) \\
& =\frac{1}{2 \pi^{\frac{k}{2}}} \Lambda(s-k+1) \Lambda(s) \prod_{n=0}^{\frac{k}{2}-1}\left(\frac{k-1-s}{2}-n\right) \\
& =(-1)^{\frac{k}{2}} \frac{1}{2 \pi^{\frac{k}{2}}} \Lambda(s-k+1) \Lambda(s) \prod_{n=0}^{\frac{k}{2}-1}\left(\frac{s-k+1}{2}+n\right) \\
& =(-1)^{\frac{k}{2}} \Lambda_{k}(s) .
\end{aligned}
$$

b. We know that $\Lambda(s)$ has simple poles at $s=0$ and $s=1$, and it is holomorphic in $\mathbb{C} \backslash\{0,1\}$. It follows that $\Lambda_{k}(s)$ is holomorphic in $\mathbb{C} \backslash\{0,1, k-1, k\}$. Around $s=1$ the product $\Lambda(s) \Lambda(s-k+1)$ has a simple pole but the factor $\left(\frac{s-k+1}{2}+n\right)$ with $n=\frac{k}{2}-1$ vanishes at $s=1$, hence $\Lambda_{k}(s)$ is holomorphic at $s=1$. Similarly, around $s=k-1$ the product $\Lambda(s) \Lambda(s-k+1)$ has a simple pole but the factor $\left(\frac{s-k+1}{2}+n\right)$ with $n=0$ vanishes at $s=k-1$, hence $\Lambda_{k}(s)$ is holomorphic at $s=k-1$. This proves that $\Lambda_{k}(s)$ is holomorphic in $\mathbb{C} \backslash\{0, k\}$ with simple $\mathrm{p}[$ oles at $s=0$ and $s=k$.
c. We have

$$
\begin{aligned}
L_{k}(s) & =\zeta(s) \zeta(s-k+1) \\
& =\sum_{n=1}^{\infty} \frac{1}{n^{s}} \sum_{m=1}^{\infty} \frac{1}{m^{s-k+1}} \\
& =\sum_{n, m=1}^{\infty} \frac{m^{k-1}}{(n m)^{s}} \\
& =\sum_{N=1}^{\infty} \frac{\sigma_{k-1}(N)}{N^{s}}
\end{aligned}
$$

Since $k \geq 4$, we can consider the modular form

$$
\left(-\frac{B_{k}}{2 k}\right) E_{k}(\tau)=-\frac{B_{k}}{2 k}+\sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n},
$$

where $q=e^{2 \pi i \tau}, \tau \in \mathbb{H}$. Then, $\Lambda_{k}(s)$ is the L-function associated to this modular form. In the case $k=2$ the function $\Lambda_{k}(s)$ is not the L-function of a modular form of weight 2 , since $M_{2}=\{0\}$. Note that $\Lambda_{2}(s)=\frac{1}{2 \pi} \Lambda(s) \Lambda(s-1)\left(\frac{s-1}{2}\right)$ has simple poles at $s=0,1,2$, hence it does not satisfy the analytic properties of a modular L-function.
3. a. Note that by multiplicativity we have $a_{1}=a_{1} a_{1}$, hence $a_{1}=1$. Now, given a positive integer M define

$$
P_{M}:=\left\{p \in \mathbb{Z}^{+}: p \text { prime, } p \leq M\right\},
$$

and

$$
I_{M}:=\left\{n \in \mathbb{Z}^{+}: \text {all prime divisors of } n \text { are in } P_{M}\right\} .
$$

Since the series $\sum a_{n}$ converges absolutely, the series

$$
S_{p}:=\sum_{k=0}^{\infty} a_{p^{k}}=1+a_{p}+a_{p^{2}}+\ldots
$$

also converges absolutely. Now, since $\left(a_{n}\right)_{n \in \mathbb{N}}$ is multiplicative, for any $M \geq 2$ we have

$$
\prod_{p \in P_{M}} S_{p}=\sum_{n \in I_{M}} a_{n} .
$$

If we define q_{M} as the first prime number with $q_{M}>M$ (which is also the first positive integer larger than M that has at least one prime divisor not in P_{M}), then

$$
\left|\sum_{n=1}^{\infty} a_{n}-\sum_{n \in I_{M}} a_{n}\right| \leq \sum_{n \geq q_{M}}\left|a_{n}\right| \rightarrow_{M \rightarrow \infty} 0, \text { since } q_{M} \rightarrow \infty
$$

This implies

$$
\prod_{p}\left(1+a_{p}+a_{p^{2}}+\ldots\right)=\lim _{M \rightarrow \infty} \prod_{p \in P_{M}} S_{p}=\lim _{M \rightarrow \infty} \sum_{n \in I_{M}} a_{n}=\sum_{n=1}^{\infty} a_{n}
$$

as desired. Finally, we note that the infinite product

$$
\prod_{p}\left(1+a_{p}+a_{p^{2}}+\ldots\right)
$$

converges absolutely since

$$
\sum_{p}\left|a_{p}+a_{p^{2}}+\ldots\right| \leq \sum_{n=2}^{\infty}\left|a_{n}\right|<\infty
$$

(see Complex Analysis of S. Lang (Springer 1999), chapter XIII, Lemma 1.1).
b. For $s \in \mathbb{C}$ with $\operatorname{Re}(s)>1$ put $a_{n}(s):=n^{-s}$. Clearly, $\left(a_{n}(s)\right)_{n \in \mathbb{N}}$ is multiplicative with $a_{1}(s)=1$. Since the series $\zeta(s)=\sum a_{n}(s)$ converges absolutely, we have

$$
\begin{aligned}
\zeta(s) & =\prod_{p}\left(1+a_{p}(s)+a_{p^{2}}(s)+\ldots\right) \\
& =\prod_{p}\left(1+p^{-s}+p^{-2 s}+\ldots\right) \\
& =\prod_{p}\left(1-p^{-s}\right)^{-1}
\end{aligned}
$$

where in the last equality one uses $1+r+r^{2}+\ldots=(1-r)^{-1}$ for $r \in \mathbb{C}$ with $|r|<1$, choosing $r=p^{-s}$.
For $s \in \mathbb{C}$ with $\operatorname{Re}(s)>k$ we get

$$
\zeta(s-k+1)=\prod_{p}\left(1-p^{k-1-s}\right)^{-1}
$$

hence

$$
L_{k}(s)=\prod_{p}\left(\left(1-p^{-s}\right)\left(1-p^{k-1-s}\right)\right)^{-1}
$$

4. a. By the dimension formulas from Lecture 6 we know that S_{24} has dimension 2, so it is enough to prove that f_{1} and f_{2} are linearly independent. But $\frac{f_{1}}{f_{2}}=\frac{\Delta}{E_{6}^{2}}$ is not constant since Δ is cuspidal and E_{6}^{2} is not cuspidal. Hence, f_{1}, f_{2} are linearly independent.
b. We have

$$
\begin{aligned}
\Delta(\tau) & =q-24 q^{2}+252 q^{3}-1472 q^{4}+\ldots \\
E_{6}(\tau) & =1-504 q-16632 q^{2}-122976 q^{3}+\ldots
\end{aligned}
$$

hence

$$
\begin{aligned}
& f_{1}(\tau)=q^{2}-48 q^{3}+1080 q^{4}+\ldots \\
& f_{2}(\tau)=q-1032 q^{2}+245196 q^{3}+10965568 q^{4}+\ldots
\end{aligned}
$$

If we write $f_{1}=\sum_{n=1}^{\infty} a_{n} q^{n}, f_{2}=\sum_{n=1}^{\infty} b_{n} q^{n} T_{2}\left(f_{1}\right)=\sum_{n=1}^{\infty} c_{n} q^{n}$ and $T_{2}\left(f_{2}\right)=\sum_{n=1}^{\infty} d_{n} q^{n}$ then

$$
\begin{aligned}
c_{n} & =\sum_{t \mid(2, n)} t^{23} a\left(\frac{2 n}{t^{2}}\right) \\
d_{n} & =\sum_{t \mid(2, n)} t^{23} b\left(\frac{2 n}{t^{2}}\right)
\end{aligned}
$$

In particular

$$
\begin{aligned}
c_{1} & =a_{2}=1 \\
c_{2} & =a_{4}+2^{23} a_{1}=1080 \\
d_{1} & =b_{2}=-1032 \\
d_{2} & =b_{4}+2^{23} b_{1}=10965568+2^{23}=19354176
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& T_{2}\left(f_{1}\right)=q+1080 q^{2}+\ldots=f_{2}+2112 f_{1} \\
& T_{2}\left(f_{2}\right)=-1032 q+19354176 q^{2}+\ldots=-1032 f_{2}+18289152 f_{1}
\end{aligned}
$$

Hence the matrix of T_{2} in the basis $\left\{f_{1}, f_{2}\right\}$ is

$$
\left(\begin{array}{cc}
2112 & 18289152 \\
1 & -1032
\end{array}\right)
$$

c. The eigenvector of the above matrix are $(12(131+\sqrt{144169}), 1)$ and $(12(131-\sqrt{144169}), 1)$, with eigenvalues $\lambda_{1}=12(45+\sqrt{144169})$ and $\lambda_{2}=12(45-\sqrt{144169})$, respectively. It follows that

$$
\begin{aligned}
& F_{1}=12(131+\sqrt{144169}) f_{1}+f_{2}=q+12(45+\sqrt{144169}) q^{2}+\ldots, \\
& F_{2}=12(131-\sqrt{144169}) f_{1}+f_{2}=q+12(45-\sqrt{144169}) q^{2}+\ldots,
\end{aligned}
$$

form a basis for S_{24} consisting of normalized eigenforms for T_{2}. Since all the other Hecke operators commute with T_{2} and F_{1}, F_{2} are in eigenspaces for T_{2} of dimension one, it follows that they are also eigenforms for all the other Hecke operators.

