NUMBER THEORY II: INTRODUCTION TO MODULAR FORMS Lecturer: Prof. Dr. Özlem Imamoglu - Coordinator: Dr. Sebastián Herrero

Solutions Sheet 4

1. a. We have

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2 - y^2} dx dy = \int_{-\infty}^{\infty} e^{-x^2} dx \int_{-\infty}^{\infty} e^{-y^2} dy$$
$$= \left(\int_{-\infty}^{\infty} e^{-x^2} dx \right)^2$$
$$= \left(2 \int_0^{\infty} e^{-x^2} dx \right)^2$$
$$= \left(\int_0^{\infty} e^{-t} t^{-\frac{1}{2}} dt \right)^2$$
$$= \Gamma \left(\frac{1}{2} \right)^2.$$

On the other hand, using polar coordinates we have

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2 - y^2} dx dy = \int_{\mathbb{R}^2} e^{-(x^2 + y^2)} dx dy$$
$$= \int_{0}^{2\pi} \int_{0}^{\infty} e^{-r^2} r dr d\theta$$
$$= 2\pi \frac{-e^{-r^2}}{2} \Big|_{r=0}^{r=\infty}$$
$$= \pi.$$

This proves that $\Gamma\left(\frac{1}{2}\right)^2 = \pi$. Since $\Gamma\left(\frac{1}{2}\right) > 0$ we conclude $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$. **b.** For $s_1, s_2 \in H$ we have

$$\begin{split} \Gamma(s_1)\Gamma(s_2) &= \int_0^\infty e^{-x} x^{s_1-1} dx \int_0^\infty e^{-y} y^{s_2-1} dy \\ &= \int_{]0,\infty[^2} e^{-x-y} x^{s_1-1} y^{s_2-1} dx dy. \end{split}$$

Using the change of variables $]0, \infty[\times]0, 1[\rightarrow]0, \infty[^2, (u, v) \mapsto (uv, u(1 - v)))$, we get

$$\begin{split} \Gamma(s_1)\Gamma(s_2) &= \int_0^\infty \int_0^1 u e^{-u} u^{s_1+s_2-2} v^{s_1-1} (1-v)^{s_2-1} du dv \\ &= \Gamma(s_1+s_2) \int_0^1 v^{s_1-1} (1-v)^{s_2-1} dv. \end{split}$$

We conclude

$$B(s_1, s_2) = \int_0^1 v^{s_1 - 1} (1 - v)^{s_2 - 1} dv.$$

c. Let $s \in H$. Using the change of variables $v = \frac{1+x}{2}$ and $t = x^2$ we have

$$\begin{split} B(s,s) &= \int_0^1 v^{s-1} (1-v)^{s-1} dv \\ &= \frac{1}{2} \int_{-1}^1 \left(\frac{1+x}{2}\right)^{s-1} \left(\frac{1-x}{2}\right)^{s-1} dx \\ &= 2^{1-2s} \int_{-1}^1 (1-x^2)^{s-1} dx \\ &= 2^{2-2s} \int_0^1 (1-x^2)^{s-1} dx \\ &= 2^{1-2s} \int_0^1 t^{-\frac{1}{2}} (1-t)^{s-1} dt \\ &= 2^{1-2s} B\left(\frac{1}{2},s\right). \end{split}$$

We conclude

$$\frac{\Gamma(s)\Gamma(s)}{\Gamma(2s)} = 2^{1-2s} \frac{\Gamma\left(\frac{1}{2}\right)\Gamma(s)}{\Gamma\left(s+\frac{1}{2}\right)}.$$

Using $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ we get

$$\Gamma(s)\Gamma\left(s+\frac{1}{2}\right) = 2^{1-2s}\sqrt{\pi}\Gamma(2s).$$
(1)

2. **a**. By the duplication formula (1) with s replaced by $\frac{s}{2}$ we have

$$\Lambda_k(s) = (2\pi)^{-s} \Gamma(s) \zeta(s) \zeta(s-k+1)$$

= $\frac{1}{2} \pi^{-s-\frac{1}{2}} \Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{s+1}{2}\right) \zeta(s) \zeta(s-k+1).$

Put $\Lambda(s) := \pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s)$. Then

$$\Lambda_k(s) = \frac{1}{2\pi^{\frac{k}{2}}} \frac{\Gamma\left(\frac{s+1}{2}\right)}{\Gamma\left(\frac{s-k+1}{2}\right)} \Lambda(s) \Lambda(s-k+1).$$

Since k is even, by repeated used of the identity $\Gamma(s+1)=s\Gamma(s)$ we get

$$\Gamma\left(\frac{s+1}{2}\right) = \Gamma\left(\frac{s-k+1}{2} + \frac{k}{2}\right) = \Gamma\left(\frac{s-k+1}{2}\right)\prod_{n=0}^{\frac{k}{2}-1} \left(\frac{s-k+1}{2} + n\right).$$

Thus

$$\Lambda_k(s) = \frac{1}{2\pi^{\frac{k}{2}}} \Lambda(s) \Lambda(s-k+1) \prod_{n=0}^{\frac{k}{2}-1} \left(\frac{s-k+1}{2} + n\right).$$

In Lecture 10 we learned that $\Lambda(s)$ has meromorphic continuation to \mathbb{C} satisfying the functional equation $\Lambda(1-s) = \Lambda(s)$. It follows that $\Lambda_k(s)$ has meromorphic continuation

to ${\mathbb C}$ and

$$\begin{split} \Lambda_k(k-s) &= \frac{1}{2\pi^{\frac{k}{2}}}\Lambda(k-s)\Lambda(1-s)\prod_{n=0}^{\frac{k}{2}-1}\left(\frac{1-s}{2}+n\right) \\ &= \frac{1}{2\pi^{\frac{k}{2}}}\Lambda(1-(k-s))\Lambda(1-(1-s))\prod_{n=0}^{\frac{k}{2}-1}\left(\frac{1-s}{2}+n\right) \\ &= \frac{1}{2\pi^{\frac{k}{2}}}\Lambda(s-k+1)\Lambda(s)\prod_{n=0}^{\frac{k}{2}-1}\left(\frac{1-s}{2}+\left(\frac{k}{2}-1-n\right)\right) \\ &= \frac{1}{2\pi^{\frac{k}{2}}}\Lambda(s-k+1)\Lambda(s)\prod_{n=0}^{\frac{k}{2}-1}\left(\frac{k-1-s}{2}-n\right) \\ &= (-1)^{\frac{k}{2}}\frac{1}{2\pi^{\frac{k}{2}}}\Lambda(s-k+1)\Lambda(s)\prod_{n=0}^{\frac{k}{2}-1}\left(\frac{s-k+1}{2}+n\right) \\ &= (-1)^{\frac{k}{2}}\Lambda_k(s). \end{split}$$

b. We know that $\Lambda(s)$ has simple poles at s = 0 and s = 1, and it is holomorphic in $\mathbb{C} \setminus \{0, 1\}$. It follows that $\Lambda_k(s)$ is holomorphic in $\mathbb{C} \setminus \{0, 1, k - 1, k\}$. Around s = 1 the product $\Lambda(s)\Lambda(s - k + 1)$ has a simple pole but the factor $\left(\frac{s-k+1}{2} + n\right)$ with $n = \frac{k}{2} - 1$ vanishes at s = 1, hence $\Lambda_k(s)$ is holomorphic at s = 1. Similarly, around s = k - 1 the product $\Lambda(s)\Lambda(s - k + 1)$ has a simple pole but the factor $\left(\frac{s-k+1}{2} + n\right)$ with n = 0 vanishes at s = k - 1, hence $\Lambda_k(s)$ is holomorphic at s = k - 1. This proves that $\Lambda_k(s)$ is holomorphic in $\mathbb{C} \setminus \{0, k\}$ with simple p[oles at s = 0 and s = k.

 ${\bf c}.$ We have

$$L_k(s) = \zeta(s)\zeta(s-k+1)$$

= $\sum_{n=1}^{\infty} \frac{1}{n^s} \sum_{m=1}^{\infty} \frac{1}{m^{s-k+1}}$
= $\sum_{n,m=1}^{\infty} \frac{m^{k-1}}{(nm)^s}$
= $\sum_{N=1}^{\infty} \frac{\sigma_{k-1}(N)}{N^s}.$

Since $k \ge 4$, we can consider the modular form

$$\left(-\frac{B_k}{2k}\right)E_k(\tau) = -\frac{B_k}{2k} + \sum_{n=1}^{\infty}\sigma_{k-1}(n)q^n,$$

where $q = e^{2\pi i \tau}$, $\tau \in \mathbb{H}$. Then, $\Lambda_k(s)$ is the *L*-function associated to this modular form. In the case k = 2 the function $\Lambda_k(s)$ is not the *L*-function of a modular form of weight 2, since $M_2 = \{0\}$. Note that $\Lambda_2(s) = \frac{1}{2\pi}\Lambda(s)\Lambda(s-1)\left(\frac{s-1}{2}\right)$ has simple poles at s = 0, 1, 2, hence it does not satisfy the analytic properties of a modular *L*-function.

3. **a**. Note that by multiplicativity we have $a_1 = a_1a_1$, hence $a_1 = 1$. Now, given a positive integer *M* define

$$P_M := \{ p \in \mathbb{Z}^+ : p \text{ prime}, p \le M \},\$$

and

 $I_M := \{ n \in \mathbb{Z}^+ : \text{ all prime divisors of } n \text{ are in } P_M \}.$

Since the series $\sum a_n$ converges absolutely, the series

$$S_p := \sum_{k=0}^{\infty} a_{p^k} = 1 + a_p + a_{p^2} + \dots$$

also converges absolutely. Now, since $(a_n)_{n \in \mathbb{N}}$ is multiplicative, for any $M \geq 2$ we have

$$\prod_{p \in P_M} S_p = \sum_{n \in I_M} a_n$$

If we define q_M as the first prime number with $q_M > M$ (which is also the first positive integer larger than M that has at least one prime divisor not in P_M), then

$$\left|\sum_{n=1}^{\infty} a_n - \sum_{n \in I_M} a_n\right| \le \sum_{n \ge q_M} |a_n| \to_{M \to \infty} 0, \text{ since } q_M \to \infty$$

This implies

$$\prod_{p} \left(1 + a_p + a_{p^2} + \ldots \right) = \lim_{M \to \infty} \prod_{p \in P_M} S_p = \lim_{M \to \infty} \sum_{n \in I_M} a_n = \sum_{n=1}^{\infty} a_n,$$

as desired. Finally, we note that the infinite product

$$\prod_{p} \left(1 + a_p + a_{p^2} + \ldots \right)$$

converges absolutely since

$$\sum_{p} \left| a_p + a_{p^2} + \ldots \right| \le \sum_{n=2}^{\infty} \left| a_n \right| < \infty$$

(see Complex Analysis of S. Lang (Springer 1999), chapter XIII, Lemma 1.1).

b. For $s \in \mathbb{C}$ with $\operatorname{Re}(s) > 1$ put $a_n(s) := n^{-s}$. Clearly, $(a_n(s))_{n \in \mathbb{N}}$ is multiplicative with $a_1(s) = 1$. Since the series $\zeta(s) = \sum a_n(s)$ converges absolutely, we have

$$\begin{aligned} \zeta(s) &= \prod_{p} \left(1 + a_{p}(s) + a_{p^{2}}(s) + \ldots \right) \\ &= \prod_{p} \left(1 + p^{-s} + p^{-2s} + \ldots \right) \\ &= \prod_{p} \left(1 - p^{-s} \right)^{-1}, \end{aligned}$$

where in the last equality one uses $1 + r + r^2 + \ldots = (1 - r)^{-1}$ for $r \in \mathbb{C}$ with |r| < 1, choosing $r = p^{-s}$.

For $s \in \mathbb{C}$ with $\operatorname{Re}(s) > k$ we get

$$\zeta(s - k + 1) = \prod_{p} \left(1 - p^{k - 1 - s}\right)^{-1}$$

hence

$$L_k(s) = \prod_p \left((1 - p^{-s})(1 - p^{k-1-s}) \right)^{-1}.$$

4. a. By the dimension formulas from Lecture 6 we know that S_{24} has dimension 2, so it is enough to prove that f_1 and f_2 are linearly independent. But $\frac{f_1}{f_2} = \frac{\Delta}{E_6^2}$ is not constant since

 Δ is cuspidal and E_6^2 is not cuspidal. Hence, f_1, f_2 are linearly independent.

b. We have

$$\Delta(\tau) = q - 24q^2 + 252q^3 - 1472q^4 + \dots,$$

$$E_6(\tau) = 1 - 504q - 16632q^2 - 122976q^3 + \dots,$$

hence

$$f_1(\tau) = q^2 - 48q^3 + 1080q^4 + \dots,$$

$$f_2(\tau) = q - 1032q^2 + 245196q^3 + 10965568q^4 + \dots$$

If we write
$$f_1 = \sum_{n=1}^{\infty} a_n q^n$$
, $f_2 = \sum_{n=1}^{\infty} b_n q^n T_2(f_1) = \sum_{n=1}^{\infty} c_n q^n$ and $T_2(f_2) = \sum_{n=1}^{\infty} d_n q^n$ then
 $c_n = \sum_{t|(2,n)} t^{23} a\left(\frac{2n}{t^2}\right),$
 $d_n = \sum_{t|(2,n)} t^{23} b\left(\frac{2n}{t^2}\right).$

In particular

$$c_1 = a_2 = 1,$$

$$c_2 = a_4 + 2^{23}a_1 = 1080,$$

$$d_1 = b_2 = -1032,$$

$$d_2 = b_4 + 2^{23}b_1 = 10965568 + 2^{23} = 19354176.$$

It follows that

$$T_2(f_1) = q + 1080q^2 + \ldots = f_2 + 2112f_1,$$

$$T_2(f_2) = -1032q + 19354176q^2 + \ldots = -1032f_2 + 18289152f_1.$$

Hence the matrix of T_2 in the basis $\{f_1, f_2\}$ is

$$\left(\begin{array}{rrr} 2112 & 18289152 \\ 1 & -1032 \end{array}\right).$$

c. The eigenvector of the above matrix are $(12(131 + \sqrt{144169}), 1)$ and $(12(131 - \sqrt{144169}), 1)$, with eigenvalues $\lambda_1 = 12(45 + \sqrt{144169})$ and $\lambda_2 = 12(45 - \sqrt{144169})$, respectively. It follows that

$$F_1 = 12(131 + \sqrt{144169})f_1 + f_2 = q + 12(45 + \sqrt{144169})q^2 + \dots,$$

$$F_2 = 12(131 - \sqrt{144169})f_1 + f_2 = q + 12(45 - \sqrt{144169})q^2 + \dots,$$

form a basis for S_{24} consisting of normalized eigenforms for T_2 . Since all the other Hecke operators commute with T_2 and F_1, F_2 are in eigenspaces for T_2 of dimension one, it follows that they are also eigenforms for all the other Hecke operators.