Exercise Sheet 4

Exercise 1 (Theorem II.27 - Decomposition of OSLA). Let (\mathfrak{g}, θ) be an effective orthogonal symmetric Lie-algebra. We have the Cartan decomposition $\mathfrak{g} = \mathfrak{u} \oplus \mathfrak{i}$. We decomposed $\mathfrak{i} = \mathfrak{i}_0 \oplus \mathfrak{i}_+ \oplus \mathfrak{i}_-$ and defined $\mathfrak{u}_+ = [\mathfrak{i}_+, \mathfrak{i}_+]$ and $\mathfrak{u}_- = [\mathfrak{i}_-, \mathfrak{i}_-]$. \mathfrak{u}_0 is defined to be the orthogonal complement of $\mathfrak{u}_+ \oplus \mathfrak{u}_-$ in \mathfrak{u} .

- (a) Find an OSLA (\mathfrak{g}, θ) , such that $\mathfrak{i}_0 = 0$, but $\mathfrak{u}_0 \neq 0$.
- (b) Let $\mathfrak{n} \triangleleft \mathfrak{g}$ be an ideal of a Lie-algebra \mathfrak{g} . Prove that $B_{\mathfrak{n}} = B_{\mathfrak{g}}|_{\mathfrak{n} \times \mathfrak{n}}$.
- (c) Find an example of a subalgebra $\mathfrak{n} \subset \mathfrak{g}$, such that $B_{\mathfrak{n}} \neq B_{\mathfrak{g}}|_{\mathfrak{n} \times \mathfrak{n}}$.
- (d) Let $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$ a direct sum of two ideals \mathfrak{g}_1 and \mathfrak{g}_2 . Further let \mathfrak{k}_1 and \mathfrak{k}_2 be subalgebras of \mathfrak{g}_1 and \mathfrak{g}_2 . Show that $\mathfrak{k}_1 + \mathfrak{k}_2$ is compactly embedded in \mathfrak{g} if and only if \mathfrak{k}_1 and \mathfrak{k}_2 is compactly embedded in \mathfrak{g}_1 and \mathfrak{g}_2 .

This implies that $\mathfrak{u}_0, \mathfrak{u}_-, \mathfrak{u}_+$ are compactly embedded in $\mathfrak{g}_0, \mathfrak{g}_-$ and \mathfrak{g}_+ .

Hint: For connected G and K < G, there is an isomorphism

$$K/(K \cap Z(G)) \cong \operatorname{Ad}_G(K)$$

(compare Ex Sheet 2, exercise 5(b)). Use $\text{Lie}(\text{Ad}_G(K)) = \text{ad}_{\text{Lie}(G)}(\text{Lie}(K))$.

- **Exercise 2** (Theorem II.33 Decomposition of simply connected RSS). (a) Let $H, N \triangleleft G$ be two normal subgroups. Show that $[N, H] \subset N \cap H$.
- (b) Let H, N < G be connected subgroups. Show that [N, H] is a connected subgroup of G.
- (c) Let M be a simply connected Riemannian symmetric space. Then $\mathfrak{g} = \text{Lie}(\text{Iso}(M)^\circ) = \mathfrak{g}_0 \oplus \mathfrak{g}_+ \oplus \mathfrak{g}_-$. We get corresponding Lie-subgroups G_0, G_+, G_- and their universal covers $\tilde{G}_0, \tilde{G}_+, \tilde{G}_-$. Let K_0, K_+, K_- be the Lie-subgroups associated to $\mathfrak{k}_0, \mathfrak{k}_+, \mathfrak{k}_-$, which come from the Cartan-decomposition of $\mathfrak{g}_0, \mathfrak{g}_+, \mathfrak{g}_-$.

Show that $(\tilde{G}_0, K_0), (\tilde{G}_+, K_+)$ and (\tilde{G}_-, K_-) are Riemannian symmetric pairs.

Exercise 3 (Complexification and Killing form). Let \mathfrak{l}_0 be a Lie algebra over \mathbb{R} and let \mathfrak{l} be the complexification of \mathfrak{l}_0 . Let K_0, K and $K^{\mathbb{R}}$ denote the Killing forms of the Lie algebras $\mathfrak{l}, \mathfrak{l}_0$ and $\mathfrak{l}^{\mathbb{R}}$, respectively. Show that:

- (a) $K_0(X, Y) = K(X, Y)$ for all $X, Y \in \mathfrak{l}_0$;
- (b) $K^{\mathbb{R}}(X,Y) = 2 \cdot \Re(K(X,Y))$ for all $X, Y \in \mathfrak{l}^{\mathbb{R}}$.