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Solutions Sheet 6

1. Given z € X define Y, :={y € Y : (z,y) € S}. First we have to show that Y, is G -invariant.
For (z,y) € Y, and g € G, we have g- (z,y) = (z,¢-y). Since S is invariant under G and
(z,y) € S we have (x,9-y) =g - (x,y) € S. Hence g-y € Y, as desired.

Let’s now check that the quantity

n(z) == #(G:\Yz)

is G-invariant, i.e. n(g - x) = n(z) for all g € G, so that n(z) is well defined for x € G\ X. To do
this note first that Gy, = gG,g~ ! and Yy, = g Y,. It follows that the map y + g -y induces a
bijection

G \Yy = Ggp\Ygq.

L. 4y). This implies n(z) = n(g - x) as claimed.

(with inverse induced by y — g~
Now we prove the equality

#(G\S)= D #(G\Ye)= Y nla). (1)
zeG\X zeG\X

Let mx : S — X denote the projection on the first coordinate. It induces a well-defined map
Tx : G\S — G\X and

G\X|= ) Tyl (2)

zeG\X
Given a representative g of x € G\X it is easy to see that y — (xg,y) induces a bijection
Guo\Yay — Ty (2).
Hence n(z) = n(zg) = |7y (z)| and by (2) we get the desired formula (T).

Comment: Formula was used in the proof of Theorem 7.7 in Lecture 18.

2. We will use Poisson summation. Recall that given a Schwarz function f : R — C one has the

identity
Y fn)=>" fn),

nez neE”Z

where f: R — C is the Fourier transform of f defined as
(o)

f) = [ fwemo
—00

In the case f(z) = fo.(z) = e~™(@+a)’t where a,t € R with ¢ > 0 one has
fan(y) = ﬁ‘f%myfo,l/t(y)

Similarly, in the case g(x) = gq.(z) = e’”@““)%, where a,t € R with ¢t > 0 one has
Jart(y) = ﬁ672mygo,1/t(y)~

Now, writing z = x + 1y we have
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By Poisson summation we get

0.(t) = Y e yz\/g I foye(n)
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Applying Poisson summation once more we get

\/> Z e Z ngO,l/(ty)(m)

nez mEZ

LSS

0.(t)

t
nez meZ
1 (wn—m)2+y2n?
— g e -7 ty =
t
n,mez
1 Inz—m|?
— E e—ﬂ' ty
t
n,mez
1 Z o lmztn|?
— e ty
t
n,mez

3. a. The fact that E(vz,s) = E(v,s) for all v € T" follows from the first definition. Indeed, if
R C T is a set of representatives for I'oo\I' and v € T, then

E(vz,s) Z Im(gvz) Z Im(gz).
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But R+ is also a set of representatives for I'o,\I', hence this equals E(z, s) as wanted.
Now, we compute
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b. Using part a. we can write
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Now, using 2. we write
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We get
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Since the function ¢t — 0. (t) — 1 decays exponentially as ¢ — 0o, we conclude that
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1

is entire. Hence, E*(z, s) has meromorphic continuation to s € C with singularities only at
s = 0,1, which are simple poles with residues —1 and 1, respectively. Moreover, the above
formula also shows that E*(z,s) = E*(z,1 — s).

4. From Theorem 7.7 in Lecture 18 we know that
’I’D(2e) = #{b S Z/2€+IZ . b2 =D (mod 2@—}-2)}.

e Assume D =0 (mod 4) and e > 2. Then D = 4d with d = 2,3 (mod 4) squarefree. Now, any
b€ Z/2°M17Z with b2 = D (mod 2°72) is of the form b = 2by with b € Z/2°Z and b = d (mod
2¢). Since e > 2 we have b2 = d = 2,3 (mod 4). But this is impossible since 2 and 3 are not
squares mod 4, so rp(2°) = 0 in this case, as claimed.

e Assume D =0 (mod 4) and e = 1. Then
rp(2) = #{b € Z/AZ : b* = D (mod 8}.
The squares of 0,1,2,3 € Z/47Z are 0,1,4,1 € Z/8Z, respectively. Hence

2) = 1 if D=4d,d=2(mod 4),
"PYE)T 11 if D =4d,d =3 (mod 4).

This coincides with 1 + xp(2) = 1.

e Assume D =5 (mod 8) and e > 1. Since xp(2) = —1 we have to show that rp(2°) = 0. If

b € 7/2°T17 satisfies b> = D (mod 2°*2) then b?> = 5 (mod 8). However, 5 is not a square mod
8, hence rp(2¢) = 0 as waned.

e Finally, assume Assume D =1 (mod 8) and e > 1. Since xp(2) = 1 we have to show that
rp(2°) = 2. We first show that rp(2¢) < 2. Indeed, if by, by € Z/2°F17Z are solutions of 22 = D
(mod 2¢t2), then

b2 — b2 = (by — bo)(by + ba) = 0 (mod 2°72).
If by # 4by (mod 2°T1) then we can write by — by = 2%, by + by = 2°v with u, v odd integers
and a, b non-negative integers with a + b > e + 2. Replacing by by —bs if necessary we can
assume a < b. But 2b; = 2%u + 2%v, hence @ > 1 and b; = 2% 1u + 2°~1v. Since D =1 (mod 8)
implies b; odd, we conclude @ = 1, hence b > e + 1. Thus by = —by (mod 2°*1) which is a



contradiction. This proves that rp(2¢) < 2. In order to prove that rp(2¢) = 2 we use induction
on e. For e = 1 we have

rp(2) = #{b € Z/AZ : b* = 1 (mod 8)} = 2.

Now, assume rp(2¢) = 2 and let b be an integer that is a solution of 2 = D (mod 2¢2) (there
are exactly two possible choices of b mod 2°T1). Given t € Z\2Z the element
Y i= b+ 2¢Tt € Z/2¢T27 satisfies

y? = b? + 272t (mod 2°73).
We know that b2 = D + n2°*2 for some integer n, thus
y? = D +n2°T? 4 2°72pt = D + 2°72(n + bt) (mod 2°77).

Since b is odd (because D is) we have b = 1 (mod 2), so choosing ¢t = —n (mod 2) gives

n+ bt =0 (mod 2). This implies y? = D (mod 2°73). We conclude that there exists

y € Z/2°27Z solution of 2% = D (mod 2°"3) satisfying also y = b (mod 2¢*1). A different choice
of b gives then another solution in Z/2°27Z of 22 = D (mod 2¢3). Since rp(2°) = 2 we get
rp(2¢T1) > 2. But we proved above that rp(2¢*!) < 2, hence rp(2¢t1) = 2 as claimed. This
proves the result in the case e > 1 and D =1 (mod 8).

Comment: It is nice to check this formula in a particular example. Choose D = —4. There is
only one class of discriminant —4 and it is represented by the quadratic form @ = [1,0, 1]
corresponding to Q(z,y) = 2% + y?, with |I'g| = 4. According to the formula the we just
proved, we have
1 if e >

i) = ra) ={ | HZT
since x_4(2) = 0. In the case e = 1 we see that the primitive representations of 2 by @ are given
by {(£1,1),(1,£1)}, hence rg(2) = 4 as expected. For e > 2 we have that 22 + y? does not
represent primitively 2¢, since any such representation would have 22 + y? = 0 (mod 4), but this
implies that both = and y are even. Thus 7o (2°) = 0 in this case, as expected.



