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1. By definition (see Lecture 4) we have Ek = 1
2ζ(k)Gk where

Gk(z) =
∑

m,n∈Z
(m,n)̸=(0,0)

1

(mz + n)k
.

Writing (m,n) = t(c, d) with t := g.c.d.(m,n) and c, d ∈ Z coprimes, we have

Gk(z) =

∞∑
t=1

1

tk

∑
c,c∈Z

g.c.d.(c,d)=1

1

(cz + d)k
= ζ(k)

∑
c,c∈Z

g.c.d.(c,d)=1

1

(cz + d)k
,

hence

Ek(z) =
1

2

∑
c,c∈Z

g.c.d.(c,d)=1

1

(cz + d)k
. (1)

Now, define P = {(c, d) ∈ Z2 : g.c.d.(c, d) = 1} and consider the equivalence relation in P given
by

(c, d) ∼ (c′, d′) ⇔
(
(c, d) = (c′, d′) or (c, d) = −(c′, d′)

)
.

Then the map Γ∞\Γ → P/ ∼ defined by

Γ∞

(
a b
c d

)
7→ (c, d)

is a bijection. This implies∑
γ∈Γ∞\Γ

1|kγ =
∑

(c,d)∈P/∼

1|k
(

∗ ∗
c d

)
=

∑
(c,d)∈P/∼

(cz + d)−k

=
1

2

∑
(c,d)∈P

(cz + d)−k.

By (1) this equals Ek as claimed.
Now, let F be a fundamental domain for Γ. Given g ∈ Sk we compute

⟨Ek, g⟩ =

∫
F

Ek(z)g(z)y
kdµ(z)

=

∫
F

∑
γ∈Γ∞\Γ

1|kγg(z)ykdµ(z)

=
∑

γ∈Γ∞\Γ

∫
F

g(γz)Im(γz)kdµ(z)

=
∑

γ∈Γ∞\Γ

∫
γF

g(z)Im(z)kdµ(z)

=

∫
F∞

g(z)Im(z)kdµ(z)

where

F∞ :=
⋃

γ∈Γ∞\Γ

γF.

1



2

Note that F∞ is a fundamental domain for Γ∞ (see Exercise Class 1). Since the integral above
is independent of the choice of F∞ we can take F∞ = [0, 1]×]0,∞[. Writing

g(z) =

∞∑
n=1

ane
2πinz

we get

⟨Ek, g⟩ =
∫ ∞

0

∫ 1

0

g(z)yk−2dxdy =

∞∑
n=1

an

∫ ∞

0

yk−2e−2πny

∫ 1

0

e−2πinxdxdy.

But ∫ 1

0

e−2πinxdx =
e−2πinx

−2πin

∣∣∣∣x=1

x=0

= 0 for all n ̸= 0.

This implies ⟨Ek, g⟩ = 0.

2. On the one hand, since Pn ∈ Sk for every n ≥ 1, we have ⟨Ek, Pn⟩ = 0 by 1. On the other hand,
the n-th Fourier coefficient of Ek is

an = − 2k

Bk
σk−1(n).

Since σk−1(n) ≥ 1 for all n, we have an ̸= 0. This implies that the formula is not valid.

Added comment: On can check that the proof of Theorem 5.4 in Lecture 11 is not valid when
f = Ek due to convergence issues (see Exercise Class 5).

3. a. By definition of congruence subgroup we have Γ(N1) ⊆ Γ′ and Γ(N2) ⊆ Γ′′ for some pair of
positive integers N1, N2, where Γ(N) denotes the principal congruence subgroup of level N
(see Lecture 4). Thus, we have

Γ′ ∩ Γ′′ ⊇ Γ(N1) ∩ Γ(N2) ⊇ Γ(N1N2).

It follows that Γ′ ∩ Γ′′ is also a congruence subgroup. Hence, in order to prove that

⟨f, g⟩Γ′′ = ⟨f, g⟩Γ′ for all f, g ∈ Sk(Γ
′) ∩ Sk(Γ

′′),

we can assume Γ′′ ⊆ Γ′ (by replacing Γ′′ by Γ′ ∩ Γ′′ if necessary). Now, let F ′ be a
fundamental domain for Γ′ and denote by γ 7→ γ the natural projection
SL2(Z) → PSL2(Z). If γ1, . . . , γm are elements of Γ′ such that

Γ′ =

m⊔
i=1

Γ′′γi,

then

µ(γiF
′ ∩ γjF

′) = 0 for all i, j ∈ {1, . . . ,m} with i ̸= j,

and

F ′′ :=

m⋃
i=1

γiF
′

is a fundamental domain for Γ′′. Hence, for f, g ∈ Sk(Γ
′′) we have

⟨f, g⟩Γ′′ =
1

[Γ : Γ′′]

∫
Γ′′\H

f(z)g(z)Im(z)kdµ(z)

=
1

[Γ : Γ′][Γ′ : Γ′′]

∫
F ′′

f(z)g(z)Im(z)kdµ(z)

=
1

[Γ : Γ′]m

m∑
i=1

∫
γiF ′

f(z)g(z)Im(z)kdµ(z)

=
1

[Γ : Γ′]m

m∑
i=1

∫
F ′

f(z)g(z)Im(z)kdµ(z),

since the integrand is Γ′ invariant. Thus

⟨f, g⟩Γ′′ =
1

[Γ : Γ′]

∫
F ′

f(z)g(z)Im(z)kdµ(z) = ⟨f, g⟩Γ′ .
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b. Let us write α = 1
mα′ where m ≥ 1 is an integer and α′ ∈ M2×2(Z). Then

α−1Γα = (α′)−1Γα′, so we can assume that α has integer coefficients. Now, let D be the
determinant of α. Then D is a positive integer and αΓ(D)α−1 ⊆ Γ. Indeed, a matrix in

Γ(D) is of the form γ = I +DM where I =

(
1 0
0 1

)
and M ∈ M2×2(Z), so

αγα−1 = I + αM(Dα−1) ∈ M2×2(Z).
Since det(αγα−1) = det(γ) = 1, we have αΓ(D)α−1 ⊆ Γ.
It follows that Γ′ ⊇ Γ(D), thus Γ′ is a congruence subgroup of Γ.

c. It is clear that f |kα, g|kα ∈ Sk(Γ
′). Now, let F ′ be a fundamental domain for Γ′. Then

⟨f |kα, g|kα⟩Γ′ =
1

[Γ : Γ′]

∫
F ′

f |kα(z)g|kα(z)Im(z)kdµ(z)

=
1

[Γ : Γ′]

∫
F ′

f(αz)g(αz)Im(αz)kdµ(z)

=
1

[Γ : Γ′]

∫
αF ′

f(z)g(z)Im(z)kdµ(z).

The set αF ′ is a fundamental domain for Γ′′ := αΓ′α−1 = αΓα−1 ∩ Γ, hence by a. we have

⟨f |kα, g|kα⟩Γ′ =
[Γ : Γ′′]

[Γ : Γ′]
⟨f, g⟩Γ′′ =

[Γ : Γ′′]

[Γ : Γ′]
⟨f, g⟩Γ.

Now, for fundamental domains F , F ′ and F ′′ for Γ, Γ′ and Γ′′, respectively, we have

µ(F ′′) = µ(F )[Γ : Γ′′], µ(F ′) = µ(F )[Γ : Γ′].

Since we can take F ′′ = αF ′, and µ(F ′) = µ(αF ′), we get [Γ : Γ′] = [Γ : Γ′′]. We conclude
⟨f |kα, g|kα⟩Γ′ = ⟨f, g⟩Γ, as desired.

Added comment: We showed above, comparing measures of fundamental domains, that
for any α ∈ GL+

2 (Q) we have [Γ : Γ′] = [Γ : Γ′′] where Γ′ = Γ ∩ α−1Γα and
Γ′′ = Γ ∩ αΓα−1. This is equivalent to the equality [Γ : Γ′] = [Γ : Γ′′], which in turn can be
proved using properties of double cosets. Indeed, first note that the map γ 7→ γα−1 induces
a bijection Γ\ΓαΓ → Γ\(ΓαΓα−1), hence

#Γ\ΓαΓ = #Γ\(ΓαΓα−1)

= #Γ\(Γ · αΓα−1)

= #(Γ ∩ αΓα−1)\αΓα−1,

where we have used tha canonical bijection H\HK → (H ∩K)\K valid for any pair of
subgroups H,K in some group G. Conjugating by α we get

#(Γ ∩ αΓα−1)\αΓα−1 = #(Γ ∩ α−1Γα)\Γ,
hence

#(Γ\ΓαΓ) = [Γ : Γ ∩ α−1Γα].

Similarly
#(ΓαΓ/Γ) = [Γ : Γ ∩ αΓα−1].

Now, by Proposition 1.4.3 in Bump’s book Automorphic Forms and Representations we
have ΓαΓ = ΓαtΓ, hence the map γ 7→ γt induces a bijection Γ\ΓαΓ → ΓαΓ/Γ and we get

[Γ : Γ ∩ α−1Γα] = [Γ : Γ ∩ αΓα−1]

as desired.

d. Given α =

(
a b
c d

)
∈ GL2(Q) put α′ :=

(
d −b
−c a

)
= del(α)α−1. Then

f |k(α−1) = f |kα′ for any function f : H → C. If follows from c., by replacing g by
g|k(α−1), that

⟨f |kα, g⟩G = ⟨f, g|kα′⟩G, (2)

where G is any congruence subgroup of Γ contained in α−1Γα ∩ (α′)−1Γα′. Now, by
definition we have

Tn(f) = n
k
2−1

∑
γ∈R(n)

f |kγ

https://www.cambridge.org/core/books/automorphic-forms-and-representations/F46424A2D9646FE32D9B792BC5E0238A
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where R(n) is any set of representatives for Γ\M(n) with M(n) the set of all 2 by 2
matrices with integer coefficients and determinant n. We can take

R(n) =

{(
a b
0 d

)
∈ M2×2(Z) : ad = n, a > 0, b ∈ Zd

}
where Zd is any set of representatives for Z/dZ. Now, by (2) we have, for every
f, g ∈ Sk(Γ) the equalities

⟨Tn(f), g⟩Γ = ⟨Tn(f), g⟩G =

〈
f, n

k
2−1

∑
γ∈R(n)

g|kγ′

〉
G

where G is any congruence subgroup of Γ contained in the intersection of all the groups
γ−1Γγ ∩ (γ′)−1Γγ′ with γ in a set of representatives R(n). But the set {γ′ : γ ∈ R(n)} is{(

d −b
0 a

)
∈ M2×2(Z) : ad = n, a > 0, b ∈ Zd

}
,

which is just another set of representatives for Γ\M(n), thus

⟨Tn(f), g⟩Γ = ⟨f, Tn(g)⟩G = ⟨f, Tn(g)⟩Γ.
This proves that Tn is self-adjoint.

4. a. Since 1 ≤ j ≤ d we have that fj is holomorphic in H. The weight of fj is

12j + 6(2(d− j) + b) + 4a = 12d+ 6b+ 4a.

If k ̸≡ 2 (mod 12), then d = ⌊ k
12⌋ and 4a+ 6b ∈ {0, 4, 6, 8, 10}, thus k = 12t+ r with

r := 4a+ 6b and t ≥ 0 an integer. It follows that d = t and by the above computation the
weight of fj is k. If k ≡ 2 (mod 12), then d = ⌊ k

12⌋ − 1 and 4a+ 6b = 14, thus k = 12t+ r
with r := 2 and t ≥ 0 some integer. Hence d = t− 1, r = 4a+ 6b− 12 and by the above
computation the weight of fj is k. This proves that fj ∈ Mk.
Since fj ∈ ∆Mk−12 it follows that fj is cuspidal. The statements on the Fourier

coefficients a
(j)
n follow from the fact that ∆, E4 and E6 have integer Fourier coefficients

with first terms q, 1 and 1, respectively.
b. The forms in {f1, . . . , fd} are clearly linearly independent. Since it contains d = dimC(Sk)

forms, it is a basis of Sk.
c. If g ∈ Sk is a Z-linear combination of {f1, . . . , fd}, then it has integral Fourier coefficients.

Conversely, if g has Fourier coefficients cn (n ≥ 1), then

g =

d∑
i=1

αifi,

where the coefficients αi satisfy the recurrence formula

α1 = c1,

αi +

i−1∑
j=1

αja
(j)
i = ci for i ∈ {2, . . . , d}.

Since the coefficients cn are integers, it follows by recursion that α1, . . . , αd ∈ Z as desired.


