Solutions Sheet 6

1. Given $x \in X$ define $Y_{x}:=\{y \in Y:(x, y) \in S\}$. First we have to show that Y_{x} is G_{x}-invariant. For $(x, y) \in Y_{x}$ and $g \in G_{x}$ we have $g \cdot(x, y)=(x, g \cdot y)$. Since S is invariant under G and $(x, y) \in S$ we have $(x, g \cdot y)=g \cdot(x, y) \in S$. Hence $g \cdot y \in Y_{x}$ as desired.
Let's now check that the quantity

$$
n(x):=\#\left(G_{x} \backslash Y_{x}\right)
$$

is G-invariant, i.e. $n(g \cdot x)=n(x)$ for all $g \in G$, so that $n(x)$ is well defined for $x \in G \backslash X$. To do this note first that $G_{g \cdot x}=g G_{x} g^{-1}$ and $Y_{g \cdot x}=g \cdot Y_{x}$. It follows that the map $y \mapsto g \cdot y$ induces a bijection

$$
G_{x} \backslash Y_{x} \mapsto G_{g \cdot x} \backslash Y_{g \cdot x}
$$

(with inverse induced by $y \mapsto g^{-1} \cdot y$). This implies $n(x)=n(g \cdot x)$ as claimed.
Now we prove the equality

$$
\begin{equation*}
\#(G \backslash S)=\sum_{x \in G \backslash X} \#\left(G_{x} \backslash Y_{x}\right)=\sum_{x \in G \backslash X} n(x) \tag{1}
\end{equation*}
$$

Let $\pi_{X}: S \rightarrow X$ denote the projection on the first coordinate. It induces a well-defined map $\bar{\pi}_{X}: G \backslash S \rightarrow G \backslash X$ and

$$
\begin{equation*}
|G \backslash X|=\sum_{x \in G \backslash X}\left|\bar{\pi}_{X}^{-1}(x)\right| \tag{2}
\end{equation*}
$$

Given a representative x_{0} of $x \in G \backslash X$ it is easy to see that $y \mapsto\left(x_{0}, y\right)$ induces a bijection

$$
G_{x_{0}} \backslash Y_{x_{0}} \rightarrow \bar{\pi}_{X}^{-1}(x) .
$$

Hence $n(x)=n\left(x_{0}\right)=\left|\bar{\pi}_{X}^{-1}(x)\right|$ and by (2) we get the desired formula (1).
Comment: Formula (1) was used in the proof of Theorem 7.7 in Lecture 18.
2. We will use Poisson summation. Recall that given a Schwarz function $f: \mathbb{R} \rightarrow \mathbb{C}$ one has the identity

$$
\sum_{n \in \mathbb{Z}} f(n)=\sum_{n \in \mathbb{Z}} \widehat{f}(n)
$$

where $\widehat{f}: \mathbb{R} \rightarrow \mathbb{C}$ is the Fourier transform of f defined as

$$
\widehat{f}(y)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i x y} d x
$$

In the case $f(x)=f_{a, t}(x)=e^{-\pi(x+a)^{2} t}$, where $a, t \in \mathbb{R}$ with $t>0$ one has $\widehat{f_{a, t}}(y)=\frac{1}{\sqrt{ } t} e^{2 \pi i a y} f_{0,1 / t}(y)$.
Similarly, in the case $g(x)=g_{a, t}(x)=e^{-\pi(x+i a)^{2} t}$, where $a, t \in \mathbb{R}$ with $t>0$ one has $\widehat{g_{a, t}}(y)=\frac{1}{\sqrt{t}} e^{-2 \pi a y} g_{0,1 / t}(y)$.
Now, writing $z=x+i y$ we have

$$
\begin{aligned}
\Theta_{z}(t) & =\sum_{m, n \in \mathbb{Z}} e^{-\pi t \frac{|m z+n|^{2}}{y}} \\
& =\sum_{m, n \in \mathbb{Z}} e^{-\pi t \frac{(m x+n)^{2}+(m y)^{2}}{y}} \\
& =\sum_{m \in \mathbb{Z}} e^{-\pi t m^{2} y} \sum_{n \in \mathbb{Z}} e^{-\pi(m x+n)^{2} \frac{t}{y}} \\
& =\sum_{m \in \mathbb{Z}} e^{-\pi t m^{2} y} \sum_{n \in \mathbb{Z}} f_{m x, t / y}(n)
\end{aligned}
$$

By Poisson summation we get

$$
\begin{aligned}
\Theta_{z}(t) & =\sum_{m \in \mathbb{Z}} e^{-\pi t m^{2} y} \sum_{n \in \mathbb{Z}} \sqrt{\frac{y}{t}} e^{2 \pi i m x n} f_{0, y / t}(n) \\
& =\sum_{m \in \mathbb{Z}} e^{-\pi t m^{2} y} \sum_{n \in \mathbb{Z}} \sqrt{\frac{y}{t}} e^{2 \pi i m x n} e^{-\pi \frac{y}{t} n^{2}} \\
& =\sqrt{\frac{y}{t}} \sum_{n \in \mathbb{Z}} e^{-\pi \frac{y}{t} n^{2}} \sum_{m \in \mathbb{Z}} e^{-\pi t m^{2} y} e^{2 \pi i m x n} \\
& =\sqrt{\frac{y}{t}} \sum_{n \in \mathbb{Z}} e^{-\pi \frac{x^{2}+y^{2}}{t y} n^{2}} \sum_{m \in \mathbb{Z}} e^{-\pi t y\left(m-\frac{i n x}{t y}\right)^{2}} \\
& =\sqrt{\frac{y}{t}} \sum_{n \in \mathbb{Z}} e^{-\pi \frac{x^{2}+y^{2}}{t y} n^{2}} \sum_{m \in \mathbb{Z}} g_{-n x /(t y), t y}(m)
\end{aligned}
$$

Applying Poisson summation once more we get

$$
\begin{aligned}
\Theta_{z}(t) & =\sqrt{\frac{y}{t}} \sum_{n \in \mathbb{Z}} e^{-\pi \frac{x^{2}+y^{2}}{t y} n^{2}} \sum_{m \in \mathbb{Z}} \frac{1}{\sqrt{t y}} e^{2 \pi \frac{n x}{t y} m} g_{0,1 /(t y)}(m) \\
& =\frac{1}{t} \sum_{n \in \mathbb{Z}} e^{-\pi \frac{x^{2}+y^{2}}{t y} n^{2}} \sum_{m \in \mathbb{Z}} e^{2 \pi \frac{n x}{t y} m} e^{-\pi \frac{m^{2}}{t y}} \\
& =\frac{1}{t} \sum_{n, m \in \mathbb{Z}} e^{-\pi \frac{(x n-m)^{2}+y^{2} n^{2}}{t y}} \\
& =\frac{1}{t} \sum_{n, m \in \mathbb{Z}} e^{-\pi \frac{|n z-m|^{2}}{t y}} \\
& =\frac{1}{t} \sum_{n, m \in \mathbb{Z}} e^{-\pi \frac{|m z+n|^{2}}{t y}} \\
& =\frac{1}{t} \Theta_{z}\left(\frac{1}{t}\right)
\end{aligned}
$$

3. a. The fact that $E(\gamma z, s)=E(\gamma, s)$ for all $\gamma \in \Gamma$ follows from the first definition. Indeed, if $\mathcal{R} \subseteq \Gamma$ is a set of representatives for $\Gamma_{\infty} \backslash \Gamma$ and $\gamma \in \Gamma$, then

$$
E(\gamma z, s)=\sum_{g \in \mathcal{R}} \operatorname{Im}(g \gamma z)=\sum_{g \in \mathcal{R} \gamma} \operatorname{Im}(g z)
$$

But $\mathcal{R} \gamma$ is also a set of representatives for $\Gamma_{\infty} \backslash \Gamma$, hence this equals $E(z, s)$ as wanted. Now, we compute

$$
\begin{aligned}
\int_{0}^{\infty}\left(\Theta_{z}(t)-1\right) t^{s} \frac{d t}{t} & =\int_{0}^{\infty} \sum_{\substack{m, n \in \mathbb{Z} \\
(m, n) \neq(0,0)}} e^{-\pi t \frac{|m z+n|^{2}}{y}} t^{s} \frac{d t}{t} \\
& =\sum_{\substack{m, n \in \mathbb{Z} \\
(m, n) \neq(0,0)}} \int_{0}^{\infty} e^{-\pi t \frac{|m z+n|^{2}}{y}} t^{s} \frac{d t}{t} \\
& =\sum_{\substack{m, n \in \mathbb{Z} \\
(m, n) \neq(0,0)}}\left(\pi \frac{|m z+n|^{2}}{y}\right)^{-s} \int_{0}^{\infty} e^{-t} t^{s} \frac{d t}{t} \\
& =\pi^{-s} \Gamma(s) \sum_{\substack{m, n \in \mathbb{Z} \\
(m, n) \neq(0,0)}} \frac{y^{s}}{|m z+n|^{2 s}} \\
& =E^{*}(z, s) .
\end{aligned}
$$

b. Using part a. we can write

$$
\begin{aligned}
E^{*}(z, s) & =\int_{0}^{\infty}\left(\Theta_{z}(t)-1\right) t^{s} \frac{d t}{t} \\
& =\int_{1}^{\infty}\left(\Theta_{z}(t)-1\right) t^{s} \frac{d t}{t}+\int_{0}^{1}\left(\Theta_{z}(t)-1\right) t^{s} \frac{d t}{t}
\end{aligned}
$$

Now, using 2. we write

$$
\begin{aligned}
\int_{0}^{1}\left(\Theta_{z}(t)-1\right) t^{s} \frac{d t}{t} & =\int_{0}^{1} \Theta_{z}(t) t^{s} \frac{d t}{t}-\left.\frac{t^{s}}{s}\right|_{t=0} ^{t=1} \\
& =\int_{0}^{1} \Theta_{z}\left(\frac{1}{t}\right) t^{s-1} \frac{d t}{t}-\frac{1}{s} \\
& =\int_{1}^{\infty} \Theta_{z}(t) t^{1-s} \frac{d t}{t}-\frac{1}{s} \\
& =\int_{1}^{\infty}\left(\Theta_{z}(t)-1\right) t^{1-s} \frac{d t}{t}+\int_{1}^{\infty} t^{1-s} \frac{d t}{t}-\frac{1}{s} \\
& =\int_{1}^{\infty}\left(\Theta_{z}(t)-1\right) t^{1-s} \frac{d t}{t}+\left.\frac{t^{1-s}}{1-s}\right|_{t=1} ^{t=\infty}-\frac{1}{s} \\
& =\int_{1}^{\infty}\left(\Theta_{z}(t)-1\right) t^{1-s} \frac{d t}{t}+\frac{1}{s-1}-\frac{1}{s}
\end{aligned}
$$

We get

$$
E^{*}(z, s)=\int_{1}^{\infty}\left(\Theta_{z}(t)-1\right) t^{s} \frac{d t}{t}+\int_{1}^{\infty}\left(\Theta_{z}(t)-1\right) t^{1-s} \frac{d t}{t}+\frac{1}{s-1}-\frac{1}{s}
$$

Since the function $t \mapsto \Theta_{z}(t)-1$ decays exponentially as $t \rightarrow \infty$, we conclude that

$$
s \in \mathbb{C} \rightarrow \int_{1}^{\infty}\left(\Theta_{z}(t)-1\right) t^{s} \frac{d t}{t}
$$

is entire. Hence, $E^{*}(z, s)$ has meromorphic continuation to $s \in \mathbb{C}$ with singularities only at $s=0,1$, which are simple poles with residues -1 and 1 , respectively. Moreover, the above formula also shows that $E^{*}(z, s)=E^{*}(z, 1-s)$.
4. From Theorem 7.7 in Lecture 18 we know that

$$
r_{D}\left(2^{e}\right)=\#\left\{b \in \mathbb{Z} / 2^{e+1} \mathbb{Z}: b^{2} \equiv D\left(\bmod 2^{e+2}\right)\right\} .
$$

- Assume $D \equiv 0(\bmod 4)$ and $e \geq 2$. Then $D=4 d$ with $d \equiv 2,3(\bmod 4)$ squarefree. Now, any $b \in \mathbb{Z} / 2^{e+1} \mathbb{Z}$ with $b^{2} \equiv D\left(\bmod 2^{e+2}\right)$ is of the form $b=2 b_{0}$ with $b \in \mathbb{Z} / 2^{e} \mathbb{Z}$ and $b_{0}^{2} \equiv d(\bmod$ $\left.2^{e}\right)$. Since $e \geq 2$ we have $b_{0}^{2} \equiv d \equiv 2,3(\bmod 4)$. But this is impossible since 2 and 3 are not squares $\bmod 4$, so $r_{D}\left(2^{e}\right)=0$ in this case, as claimed.
- Assume $D \equiv 0(\bmod 4)$ and $e=1$. Then

$$
r_{D}(2)=\#\left\{b \in \mathbb{Z} / 4 \mathbb{Z}: b^{2} \equiv D(\bmod 8\}\right.
$$

The squares of $0,1,2,3 \in \mathbb{Z} / 4 \mathbb{Z}$ are $0,1,4,1 \in \mathbb{Z} / 8 \mathbb{Z}$, respectively. Hence

$$
r_{D}(2)= \begin{cases}1 & \text { if } D=4 d, d \equiv 2(\bmod 4) \\ 1 & \text { if } D=4 d, d \equiv 3(\bmod 4)\end{cases}
$$

This coincides with $1+\chi_{D}(2)=1$.

- Assume $D \equiv 5(\bmod 8)$ and $e \geq 1$. Since $\chi_{D}(2)=-1$ we have to show that $r_{D}\left(2^{e}\right)=0$. If $b \in \mathbb{Z} / 2^{e+1} \mathbb{Z}$ satisfies $b^{2} \equiv D\left(\bmod 2^{e+2}\right)$ then $b^{2} \equiv 5(\bmod 8)$. However, 5 is not a square mod 8 , hence $r_{D}\left(2^{e}\right)=0$ as waned.
- Finally, assume Assume $D \equiv 1(\bmod 8)$ and $e \geq 1$. Since $\chi_{D}(2)=1$ we have to show that $r_{D}\left(2^{e}\right)=2$. We first show that $r_{D}\left(2^{e}\right) \leq 2$. Indeed, if $b_{1}, b_{2} \in \mathbb{Z} / 2^{e+1} \mathbb{Z}$ are solutions of $x^{2} \equiv D$ $\left(\bmod 2^{e+2}\right)$, then

$$
b_{1}^{2}-b_{2}^{2}=\left(b_{1}-b_{2}\right)\left(b_{1}+b_{2}\right) \equiv 0\left(\bmod 2^{e+2}\right)
$$

If $b_{1} \neq \pm b_{2}\left(\bmod 2^{e+1}\right)$ then we can write $b_{1}-b_{2}=2^{a} u, b_{1}+b_{2}=2^{b} v$ with u, v odd integers and a, b non-negative integers with $a+b \geq e+2$. Replacing b_{2} by $-b_{2}$ if necessary we can assume $a \leq b$. But $2 b_{1}=2^{a} u+2^{b} v$, hence $a \geq 1$ and $b_{1}=2^{a-1} u+2^{b-1} v$. Since $D \equiv 1(\bmod 8)$ implies b_{1} odd, we conclude $a=1$, hence $b \geq e+1$. Thus $b_{1}=-b_{2}\left(\bmod 2^{e+1}\right)$ which is a
contradiction. This proves that $r_{D}\left(2^{e}\right) \leq 2$. In order to prove that $r_{D}\left(2^{e}\right)=2$ we use induction on e. For $e=1$ we have

$$
r_{D}(2)=\#\left\{b \in \mathbb{Z} / 4 \mathbb{Z}: b^{2} \equiv 1(\bmod 8)\right\}=2
$$

Now, assume $r_{D}\left(2^{e}\right)=2$ and let b be an integer that is a solution of $x^{2} \equiv D\left(\bmod 2^{e+2}\right)($ there are exactly two possible choices of $b \bmod 2^{e+1}$). Given $t \in \mathbb{Z} \backslash 2 \mathbb{Z}$ the element $y_{t}:=b+2^{e+1} t \in \mathbb{Z} / 2^{e+2} \mathbb{Z}$ satisfies

$$
y_{t}^{2} \equiv b^{2}+2^{e+2} b t\left(\bmod 2^{e+3}\right)
$$

We know that $b^{2}=D+n 2^{e+2}$ for some integer n, thus

$$
y_{t}^{2} \equiv D+n 2^{e+2}+2^{e+2} b t=D+2^{e+2}(n+b t)\left(\bmod 2^{e+3}\right)
$$

Since b is odd (because D is) we have $b \equiv 1(\bmod 2)$, so choosing $t \equiv-n(\bmod 2)$ gives $n+b t \equiv 0(\bmod 2)$. This implies $y_{t}^{2} \equiv D\left(\bmod 2^{e+3}\right)$. We conclude that there exists $y \in \mathbb{Z} / 2^{e+2} \mathbb{Z}$ solution of $x^{2} \equiv D\left(\bmod 2^{e+3}\right)$ satisfying also $y \equiv b\left(\bmod 2^{e+1}\right)$. A different choice of b gives then another solution in $\mathbb{Z} / 2^{e+2} \mathbb{Z}$ of $x^{2} \equiv D\left(\bmod 2^{e+3}\right)$. Since $r_{D}\left(2^{e}\right)=2$ we get $r_{D}\left(2^{e+1}\right) \geq 2$. But we proved above that $r_{D}\left(2^{e+1}\right) \leq 2$, hence $r_{D}\left(2^{e+1}\right)=2$ as claimed. This proves the result in the case $e \geq 1$ and $D \equiv 1(\bmod 8)$.
Comment: It is nice to check this formula in a particular example. Choose $D=-4$. There is only one class of discriminant -4 and it is represented by the quadratic form $Q=[1,0,1]$ corresponding to $Q(x, y)=x^{2}+y^{2}$, with $\left|\Gamma_{Q}\right|=4$. According to the formula the we just proved, we have

$$
r_{-4}\left(2^{e}\right)=\frac{1}{4} r_{Q}\left(2^{e}\right)= \begin{cases}0 & \text { if } e \geq 2 \\ 1 & \text { if } e=1\end{cases}
$$

since $\chi_{-4}(2)=0$. In the case $e=1$ we see that the primitive representations of 2 by Q are given by $\{(\pm 1,1),(1, \pm 1)\}$, hence $r_{Q}(2)=4$ as expected. For $e \geq 2$ we have that $x^{2}+y^{2}$ does not represent primitively 2^{e}, since any such representation would have $x^{2}+y^{2} \equiv 0(\bmod 4)$, but this implies that both x and y are even. Thus $r_{Q}\left(2^{e}\right)=0$ in this case, as expected.

