Exercise Sheet 6

Exercise 1 (Maximal abelian subspaces and regular elements in $\mathfrak{s l}(n, \mathbb{R}))$. Let $\mathfrak{g}=\mathfrak{s l}(n, \mathbb{R})$. A Cartan decomposition of \mathfrak{g} is given by $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ where $\mathfrak{p}=\left\{X \in \mathfrak{s l}(n, \mathbb{R}): X=X^{t}\right\}$ and $\mathfrak{k}=\left\{X \in \mathfrak{s l}(n, \mathbb{R}): X=-X^{t}\right\}$. We have seen in the lecture that

$$
\mathfrak{a}=\left\{\operatorname{diag}\left(t_{1}, \ldots, t_{n}\right): t_{j} \in \mathbb{R}, \sum_{j=1}^{n} t_{j}=0\right\}
$$

is a maximal Abelian subspace of \mathfrak{p}.
(a) Prove (without appealing to the general theorem) any maximal abelian subspace of \mathfrak{p} is of the form $S \mathfrak{a} S^{-1}$ where $S \in S O(n)$.
(b) Show that $X \in \mathfrak{p}$ is a regular element if and only if all of its eigenvalues are distinct.

Exercise 2 (Maximal abelian subspaces and regular elements in $\mathfrak{s p}(2 n, \mathbb{R}))$. Let $\mathfrak{g}=\mathfrak{s p}(2 n, \mathbb{R})$. Recall that a Cartan decomposition of \mathfrak{g} is given by $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ where

$$
\mathfrak{p}=\left\{\left(\begin{array}{cc}
A & B \\
B & -A
\end{array}\right): A=A^{t}, B=B^{t}\right\}
$$

and

$$
\mathfrak{k}=\left\{\left(\begin{array}{cc}
A & B \\
-B & A
\end{array}\right): A=-A^{t}, B=B^{t}\right\} .
$$

(a) Define

$$
\mathfrak{a}=\left\{\left(\begin{array}{cc}
A & 0 \\
0 & -A
\end{array}\right): A=\operatorname{diag}\left(t_{1}, \ldots, t_{n}\right) \cdot\right\}
$$

Prove that A is a maximal abelian subspace of \mathfrak{p}.
(b) Show that $X \in \mathfrak{p}$ is a regular element if and only if all of its eigenvalues are distinct and non-zero.

Exercise 3 (The Siegel upper half space). Let

$$
\mathbb{H}_{n}:=\left\{Z \in \mathbb{C}^{n \times n}: Z=Z^{t}, \operatorname{Im}(Z) \text { is positive-definite }\right\}
$$

Find an explicit isomorphism between \mathbb{H}_{n} and $\operatorname{Sp}(2 n, \mathbb{R}) /(\operatorname{SO}(2 n) \cap \operatorname{Sp}(2 n, \mathbb{R}))$. Use this and the previous exercise to construct a maximal flat of \mathbb{H}_{n}.

Hint: Consider the map

$$
\begin{aligned}
\varphi: \operatorname{Sp}(2 n, \mathbb{R}) & \rightarrow \mathbb{H}_{n} \\
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) & \mapsto(A i+B) \cdot(C i+D)^{-1}
\end{aligned}
$$

Exercise 4 (Irreducible representations of $\mathfrak{s l}(2, \mathbb{C})$). Let $V=\mathbb{C}[X, Y]$ be the vector space of polynomials in two variables. Let V_{m} denote the vector subspace of all homogeneous polynomials of degree m. This has a basis given by the monomials $X^{m}, X^{m-1} Y, \ldots, Y^{m}$. We turn this vector subspace into a module for $\mathfrak{s l}(2, \mathbb{C})$ by defining a Lie algebra homomorphism $\varphi: \mathfrak{s l}(2, \mathbb{C}) \rightarrow \mathfrak{g l}\left(V_{m}\right)$ in the following way

$$
\varphi\left(\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right)=X \frac{\partial}{\partial Y}, \quad \varphi\left(\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\right)=Y \frac{\partial}{\partial X}, \quad \varphi\left(\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right)=X \frac{\partial}{\partial X}-Y \frac{\partial}{\partial Y}
$$

Show that this defines an irreducible representation of $\mathfrak{s l}(2, \mathbb{C})$.

