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On the other hand, using polar coordinates we have
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b. For s1, s2 ∈ H we have

Γ(s1)Γ(s2) =
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0

e−xxs1−1dx
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0

e−yys2−1dy
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∫
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Using the change of variables ]0,∞[×]0, 1[→]0,∞[2, (u, v) 7→ (uv, u(1− v)), we get
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∫ ∞
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c. Let s ∈ H. Using the change of variables v = 1+x
2 and t = x2 we have
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We conclude
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Using Γ
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=
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√
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2. a. By the duplication formula (1) with s replaced by s
2 we have

Λk(s) = (2π)−sΓ(s)ζ(s)ζ(s− k + 1)
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2
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Put Λ(s) := π− s
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2

)
ζ(s). Then
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2
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Since k is even, by repeated used of the identity Γ(s+ 1) = sΓ(s) we get
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2
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.

Thus

Λk(s) =
1
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2
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k
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(
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2
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)
.

In Lecture 10 we learned that Λ(s) has meromorphic continuation to C satisfying the
functional equation Λ(1− s) = Λ(s). It follows that Λk(s) has meromorphic continuation
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to C and

Λk(k − s) =
1

2π
k
2
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1
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2
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k
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b. We know that Λ(s) has simple poles at s = 0 and s = 1, and it is holomorphic in C \ {0, 1}.
It follows that Λk(s) is holomorphic in C \ {0, 1, k − 1, k}. Around s = 1 the product
Λ(s)Λ(s− k + 1) has a simple pole but the factor

(
s−k+1

2 + n
)
with n = k

2 − 1 vanishes at
s = 1, hence Λk(s) is holomorphic at s = 1. Similarly, around s = k − 1 the product
Λ(s)Λ(s− k + 1) has a simple pole but the factor

(
s−k+1

2 + n
)
with n = 0 vanishes at

s = k − 1, hence Λk(s) is holomorphic at s = k − 1. This proves that Λk(s) is holomorphic
in C \ {0, k} with simple p[oles at s = 0 and s = k.

c. We have

Lk(s) = ζ(s)ζ(s− k + 1)

=

∞∑
n=1

1

ns

∞∑
m=1

1

ms−k+1

=

∞∑
n,m=1

mk−1

(nm)s

=

∞∑
N=1

σk−1(N)

Ns
.

Since k ≥ 4, we can consider the modular form(
−Bk

2k

)
Ek(τ) = −Bk

2k
+

∞∑
n=1

σk−1(n)q
n,

where q = e2πiτ , τ ∈ H. Then, Λk(s) is the L-function associated to this modular form.
In the case k = 2 the function Λk(s) is not the L-function of a modular form of weight 2,
since M2 = {0}. Note that Λ2(s) =

1
2πΛ(s)Λ(s− 1)

(
s−1
2

)
has simple poles at s = 0, 1, 2,

hence it does not satisfy the analytic properties of a modular L-function.

3. a. Note that by multiplicativity we have a1 = a1a1, hence a1 = 1. Now, given a positive
integer M define

PM := {p ∈ Z+ : p prime, p ≤ M},
and

IM := {n ∈ Z+ : all prime divisors of n are in PM}.
Since the series

∑
an converges absolutely, the series

Sp :=

∞∑
k=0

apk = 1 + ap + ap2 + . . .

also converges absolutely. Now, since (an)n∈N is multiplicative, for any M ≥ 2 we have∏
p∈PM

Sp =
∑
n∈IM

an.
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If we define qM as the first prime number with qM > M (which is also the first positive
integer larger than M that has at least one prime divisor not in PM ), then∣∣∣∣∣

∞∑
n=1

an −
∑
n∈IM

an

∣∣∣∣∣ ≤ ∑
n≥qM

|an| →M→∞ 0, since qM → ∞.

This implies∏
p

(
1 + ap + ap2 + . . .

)
= lim

M→∞

∏
p∈PM

Sp = lim
M→∞

∑
n∈IM

an =

∞∑
n=1

an,

as desired. Finally, we note that the infinite product∏
p

(
1 + ap + ap2 + . . .

)
converges absolutely since∑

p

∣∣ap + ap2 + . . .
∣∣ ≤ ∞∑

n=2

|an| < ∞

(see Complex Analysis of S. Lang (Springer 1999), chapter XIII, Lemma 1.1).
b. For s ∈ C with Re(s) > 1 put an(s) := n−s. Clearly, (an(s))n∈N is multiplicative with

a1(s) = 1. Since the series ζ(s) =
∑

an(s) converges absolutely, we have

ζ(s) =
∏
p

(
1 + ap(s) + ap2(s) + . . .

)
=

∏
p

(
1 + p−s + p−2s + . . .

)
=

∏
p

(
1− p−s

)−1
,

where in the last equality one uses 1 + r + r2 + . . . = (1− r)−1 for r ∈ C with |r| < 1,
choosing r = p−s.
For s ∈ C with Re(s) > k we get

ζ(s− k + 1) =
∏
p

(
1− pk−1−s

)−1

hence

Lk(s) =
∏
p

(
(1− p−s)(1− pk−1−s)

)−1

.

4. a. By the dimension formulas from Lecture 6 we know that S24 has dimension 2, so it is
enough to prove that f1 and f2 are linearly independent. But f1

f2
= ∆

E2
6
is not constant since

∆ is cuspidal and E2
6 is not cuspidal. Hence, f1, f2 are linearly independent.

b. We have

∆(τ) = q − 24q2 + 252q3 − 1472q4 + . . . ,

E6(τ) = 1− 504q − 16632q2 − 122976q3 + . . . ,

hence

f1(τ) = q2 − 48q3 + 1080q4 + . . . ,

f2(τ) = q − 1032q2 + 245196q3 + 10965568q4 + . . . .

If we write f1 =
∞∑

n=1
anq

n, f2 =
∞∑

n=1
bnq

n T2(f1) =
∞∑

n=1
cnq

n and T2(f2) =
∞∑

n=1
dnq

n then

cn =
∑

t|(2,n)

t23a

(
2n

t2

)
,

dn =
∑

t|(2,n)

t23b

(
2n

t2

)
.

https://link.springer.com/book/10.1007/978-1-4757-3083-8
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In particular

c1 = a2 = 1,

c2 = a4 + 223a1 = 1080,

d1 = b2 = −1032,

d2 = b4 + 223b1 = 10965568 + 223 = 19354176.

It follows that

T2(f1) = q + 1080q2 + . . . = f2 + 2112f1,

T2(f2) = −1032q + 19354176q2 + . . . = −1032f2 + 18289152f1.

Hence the matrix of T2 in the basis {f1, f2} is(
2112 18289152
1 −1032

)
.

c. The eigenvector of the above matrix are (12(131 +
√
144169), 1) and

(12(131−
√
144169), 1), with eigenvalues λ1 = 12(45 +

√
144169) and

λ2 = 12(45−
√
144169), respectively. It follows that

F1 = 12(131 +
√
144169)f1 + f2 = q + 12(45 +

√
144169)q2 + . . . ,

F2 = 12(131−
√
144169)f1 + f2 = q + 12(45−

√
144169)q2 + . . . ,

form a basis for S24 consisting of normalized eigenforms for T2. Since all the other Hecke
operators commute with T2 and F1, F2 are in eigenspaces for T2 of dimension one, it
follows that they are also eigenforms for all the other Hecke operators.


