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1. Given x ∈ X define Yx := {y ∈ Y : (x, y) ∈ S}. First we have to show that Yx is Gx-invariant.
For (x, y) ∈ Yx and g ∈ Gx we have g · (x, y) = (x, g · y). Since S is invariant under G and
(x, y) ∈ S we have (x, g · y) = g · (x, y) ∈ S. Hence g · y ∈ Yx as desired.
Let’s now check that the quantity

n(x) := #(Gx\Yx)

is G-invariant, i.e. n(g · x) = n(x) for all g ∈ G, so that n(x) is well defined for x ∈ G\X. To do
this note first that Gg·x = gGxg

−1 and Yg·x = g · Yx. It follows that the map y 7→ g · y induces a
bijection

Gx\Yx 7→ Gg·x\Yg·x.

(with inverse induced by y 7→ g−1 · y). This implies n(x) = n(g · x) as claimed.
Now we prove the equality

#(G\S) =
∑

x∈G\X

#(Gx\Yx) =
∑

x∈G\X

n(x). (1)

Let πX : S → X denote the projection on the first coordinate. It induces a well-defined map
πX : G\S → G\X and

|G\X| =
∑

x∈G\X

|π−1
X (x)|. (2)

Given a representative x0 of x ∈ G\X it is easy to see that y 7→ (x0, y) induces a bijection

Gx0\Yx0 → π−1
X (x).

Hence n(x) = n(x0) = |π−1
X (x)| and by (2) we get the desired formula (1).

Comment: Formula (1) was used in the proof of Theorem 7.7 in Lecture 18.

2. We will use Poisson summation. Recall that given a Schwarz function f : R → C one has the
identity ∑

n∈Z
f(n) =

∑
n∈Z

f̂(n),

where f̂ : R → C is the Fourier transform of f defined as

f̂(y) =

∫ ∞

−∞
f(x)e−2πixydx.

In the case f(x) = fa,t(x) = e−π(x+a)2t, where a, t ∈ R with t > 0 one has

f̂a,t(y) =
1√
t
e2πiayf0,1/t(y).

Similarly, in the case g(x) = ga,t(x) = e−π(x+ia)2t, where a, t ∈ R with t > 0 one has
ĝa,t(y) =

1√
t
e−2πayg0,1/t(y).

Now, writing z = x+ iy we have

Θz(t) =
∑

m,n∈Z
e−πt

|mz+n|2
y

=
∑

m,n∈Z
e−πt

(mx+n)2+(my)2

y

=
∑
m∈Z

e−πtm2y
∑
n∈Z

e−π(mx+n)2 t
y

=
∑
m∈Z

e−πtm2y
∑
n∈Z

fmx,t/y(n).

1
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By Poisson summation we get

Θz(t) =
∑
m∈Z

e−πtm2y
∑
n∈Z

√
y

t
e2πimxnf0,y/t(n)

=
∑
m∈Z

e−πtm2y
∑
n∈Z

√
y

t
e2πimxne−π y

t n
2

=

√
y

t

∑
n∈Z

e−π y
t n

2 ∑
m∈Z

e−πtm2ye2πimxn

=

√
y

t

∑
n∈Z

e−π x2+y2

ty n2 ∑
m∈Z

e−πty(m− inx
ty )

2

=

√
y

t

∑
n∈Z

e−π x2+y2

ty n2 ∑
m∈Z

g−nx/(ty),ty(m).

Applying Poisson summation once more we get

Θz(t) =

√
y

t

∑
n∈Z

e−π x2+y2

ty n2 ∑
m∈Z

1√
ty

e2π
nx
ty mg0,1/(ty)(m)

=
1

t

∑
n∈Z

e−π x2+y2

ty n2 ∑
m∈Z

e2π
nx
ty me−πm2

ty

=
1

t

∑
n,m∈Z

e−π
(xn−m)2+y2n2

ty

=
1

t

∑
n,m∈Z

e−π
|nz−m|2

ty

=
1

t

∑
n,m∈Z

e−π
|mz+n|2

ty

=
1

t
Θz

(
1

t

)
.

3. a. The fact that E(γz, s) = E(γ, s) for all γ ∈ Γ follows from the first definition. Indeed, if
R ⊆ Γ is a set of representatives for Γ∞\Γ and γ ∈ Γ, then

E(γz, s) =
∑
g∈R

Im(gγz) =
∑
g∈Rγ

Im(gz).

But Rγ is also a set of representatives for Γ∞\Γ, hence this equals E(z, s) as wanted.
Now, we compute∫ ∞

0

(Θz(t)− 1)ts
dt

t
=

∫ ∞

0

∑
m,n∈Z

(m,n) ̸=(0,0)

e−πt
|mz+n|2

y ts
dt

t

=
∑

m,n∈Z
(m,n)̸=(0,0)

∫ ∞

0

e−πt
|mz+n|2

y ts
dt

t

=
∑

m,n∈Z
(m,n)̸=(0,0)

(
π
|mz + n|2

y

)−s ∫ ∞

0

e−tts
dt

t

= π−sΓ(s)
∑

m,n∈Z
(m,n)̸=(0,0)

ys

|mz + n|2s

= E∗(z, s).
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b. Using part a. we can write

E∗(z, s) =

∫ ∞

0

(Θz(t)− 1)ts
dt

t

=

∫ ∞

1

(Θz(t)− 1)ts
dt

t
+

∫ 1

0

(Θz(t)− 1)ts
dt

t
.

Now, using 2. we write∫ 1

0

(Θz(t)− 1)ts
dt

t
=

∫ 1

0

Θz(t)t
s dt

t
− ts

s

∣∣∣∣t=1

t=0

=

∫ 1

0

Θz

(
1

t

)
ts−1 dt

t
− 1

s

=

∫ ∞

1

Θz (t) t
1−s dt

t
− 1

s

=

∫ ∞

1

(Θz (t)− 1)t1−s dt

t
+

∫ ∞

1

t1−s dt

t
− 1

s

=

∫ ∞

1

(Θz (t)− 1)t1−s dt

t
+

t1−s

1− s

∣∣∣∣t=∞

t=1

− 1

s

=

∫ ∞

1

(Θz (t)− 1)t1−s dt

t
+

1

s− 1
− 1

s
.

We get

E∗(z, s) =

∫ ∞

1

(Θz(t)− 1)ts
dt

t
+

∫ ∞

1

(Θz (t)− 1)t1−s dt

t
+

1

s− 1
− 1

s
.

Since the function t 7→ Θz(t)− 1 decays exponentially as t → ∞, we conclude that

s ∈ C →
∫ ∞

1

(Θz(t)− 1)ts
dt

t

is entire. Hence, E∗(z, s) has meromorphic continuation to s ∈ C with singularities only at
s = 0, 1, which are simple poles with residues −1 and 1, respectively. Moreover, the above
formula also shows that E∗(z, s) = E∗(z, 1− s).

4. From Theorem 7.7 in Lecture 18 we know that

rD(2e) = #{b ∈ Z/2e+1Z : b2 ≡ D (mod 2e+2)}.
• Assume D ≡ 0 (mod 4) and e ≥ 2. Then D = 4d with d ≡ 2, 3 (mod 4) squarefree. Now, any
b ∈ Z/2e+1Z with b2 ≡ D (mod 2e+2) is of the form b = 2b0 with b ∈ Z/2eZ and b20 ≡ d (mod
2e). Since e ≥ 2 we have b20 ≡ d ≡ 2, 3 (mod 4). But this is impossible since 2 and 3 are not
squares mod 4, so rD(2e) = 0 in this case, as claimed.
• Assume D ≡ 0 (mod 4) and e = 1. Then

rD(2) = #{b ∈ Z/4Z : b2 ≡ D (mod 8}.
The squares of 0, 1, 2, 3 ∈ Z/4Z are 0, 1, 4, 1 ∈ Z/8Z, respectively. Hence

rD(2) =

{
1 if D = 4d, d ≡ 2 (mod 4),
1 if D = 4d, d ≡ 3 (mod 4).

This coincides with 1 + χD(2) = 1.
• Assume D ≡ 5 (mod 8) and e ≥ 1. Since χD(2) = −1 we have to show that rD(2e) = 0. If
b ∈ Z/2e+1Z satisfies b2 ≡ D (mod 2e+2) then b2 ≡ 5 (mod 8). However, 5 is not a square mod
8, hence rD(2e) = 0 as waned.
• Finally, assume Assume D ≡ 1 (mod 8) and e ≥ 1. Since χD(2) = 1 we have to show that
rD(2e) = 2. We first show that rD(2e) ≤ 2. Indeed, if b1, b2 ∈ Z/2e+1Z are solutions of x2 ≡ D
(mod 2e+2), then

b21 − b22 = (b1 − b2)(b1 + b2) ≡ 0 (mod 2e+2).

If b1 ̸= ±b2 (mod 2e+1) then we can write b1 − b2 = 2au, b1 + b2 = 2bv with u, v odd integers
and a, b non-negative integers with a+ b ≥ e+ 2. Replacing b2 by −b2 if necessary we can
assume a ≤ b. But 2b1 = 2au+ 2bv, hence a ≥ 1 and b1 = 2a−1u+ 2b−1v. Since D ≡ 1 (mod 8)
implies b1 odd, we conclude a = 1, hence b ≥ e+ 1. Thus b1 = −b2 (mod 2e+1) which is a
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contradiction. This proves that rD(2e) ≤ 2. In order to prove that rD(2e) = 2 we use induction
on e. For e = 1 we have

rD(2) = #{b ∈ Z/4Z : b2 ≡ 1 (mod 8)} = 2.

Now, assume rD(2e) = 2 and let b be an integer that is a solution of x2 ≡ D (mod 2e+2) (there
are exactly two possible choices of b mod 2e+1). Given t ∈ Z\2Z the element
yt := b+ 2e+1t ∈ Z/2e+2Z satisfies

y2t ≡ b2 + 2e+2bt (mod 2e+3).

We know that b2 = D + n2e+2 for some integer n, thus

y2t ≡ D + n2e+2 + 2e+2bt = D + 2e+2(n+ bt) (mod 2e+3).

Since b is odd (because D is) we have b ≡ 1 (mod 2), so choosing t ≡ −n (mod 2) gives
n+ bt ≡ 0 (mod 2). This implies y2t ≡ D (mod 2e+3). We conclude that there exists
y ∈ Z/2e+2Z solution of x2 ≡ D (mod 2e+3) satisfying also y ≡ b (mod 2e+1). A different choice
of b gives then another solution in Z/2e+2Z of x2 ≡ D (mod 2e+3). Since rD(2e) = 2 we get
rD(2e+1) ≥ 2. But we proved above that rD(2e+1) ≤ 2, hence rD(2e+1) = 2 as claimed. This
proves the result in the case e ≥ 1 and D ≡ 1 (mod 8).

Comment: It is nice to check this formula in a particular example. Choose D = −4. There is
only one class of discriminant −4 and it is represented by the quadratic form Q = [1, 0, 1]
corresponding to Q(x, y) = x2 + y2, with |ΓQ| = 4. According to the formula the we just
proved, we have

r−4(2
e) =

1

4
rQ(2

e) =

{
0 if e ≥ 2,
1 if e = 1,

since χ−4(2) = 0. In the case e = 1 we see that the primitive representations of 2 by Q are given
by {(±1, 1), (1,±1)}, hence rQ(2) = 4 as expected. For e ≥ 2 we have that x2 + y2 does not
represent primitively 2e, since any such representation would have x2 + y2 ≡ 0 (mod 4), but this
implies that both x and y are even. Thus rQ(2

e) = 0 in this case, as expected.


