Solutions Sheet 6

1. Given $x \in X$ define $Y_x := \{y \in Y : (x, y) \in S\}$. First we have to show that Y_x is G_x -invariant. For $(x, y) \in Y_x$ and $g \in G_x$ we have $g \cdot (x, y) = (x, g \cdot y)$. Since S is invariant under G and $(x, y) \in S$ we have $(x, g \cdot y) = g \cdot (x, y) \in S$. Hence $g \cdot y \in Y_x$ as desired. Let's now check that the quantity

$$n(x) := \#(G_x \backslash Y_x)$$

is G-invariant, i.e. $n(g \cdot x) = n(x)$ for all $g \in G$, so that n(x) is well defined for $x \in G \setminus X$. To do this note first that $G_{g \cdot x} = gG_xg^{-1}$ and $Y_{g \cdot x} = g \cdot Y_x$. It follows that the map $y \mapsto g \cdot y$ induces a bijection

$$G_x \backslash Y_x \mapsto G_{g \cdot x} \backslash Y_{g \cdot x}$$

(with inverse induced by $y \mapsto g^{-1} \cdot y$). This implies $n(x) = n(g \cdot x)$ as claimed. Now we prove the equality

$$#(G \setminus S) = \sum_{x \in G \setminus X} #(G_x \setminus Y_x) = \sum_{x \in G \setminus X} n(x).$$
(1)

Let $\pi_X: S \to X$ denote the projection on the first coordinate. It induces a well-defined map $\overline{\pi}_X: G \setminus S \to G \setminus X$ and

$$|G \setminus X| = \sum_{x \in G \setminus X} |\overline{\pi}_X^{-1}(x)|.$$
⁽²⁾

 $\frac{t}{y}$

Given a representative x_0 of $x \in G \setminus X$ it is easy to see that $y \mapsto (x_0, y)$ induces a bijection

$$G_{x_0} \setminus Y_{x_0} \to \overline{\pi}_X^{-1}(x).$$

Hence $n(x) = n(x_0) = |\overline{\pi}_X^{-1}(x)|$ and by (2) we get the desired formula (1).

Comment: Formula (1) was used in the proof of Theorem 7.7 in Lecture 18.

2. We will use Poisson summation. Recall that given a Schwarz function $f : \mathbb{R} \to \mathbb{C}$ one has the identity

$$\sum_{n \in \mathbb{Z}} f(n) = \sum_{n \in \mathbb{Z}} \widehat{f}(n)$$

where $\widehat{f} : \mathbb{R} \to \mathbb{C}$ is the Fourier transform of f defined as

$$\widehat{f}(y) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x y} dx.$$

In the case $f(x) = f_{a,t}(x) = e^{-\pi(x+a)^2 t}$, where $a, t \in \mathbb{R}$ with t > 0 one has $\widehat{f_{a,t}}(y) = \frac{1}{\sqrt{t}} e^{2\pi i a y} f_{0,1/t}(y).$

Similarly, in the case $g(x) = g_{a,t}(x) = e^{-\pi(x+ia)^2 t}$, where $a, t \in \mathbb{R}$ with t > 0 one has $\widehat{g_{a,t}}(y) = \frac{1}{\sqrt{t}}e^{-2\pi a y}g_{0,1/t}(y)$.

Now, writing z = x + iy we have

$$\Theta_{z}(t) = \sum_{m,n\in\mathbb{Z}} e^{-\pi t \frac{|mz+n|^{2}}{y}}$$

$$= \sum_{m,n\in\mathbb{Z}} e^{-\pi t \frac{(mx+n)^{2}+(my)^{2}}{y}}$$

$$= \sum_{m\in\mathbb{Z}} e^{-\pi t m^{2}y} \sum_{n\in\mathbb{Z}} e^{-\pi (mx+n)^{2}}$$

$$= \sum_{m\in\mathbb{Z}} e^{-\pi t m^{2}y} \sum_{n\in\mathbb{Z}} f_{mx,t/y}(n).$$

By Poisson summation we get

$$\begin{split} \Theta_{z}(t) &= \sum_{m \in \mathbb{Z}} e^{-\pi t m^{2} y} \sum_{n \in \mathbb{Z}} \sqrt{\frac{y}{t}} e^{2\pi i m x n} f_{0,y/t}(n) \\ &= \sum_{m \in \mathbb{Z}} e^{-\pi t m^{2} y} \sum_{n \in \mathbb{Z}} \sqrt{\frac{y}{t}} e^{2\pi i m x n} e^{-\pi \frac{y}{t} n^{2}} \\ &= \sqrt{\frac{y}{t}} \sum_{n \in \mathbb{Z}} e^{-\pi \frac{y}{t} n^{2}} \sum_{m \in \mathbb{Z}} e^{-\pi t m^{2} y} e^{2\pi i m x n} \\ &= \sqrt{\frac{y}{t}} \sum_{n \in \mathbb{Z}} e^{-\pi \frac{x^{2} + y^{2}}{t y} n^{2}} \sum_{m \in \mathbb{Z}} e^{-\pi t y (m - \frac{i n x}{t y})^{2}} \\ &= \sqrt{\frac{y}{t}} \sum_{n \in \mathbb{Z}} e^{-\pi \frac{x^{2} + y^{2}}{t y} n^{2}} \sum_{m \in \mathbb{Z}} g_{-n x/(t y), t y}(m). \end{split}$$

Applying Poisson summation once more we get

$$\begin{aligned} \Theta_{z}(t) &= \sqrt{\frac{y}{t}} \sum_{n \in \mathbb{Z}} e^{-\pi \frac{x^{2} + y^{2}}{ty} n^{2}} \sum_{m \in \mathbb{Z}} \frac{1}{\sqrt{ty}} e^{2\pi \frac{nx}{ty} m} g_{0,1/(ty)}(m) \\ &= \frac{1}{t} \sum_{n \in \mathbb{Z}} e^{-\pi \frac{x^{2} + y^{2}}{ty} n^{2}} \sum_{m \in \mathbb{Z}} e^{2\pi \frac{nx}{ty} m} e^{-\pi \frac{m^{2}}{ty}} \\ &= \frac{1}{t} \sum_{n,m \in \mathbb{Z}} e^{-\pi \frac{(xn-m)^{2} + y^{2} n^{2}}{ty}} \\ &= \frac{1}{t} \sum_{n,m \in \mathbb{Z}} e^{-\pi \frac{|nz-m|^{2}}{ty}} \\ &= \frac{1}{t} \sum_{n,m \in \mathbb{Z}} e^{-\pi \frac{|nz+n|^{2}}{ty}} \\ &= \frac{1}{t} \Theta_{z}\left(\frac{1}{t}\right). \end{aligned}$$

3. **a**. The fact that $E(\gamma z, s) = E(\gamma, s)$ for all $\gamma \in \Gamma$ follows from the first definition. Indeed, if $\mathcal{R} \subseteq \Gamma$ is a set of representatives for $\Gamma_{\infty} \setminus \Gamma$ and $\gamma \in \Gamma$, then

$$E(\gamma z,s) = \sum_{g \in \mathcal{R}} \operatorname{Im}(g \gamma z) = \sum_{g \in \mathcal{R} \gamma} \operatorname{Im}(g z).$$

But $\mathcal{R}\gamma$ is also a set of representatives for $\Gamma_{\infty}\backslash\Gamma$, hence this equals E(z, s) as wanted. Now, we compute

$$\begin{split} \int_{0}^{\infty} (\Theta_{z}(t) - 1) t^{s} \frac{dt}{t} &= \int_{0}^{\infty} \sum_{\substack{m,n \in \mathbb{Z} \\ (m,n) \neq (0,0)}} e^{-\pi t \frac{|mz+n|^{2}}{y}} t^{s} \frac{dt}{t} \\ &= \sum_{\substack{m,n \in \mathbb{Z} \\ (m,n) \neq (0,0)}} \int_{0}^{\infty} e^{-\pi t \frac{|mz+n|^{2}}{y}} t^{s} \frac{dt}{t} \\ &= \sum_{\substack{m,n \in \mathbb{Z} \\ (m,n) \neq (0,0)}} \left(\pi \frac{|mz+n|^{2}}{y} \right)^{-s} \int_{0}^{\infty} e^{-t} t^{s} \frac{dt}{t} \\ &= \pi^{-s} \Gamma(s) \sum_{\substack{m,n \in \mathbb{Z} \\ (m,n) \neq (0,0)}} \frac{y^{s}}{|mz+n|^{2s}} \\ &= E^{*}(z,s). \end{split}$$

b. Using part **a**. we can write

$$E^*(z,s) = \int_0^\infty (\Theta_z(t) - 1) t^s \frac{dt}{t}$$
$$= \int_1^\infty (\Theta_z(t) - 1) t^s \frac{dt}{t} + \int_0^1 (\Theta_z(t) - 1) t^s \frac{dt}{t}.$$

Now, using **2**. we write

$$\int_{0}^{1} (\Theta_{z}(t) - 1)t^{s} \frac{dt}{t} = \int_{0}^{1} \Theta_{z}(t)t^{s} \frac{dt}{t} - \frac{t^{s}}{s} \Big|_{t=0}^{t=1}$$

$$= \int_{0}^{1} \Theta_{z}\left(\frac{1}{t}\right)t^{s-1} \frac{dt}{t} - \frac{1}{s}$$

$$= \int_{1}^{\infty} \Theta_{z}(t)t^{1-s} \frac{dt}{t} - \frac{1}{s}$$

$$= \int_{1}^{\infty} (\Theta_{z}(t) - 1)t^{1-s} \frac{dt}{t} + \int_{1}^{\infty} t^{1-s} \frac{dt}{t} - \frac{1}{s}$$

$$= \int_{1}^{\infty} (\Theta_{z}(t) - 1)t^{1-s} \frac{dt}{t} + \frac{t^{1-s}}{1-s} \Big|_{t=1}^{t=\infty} - \frac{1}{s}$$

$$= \int_{1}^{\infty} (\Theta_{z}(t) - 1)t^{1-s} \frac{dt}{t} + \frac{1}{s-1} - \frac{1}{s}.$$

We get

$$E^*(z,s) = \int_1^\infty (\Theta_z(t) - 1) t^s \frac{dt}{t} + \int_1^\infty (\Theta_z(t) - 1) t^{1-s} \frac{dt}{t} + \frac{1}{s-1} - \frac{1}{s}.$$

Since the function $t \mapsto \Theta_z(t) - 1$ decays exponentially as $t \to \infty$, we conclude that

$$s \in \mathbb{C} \to \int_1^\infty (\Theta_z(t) - 1) t^s \frac{dt}{t}$$

is entire. Hence, $E^*(z, s)$ has meromorphic continuation to $s \in \mathbb{C}$ with singularities only at s = 0, 1, which are simple poles with residues -1 and 1, respectively. Moreover, the above formula also shows that $E^*(z, s) = E^*(z, 1 - s)$.

4. From Theorem 7.7 in Lecture 18 we know that

 $r_D(2^e) = \#\{b \in \mathbb{Z}/2^{e+1}\mathbb{Z} : b^2 \equiv D \pmod{2^{e+2}}\}.$

• Assume $D \equiv 0 \pmod{4}$ and $e \geq 2$. Then D = 4d with $d \equiv 2, 3 \pmod{4}$ squarefree. Now, any $b \in \mathbb{Z}/2^{e+1}\mathbb{Z}$ with $b^2 \equiv D \pmod{2^{e+2}}$ is of the form $b = 2b_0$ with $b \in \mathbb{Z}/2^e\mathbb{Z}$ and $b_0^2 \equiv d \pmod{2^e}$. Since $e \geq 2$ we have $b_0^2 \equiv d \equiv 2, 3 \pmod{4}$. But this is impossible since 2 and 3 are not squares mod 4, so $r_D(2^e) = 0$ in this case, as claimed. • Assume $D \equiv 0 \pmod{4}$ and e = 1. Then

$$r_D(2) = \#\{b \in \mathbb{Z}/4\mathbb{Z} : b^2 \equiv D \pmod{8}\}$$

The squares of $0, 1, 2, 3 \in \mathbb{Z}/4\mathbb{Z}$ are $0, 1, 4, 1 \in \mathbb{Z}/8\mathbb{Z}$, respectively. Hence

$$r_D(2) = \begin{cases} 1 & \text{if } D = 4d, d \equiv 2 \pmod{4}, \\ 1 & \text{if } D = 4d, d \equiv 3 \pmod{4}. \end{cases}$$

This coincides with $1 + \chi_D(2) = 1$.

• Assume $D \equiv 5 \pmod{8}$ and $e \ge 1$. Since $\chi_D(2) = -1$ we have to show that $r_D(2^e) = 0$. If $b \in \mathbb{Z}/2^{e+1}\mathbb{Z}$ satisfies $b^2 \equiv D \pmod{2^{e+2}}$ then $b^2 \equiv 5 \pmod{8}$. However, 5 is not a square mod 8, hence $r_D(2^e) = 0$ as waned.

• Finally, assume Assume $D \equiv 1 \pmod{8}$ and $e \geq 1$. Since $\chi_D(2) = 1$ we have to show that $r_D(2^e) = 2$. We first show that $r_D(2^e) \leq 2$. Indeed, if $b_1, b_2 \in \mathbb{Z}/2^{e+1}\mathbb{Z}$ are solutions of $x^2 \equiv D \pmod{2^{e+2}}$, then

$$b_1^2 - b_2^2 = (b_1 - b_2)(b_1 + b_2) \equiv 0 \pmod{2^{e+2}}$$

If $b_1 \neq \pm b_2 \pmod{2^{e+1}}$ then we can write $b_1 - b_2 = 2^a u, b_1 + b_2 = 2^b v$ with u, v odd integers and a, b non-negative integers with $a + b \ge e + 2$. Replacing b_2 by $-b_2$ if necessary we can assume $a \le b$. But $2b_1 = 2^a u + 2^b v$, hence $a \ge 1$ and $b_1 = 2^{a-1} u + 2^{b-1} v$. Since $D \equiv 1 \pmod{8}$ implies b_1 odd, we conclude a = 1, hence $b \ge e + 1$. Thus $b_1 = -b_2 \pmod{2^{e+1}}$ which is a contradiction. This proves that $r_D(2^e) \leq 2$. In order to prove that $r_D(2^e) = 2$ we use induction on e. For e = 1 we have

$$r_D(2) = \#\{b \in \mathbb{Z}/4\mathbb{Z} : b^2 \equiv 1 \pmod{8}\} = 2.$$

Now, assume $r_D(2^e) = 2$ and let b be an integer that is a solution of $x^2 \equiv D \pmod{2^{e+2}}$ (there are exactly two possible choices of b mod 2^{e+1}). Given $t \in \mathbb{Z} \setminus 2\mathbb{Z}$ the element $y_t := b + 2^{e+1}t \in \mathbb{Z}/2^{e+2}\mathbb{Z}$ satisfies

$$u_t^2 \equiv b^2 + 2^{e+2}bt \pmod{2^{e+3}}$$

We know that $b^2 = D + n2^{e+2}$ for some integer *n*, thus

$$y_t^2 \equiv D + n2^{e+2} + 2^{e+2}bt = D + 2^{e+2}(n+bt) \pmod{2^{e+3}}.$$

Since b is odd (because D is) we have $b \equiv 1 \pmod{2}$, so choosing $t \equiv -n \pmod{2}$ gives $n + bt \equiv 0 \pmod{2}$. This implies $y_t^2 \equiv D \pmod{2^{e+3}}$. We conclude that there exists $y \in \mathbb{Z}/2^{e+2}\mathbb{Z}$ solution of $x^2 \equiv D \pmod{2^{e+3}}$ satisfying also $y \equiv b \pmod{2^{e+1}}$. A different choice of b gives then another solution in $\mathbb{Z}/2^{e+2}\mathbb{Z}$ of $x^2 \equiv D \pmod{2^{e+3}}$. Since $r_D(2^e) = 2$ we get $r_D(2^{e+1}) \geq 2$. But we proved above that $r_D(2^{e+1}) \leq 2$, hence $r_D(2^{e+1}) = 2$ as claimed. This proves the result in the case $e \geq 1$ and $D \equiv 1 \pmod{8}$.

Comment: It is nice to check this formula in a particular example. Choose D = -4. There is only one class of discriminant -4 and it is represented by the quadratic form Q = [1, 0, 1] corresponding to $Q(x, y) = x^2 + y^2$, with $|\Gamma_Q| = 4$. According to the formula the we just proved, we have

$$r_{-4}(2^e) = \frac{1}{4}r_Q(2^e) = \begin{cases} 0 & \text{if } e \ge 2, \\ 1 & \text{if } e = 1, \end{cases}$$

since $\chi_{-4}(2) = 0$. In the case e = 1 we see that the primitive representations of 2 by Q are given by $\{(\pm 1, 1), (1, \pm 1)\}$, hence $r_Q(2) = 4$ as expected. For $e \ge 2$ we have that $x^2 + y^2$ does not represent primitively 2^e , since any such representation would have $x^2 + y^2 \equiv 0 \pmod{4}$, but this implies that both x and y are even. Thus $r_Q(2^e) = 0$ in this case, as expected.