Solutions Sheet 5

1. By definition (see Lecture 4) we have $E_{k}=\frac{1}{2 \zeta(k)} G_{k}$ where

$$
G_{k}(z)=\sum_{\substack{m, n \in \mathbb{Z} \\(m, n) \neq(0,0)}} \frac{1}{(m z+n)^{k}}
$$

Writing $(m, n)=t(c, d)$ with $t:=$ g.c.d. (m, n) and $c, d \in \mathbb{Z}$ coprimes, we have

$$
G_{k}(z)=\sum_{t=1}^{\infty} \frac{1}{t^{k}} \sum_{\substack{c, c \in \mathbb{Z} \\ \text { g.c.d.(c,d)=1}}} \frac{1}{(c z+d)^{k}}=\zeta(k) \sum_{\substack{c, c \in \mathbb{Z} \\ \text { g.c.d.(c,d)=1}}} \frac{1}{(c z+d)^{k}},
$$

hence

$$
\begin{equation*}
E_{k}(z)=\frac{1}{2} \sum_{\substack{c, c \in \mathbb{Z} \\ \text { g.c.d. }(c, d)=1}} \frac{1}{(c z+d)^{k}} \tag{1}
\end{equation*}
$$

Now, define $P=\left\{(c, d) \in \mathbb{Z}^{2}\right.$: g.c.d. $\left.(c, d)=1\right\}$ and consider the equivalence relation in P given by

$$
(c, d) \sim\left(c^{\prime}, d^{\prime}\right) \Leftrightarrow\left((c, d)=\left(c^{\prime}, d^{\prime}\right) \text { or }(c, d)=-\left(c^{\prime}, d^{\prime}\right)\right)
$$

Then the map $\Gamma_{\infty} \backslash \Gamma \rightarrow P / \sim$ defined by

$$
\Gamma_{\infty}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto(c, d)
$$

is a bijection. This implies

$$
\begin{aligned}
\left.\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} 1\right|_{k} \gamma & =\left.\sum_{(c, d) \in P / \sim} 1\right|_{k}\left(\begin{array}{ll}
* & * \\
c & d
\end{array}\right) \\
& =\sum_{(c, d) \in P / \sim}(c z+d)^{-k} \\
& =\frac{1}{2} \sum_{(c, d) \in P}(c z+d)^{-k} .
\end{aligned}
$$

By (1) this equals E_{k} as claimed.
Now, let F be a fundamental domain for Γ. Given $g \in S_{k}$ we compute

$$
\begin{aligned}
\left\langle E_{k}, g\right\rangle & =\int_{F} E_{k}(z) \overline{g(z)} y^{k} d \mu(z) \\
& =\left.\int_{F} \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} 1\right|_{k} \gamma \overline{g(z)} y^{k} d \mu(z) \\
& =\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} \int_{F} \overline{g(\gamma z)} \operatorname{Im}(\gamma z)^{k} d \mu(z) \\
& =\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} \int_{\gamma F} \overline{g(z)} \operatorname{Im}(z)^{k} d \mu(z) \\
& =\int_{F_{\infty}} \overline{g(z)} \operatorname{Im}(z)^{k} d \mu(z)
\end{aligned}
$$

where

$$
F_{\infty}:=\bigcup_{\substack{\gamma \in \Gamma_{\infty} \backslash \Gamma \\ 1}} \gamma F .
$$

Note that F_{∞} is a fundamental domain for Γ_{∞} (see Exercise Class 1). Since the integral above is independent of the choice of F_{∞} we can take $\left.F_{\infty}=[0,1] \times\right] 0, \infty[$. Writing

$$
g(z)=\sum_{n=1}^{\infty} a_{n} e^{2 \pi i n z}
$$

we get

$$
\left\langle E_{k}, g\right\rangle=\int_{0}^{\infty} \int_{0}^{1} \overline{g(z)} y^{k-2} d x d y=\sum_{n=1}^{\infty} \overline{a_{n}} \int_{0}^{\infty} y^{k-2} e^{-2 \pi n y} \int_{0}^{1} e^{-2 \pi i n x} d x d y
$$

But

$$
\int_{0}^{1} e^{-2 \pi i n x} d x=\left.\frac{e^{-2 \pi i n x}}{-2 \pi i n}\right|_{x=0} ^{x=1}=0 \text { for all } n \neq 0
$$

This implies $\left\langle E_{k}, g\right\rangle=0$.
2. On the one hand, since $P_{n} \in S_{k}$ for every $n \geq 1$, we have $\left\langle E_{k}, P_{n}\right\rangle=0$ by 1. On the other hand, the n-th Fourier coefficient of E_{k} is

$$
a_{n}=-\frac{2 k}{B_{k}} \sigma_{k-1}(n)
$$

Since $\sigma_{k-1}(n) \geq 1$ for all n, we have $a_{n} \neq 0$. This implies that the formula is not valid.
Added comment: On can check that the proof of Theorem 5.4 in Lecture 11 is not valid when $f=E_{k}$ due to convergence issues (see Exercise Class 5).
3. a. By definition of congruence subgroup we have $\Gamma\left(N_{1}\right) \subseteq \Gamma^{\prime}$ and $\Gamma\left(N_{2}\right) \subseteq \Gamma^{\prime \prime}$ for some pair of positive integers N_{1}, N_{2}, where $\Gamma(N)$ denotes the principal congruence subgroup of level N (see Lecture 4). Thus, we have

$$
\Gamma^{\prime} \cap \Gamma^{\prime \prime} \supseteq \Gamma\left(N_{1}\right) \cap \Gamma\left(N_{2}\right) \supseteq \Gamma\left(N_{1} N_{2}\right)
$$

It follows that $\Gamma^{\prime} \cap \Gamma^{\prime \prime}$ is also a congruence subgroup. Hence, in order to prove that

$$
\langle f, g\rangle_{\Gamma^{\prime \prime}}=\langle f, g\rangle_{\Gamma^{\prime}} \text { for all } f, g \in S_{k}\left(\Gamma^{\prime}\right) \cap S_{k}\left(\Gamma^{\prime \prime}\right),
$$

we can assume $\Gamma^{\prime \prime} \subseteq \Gamma^{\prime}$ (by replacing $\Gamma^{\prime \prime}$ by $\Gamma^{\prime} \cap \Gamma^{\prime \prime}$ if necessary). Now, let F^{\prime} be a fundamental domain for Γ^{\prime} and denote by $\gamma \mapsto \bar{\gamma}$ the natural projection $\mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \operatorname{PSL}_{2}(\mathbb{Z})$. If $\gamma_{1}, \ldots, \gamma_{m}$ are elements of Γ^{\prime} such that

$$
\overline{\Gamma^{\prime}}=\bigsqcup_{i=1}^{m} \overline{\Gamma^{\prime \prime}} \overline{\gamma_{i}},
$$

then

$$
\mu\left(\gamma_{i} F^{\prime} \cap \gamma_{j} F^{\prime}\right)=0 \text { for all } i, j \in\{1, \ldots, m\} \text { with } i \neq j
$$

and

$$
F^{\prime \prime}:=\bigcup_{i=1}^{m} \gamma_{i} F^{\prime}
$$

is a fundamental domain for $\Gamma^{\prime \prime}$. Hence, for $f, g \in S_{k}\left(\Gamma^{\prime \prime}\right)$ we have

$$
\begin{aligned}
\langle f, g\rangle_{\Gamma^{\prime \prime}} & =\frac{1}{\left[\bar{\Gamma}: \overline{\Gamma^{\prime \prime}}\right]} \int_{\Gamma^{\prime \prime} \backslash \mathbb{H}^{\prime}} f(z) \overline{g(z)} \operatorname{Im}(z)^{k} d \mu(z) \\
& =\overline{1} \overline{\left.\left[\bar{\Gamma}: \overline{\Gamma^{\prime}}\right] \overline{\Gamma^{\prime}}: \overline{\Gamma^{\prime \prime}}\right]} \int_{F^{\prime \prime}} f(z) \overline{g(z)} \operatorname{Im}(z)^{k} d \mu(z) \\
& =\frac{1}{\left[\bar{\Gamma}: \overline{\Gamma^{\prime}}\right] m} \sum_{i=1}^{m} \int_{\gamma_{i} F^{\prime}} f(z) \overline{g(z)} \operatorname{Im}(z)^{k} d \mu(z) \\
& =\frac{1}{\left[\bar{\Gamma}: \overline{\Gamma^{\prime}}\right] m} \sum_{i=1}^{m} \int_{F^{\prime}} f(z) \overline{g(z)} \operatorname{Im}(z)^{k} d \mu(z),
\end{aligned}
$$

since the integrand is Γ^{\prime} invariant. Thus

$$
\langle f, g\rangle_{\Gamma^{\prime \prime}}=\frac{1}{\left[\bar{\Gamma}: \overline{\Gamma^{\prime}}\right]} \int_{F^{\prime}} f(z) \overline{g(z)} \operatorname{Im}(z)^{k} d \mu(z)=\langle f, g\rangle_{\Gamma^{\prime}} .
$$

b. Let us write $\alpha=\frac{1}{m} \alpha^{\prime}$ where $m \geq 1$ is an integer and $\alpha^{\prime} \in \mathrm{M}_{2 \times 2}(\mathbb{Z})$. Then $\alpha^{-1} \Gamma \alpha=\left(\alpha^{\prime}\right)^{-1} \Gamma \alpha^{\prime}$, so we can assume that α has integer coefficients. Now, let D be the determinant of α. Then D is a positive integer and $\alpha \Gamma(D) \alpha^{-1} \subseteq \Gamma$. Indeed, a matrix in $\Gamma(D)$ is of the form $\gamma=I+D M$ where $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $M \in M_{2 \times 2}(\mathbb{Z})$, so

$$
\alpha \gamma \alpha^{-1}=I+\alpha M\left(D \alpha^{-1}\right) \in M_{2 \times 2}(\mathbb{Z}) .
$$

Since $\operatorname{det}\left(\alpha \gamma \alpha^{-1}\right)=\operatorname{det}(\gamma)=1$, we have $\alpha \Gamma(D) \alpha^{-1} \subseteq \Gamma$.
It follows that $\Gamma^{\prime} \supseteq \Gamma(D)$, thus Γ^{\prime} is a congruence subgroup of Γ.
c. It is clear that $\left.f\right|_{k} \alpha,\left.g\right|_{k} \alpha \in S_{k}\left(\Gamma^{\prime}\right)$. Now, let F^{\prime} be a fundamental domain for Γ^{\prime}. Then

$$
\begin{aligned}
\left\langle\left. f\right|_{k} \alpha,\left.g\right|_{k} \alpha\right\rangle_{\Gamma^{\prime}} & =\left.\frac{1}{\left[\bar{\Gamma}: \overline{\Gamma^{\prime}}\right]} \int_{F^{\prime}} f\right|_{k} \alpha(z) \overline{\left.g\right|_{k} \alpha(z)} \operatorname{Im}(z)^{k} d \mu(z) \\
& =\frac{1}{\left[\bar{\Gamma}: \overline{\Gamma^{\prime}}\right]} \int_{F^{\prime}} f(\alpha z) \overline{g(\alpha z)} \operatorname{Im}(\alpha z)^{k} d \mu(z) \\
& =\frac{1}{\left[\bar{\Gamma}: \overline{\Gamma^{\prime}}\right]} \int_{\alpha F^{\prime}} f(z) \overline{g(z)} \operatorname{Im}(z)^{k} d \mu(z) .
\end{aligned}
$$

The set αF^{\prime} is a fundamental domain for $\Gamma^{\prime \prime}:=\alpha \Gamma^{\prime} \alpha^{-1}=\alpha \Gamma \alpha^{-1} \cap \Gamma$, hence by a. we have

$$
\left\langle\left. f\right|_{k} \alpha,\left.g\right|_{k} \alpha\right\rangle_{\Gamma^{\prime}}=\frac{\left[\bar{\Gamma}: \overline{\Gamma^{\prime \prime}}\right]}{\left[\bar{\Gamma}: \overline{\Gamma^{\prime}}\right]}\langle f, g\rangle_{\Gamma^{\prime \prime}}=\frac{\left[\bar{\Gamma}: \overline{\Gamma^{\prime \prime}}\right]}{\left[\bar{\Gamma}: \overline{\Gamma^{\prime}}\right]}\langle f, g\rangle_{\Gamma} .
$$

Now, for fundamental domains F, F^{\prime} and $F^{\prime \prime}$ for Γ, Γ^{\prime} and $\Gamma^{\prime \prime}$, respectively, we have

$$
\mu\left(F^{\prime \prime}\right)=\mu(F)\left[\bar{\Gamma}: \overline{\Gamma^{\prime \prime}}\right], \mu\left(F^{\prime}\right)=\mu(F)\left[\bar{\Gamma}: \overline{\Gamma^{\prime}}\right] .
$$

Since we can take $F^{\prime \prime}=\alpha F^{\prime}$, and $\mu\left(F^{\prime}\right)=\mu\left(\alpha F^{\prime}\right)$, we get $\left[\bar{\Gamma}: \overline{\Gamma^{\prime}}\right]=\left[\bar{\Gamma}: \overline{\Gamma^{\prime \prime}}\right]$. We conclude $\left\langle\left. f\right|_{k} \alpha,\left.g\right|_{k} \alpha\right\rangle_{\Gamma^{\prime}}=\langle f, g\rangle_{\Gamma}$, as desired.

Added comment: We showed above, comparing measures of fundamental domains, that for any $\alpha \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ we have $\left[\bar{\Gamma}: \overline{\Gamma^{\prime}}\right]=\left[\bar{\Gamma}: \overline{\Gamma^{\prime \prime}}\right]$ where $\Gamma^{\prime}=\Gamma \cap \alpha^{-1} \Gamma \alpha$ and $\Gamma^{\prime \prime}=\Gamma \cap \alpha \Gamma \alpha^{-1}$. This is equivalent to the equality $\left[\Gamma: \Gamma^{\prime}\right]=\left[\Gamma: \Gamma^{\prime \prime}\right]$, which in turn can be proved using properties of double cosets. Indeed, first note that the map $\gamma \mapsto \gamma \alpha^{-1}$ induces a bijection $\Gamma \backslash \Gamma \alpha \Gamma \rightarrow \Gamma \backslash\left(\Gamma \alpha \Gamma \alpha^{-1}\right)$, hence

$$
\begin{aligned}
\# \Gamma \backslash \Gamma \alpha \Gamma & =\# \Gamma \backslash\left(\Gamma \alpha \Gamma \alpha^{-1}\right) \\
& =\# \Gamma \backslash\left(\Gamma \cdot \alpha \Gamma \alpha^{-1}\right) \\
& =\#\left(\Gamma \cap \alpha \Gamma \alpha^{-1}\right) \backslash \alpha \Gamma \alpha^{-1}
\end{aligned}
$$

where we have used tha canonical bijection $H \backslash H K \rightarrow(H \cap K) \backslash K$ valid for any pair of subgroups H, K in some group G. Conjugating by α we get

$$
\#\left(\Gamma \cap \alpha \Gamma \alpha^{-1}\right) \backslash \alpha \Gamma \alpha^{-1}=\#\left(\Gamma \cap \alpha^{-1} \Gamma \alpha\right) \backslash \Gamma,
$$

hence

$$
\#(\Gamma \backslash \Gamma \alpha \Gamma)=\left[\Gamma: \Gamma \cap \alpha^{-1} \Gamma \alpha\right]
$$

Similarly

$$
\#(\Gamma \alpha \Gamma / \Gamma)=\left[\Gamma: \Gamma \cap \alpha \Gamma \alpha^{-1}\right]
$$

Now, by Proposition 1.4.3 in Bump's book Automorphic Forms and Representations we have $\Gamma \alpha \Gamma=\Gamma \alpha^{t} \Gamma$, hence the map $\gamma \mapsto \gamma^{t}$ induces a bijection $\Gamma \backslash \Gamma \alpha \Gamma \rightarrow \Gamma \alpha \Gamma / \Gamma$ and we get

$$
\left[\Gamma: \Gamma \cap \alpha^{-1} \Gamma \alpha\right]=\left[\Gamma: \Gamma \cap \alpha \Gamma \alpha^{-1}\right]
$$

as desired.
d. Given $\alpha=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{Q})$ put $\alpha^{\prime}:=\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)=\operatorname{del}(\alpha) \alpha^{-1}$. Then
$\left.f\right|_{k}\left(\alpha^{-1}\right)=\left.f\right|_{k} \alpha^{\prime}$ for any function $f: \mathbb{H} \rightarrow \mathbb{C}$. If follows from \mathbf{c}., by replacing g by $\left.g\right|_{k}\left(\alpha^{-1}\right)$, that

$$
\begin{equation*}
\left\langle\left. f\right|_{k} \alpha, g\right\rangle_{G}=\left\langle f,\left.g\right|_{k} \alpha^{\prime}\right\rangle_{G} \tag{2}
\end{equation*}
$$

where G is any congruence subgroup of Γ contained in $\alpha^{-1} \Gamma \alpha \cap\left(\alpha^{\prime}\right)^{-1} \Gamma \alpha^{\prime}$. Now, by definition we have

$$
T_{n}(f)=\left.n^{\frac{k}{2}-1} \sum_{\gamma \in \mathcal{R}(n)} f\right|_{k} \gamma
$$

where $\mathcal{R}(n)$ is any set of representatives for $\Gamma \backslash M(n)$ with $M(n)$ the set of all 2 by 2 matrices with integer coefficients and determinant n. We can take

$$
\mathcal{R}(n)=\left\{\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \in M_{2 \times 2}(\mathbb{Z}): a d=n, a>0, b \in Z_{d}\right\}
$$

where Z_{d} is any set of representatives for $\mathbb{Z} / d \mathbb{Z}$. Now, by (2) we have, for every $f, g \in S_{k}(\Gamma)$ the equalities

$$
\left\langle T_{n}(f), g\right\rangle_{\Gamma}=\left\langle T_{n}(f), g\right\rangle_{G}=\left\langle f, \left.n^{\frac{k}{2}-1} \sum_{\gamma \in \mathcal{R}(n)} g \right\rvert\, k \gamma^{\prime}\right\rangle_{G}
$$

where G is any congruence subgroup of Γ contained in the intersection of all the groups $\gamma^{-1} \Gamma \gamma \cap\left(\gamma^{\prime}\right)^{-1} \Gamma \gamma^{\prime}$ with γ in a set of representatives $\mathcal{R}(n)$. But the set $\left\{\gamma^{\prime}: \gamma \in \mathcal{R}(n)\right\}$ is

$$
\left\{\left(\begin{array}{cc}
d & -b \\
0 & a
\end{array}\right) \in M_{2 \times 2}(\mathbb{Z}): a d=n, a>0, b \in Z_{d}\right\}
$$

which is just another set of representatives for $\Gamma \backslash M(n)$, thus

$$
\left\langle T_{n}(f), g\right\rangle_{\Gamma}=\left\langle f, T_{n}(g)\right\rangle_{G}=\left\langle f, T_{n}(g)\right\rangle_{\Gamma} .
$$

This proves that T_{n} is self-adjoint.
4. a. Since $1 \leq j \leq d$ we have that f_{j} is holomorphic in \mathbb{H}. The weight of f_{j} is

$$
12 j+6(2(d-j)+b)+4 a=12 d+6 b+4 a
$$

If $k \not \equiv 2(\bmod 12)$, then $d=\left\lfloor\frac{k}{12}\right\rfloor$ and $4 a+6 b \in\{0,4,6,8,10\}$, thus $k=12 t+r$ with $r:=4 a+6 b$ and $t \geq 0$ an integer. It follows that $d=t$ and by the above computation the weight of f_{j} is k. If $k \equiv 2(\bmod 12)$, then $d=\left\lfloor\frac{k}{12}\right\rfloor-1$ and $4 a+6 b=14$, thus $k=12 t+r$ with $r:=2$ and $t \geq 0$ some integer. Hence $d=t-1, r=4 a+6 b-12$ and by the above computation the weight of f_{j} is k. This proves that $f_{j} \in M_{k}$.
Since $f_{j} \in \Delta M_{k-12}$ it follows that f_{j} is cuspidal. The statements on the Fourier coefficients $a_{n}^{(j)}$ follow from the fact that Δ, E_{4} and E_{6} have integer Fourier coefficients with first terms $q, 1$ and 1 , respectively.
b. The forms in $\left\{f_{1}, \ldots, f_{d}\right\}$ are clearly linearly independent. Since it contains $d=\operatorname{dim}_{\mathbb{C}}\left(S_{k}\right)$ forms, it is a basis of S_{k}.
c. If $g \in S_{k}$ is a \mathbb{Z}-linear combination of $\left\{f_{1}, \ldots, f_{d}\right\}$, then it has integral Fourier coefficients. Conversely, if g has Fourier coefficients $c_{n}(n \geq 1)$, then

$$
g=\sum_{i=1}^{d} \alpha_{i} f_{i}
$$

where the coefficients α_{i} satisfy the recurrence formula

$$
\begin{aligned}
\alpha_{1} & =c_{1}, \\
\alpha_{i}+\sum_{j=1}^{i-1} \alpha_{j} a_{i}^{(j)} & =c_{i} \text { for } i \in\{2, \ldots, d\} .
\end{aligned}
$$

Since the coefficients c_{n} are integers, it follows by recursion that $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{Z}$ as desired.

