Prof. Dr. A. lozzi Symmetric Spaces FS 2023

Solutions Exercise Sheet 1

The Lie Groups lecture notes to which we refer in the solutions can be found on the course webpage.

1. Let G = SL2(R). The aim of this exercise is to show that Gz = SLy(Z) is a lattice in G.

(a) Argue that Gz is discrete in G and that both G and Gz are unimodular.

Solution: Since SL,(7Z) is contained in the topological space Z"*", a discrete set of
R™*™ the fact that Gz is discrete in G follows by restriction from R™*" to GG. As a discrete
group Gz is unimodular (note that each counting measure on Gy is a bi-invariant Haar
measure). GG is unimodular as a closed normal Lie subgroup (Lie, Groups Lectre Notes, Prop. )
of the unimodular Lie group GL,(R). Recall that GL,(R) has bi-invariant Haar measure
| det(xij)\_ld:cu e d.’I}nn

From this we know that G/G7z admits a nonzero G-invariant measure x4 which is unique up to
a non-zero constant. In order to show that Gy is a lattice we have to show that u(G/Gz) < co.
For this, we will use the following fact:

(b) Assume that there exists a measurable set A C G of finite measure such that every
Gyz-orbit intersects A, i.e. for every g € G there exists some v € Gz such that gy € A.
Show that u(G/Gz) is finite.

Solution: Wul's Theorewm (Lie groups Ledhure Notes, Thm 1.4) for the (integrable) charac-
teristic function x4 of A in G states that

u) = [ xators = [ N (f Z k) d2Go)

By assumption, the inner integral is always greater than some absolute constant depending
only on the Haar measure of Gz. (Recall that the Haar measure on Gz must be a counting
measure.) Thus, we infer from the above equation that p(A) > cu(G/Gz).

We delay the general proof for a moment to consider a classical case, namely n = 2. It
is also closely related to symmetric spaces. In fact, the complex upper half plane H is a
globally symmetric space, as we will see. As a Riemannian manifold it is isomorphic to the
hyperbolic plane H?, a symmetric space of non-compact type. It is even a complex manifold
and the complex structure is compatible with its structure as a Riemannian manifold. Thus,
it belongs to the important subclass of Hermitian symmetric spaces.

(c) Show that the map sending

az+b
cz+d

g:(z Z) €SLe(R) to 2+ g - 2:=

is a group homomorphism SLy(R) — Bih(H?), where Bih(H?) denotes the biholomorphic
maps of the complex upper half plane H? = {z € C|Im(z) > 0}. Show that its kernel is
{£1} where I denotes as usual the 2 x 2 identity matrix.

Solution: Define the automorphy factor j : SLy(R) x H — C by

j(v,2) = (cz + d), where v = (Z Z) .



For all z € ‘H one has the trivial matrix relation
z\ _ f(az+b\ . vz
7<1> = <cz+d) —J(%Z)(1>-
Given «, f € SLs(R) one now calculates a3 (i) in two different ways: This yields both
o (i) = j(0B,2) ((“?)Z>

an (7) = sta820566.2) ("]7)).

One deduces the automorphy relation

jlaB, z) = jla, 82)j(B, 2) for all o, B € SLy(R), z € H,

and

and furthermore
(af)z = aBz) for a, f € SLy(R), z € H.

This relation shows that the map SLy(R) — Bih(H) is indeed a homomorphism. The
remaining assertions are straightforward to verify.

(d) Prove that the induced homomorphism
PSL;(R) = SLy(R)/ {£I} — Bih(H?)

of (c) is actually an isomorphism. For the action of SL2(R) on H? from above determine
the orbit Gi and stabilizer K of i € H2. (Show also that K is compact.) Using this,
show that we have a diffeomorphism

G/K —H? g+—sg-i.

Solution: It suffices to show that every biholomorphism of ‘H is actually in the image of
SLy(R) — Bih(H). The Cayley transform
z—1
z+1
sends the upper half plane H biholomorphically onto the unit disc D around 0. Therefore,
it establishes an isomorphism Bih(H) = Bih(D) by 1 + p o1 o ¢! Since
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it suffices to show that every biholomorphism of D is in the image of the homomorphism
g — [, defined as follows: For each

9= (‘g Z) € SU1(C), a,b € C, |al* — p* =1,

the map
fy i 2 (az+b)/(bz + a)



is a biholomorphism of D. Indeed,
|(az +b)/(bz +a)| <1 < (az+b)(@az+b)< (bz+a)(bz+a)
|af*[2]* + [b]* < [b*|2]* + |al*
= |z| <L
shows that f, sends D to D. It has inverse f,-1 because the argument from (3a) shows that

fg20fg0 = [g2g1, 1.€. g — [, is a homomorphism. Now, let ¢ be an arbitrary biholomorphism
of D. Then,

Y = (fy0¢), where g =

1 < 1 —(0)
1+ ]p(0)) \=¢(0) 1

is also a biholomorphism of D with the additional property that ¢(0) = 0. The classical
Schwarz Lemma yields (z) = €z, § € [0,27). One infers easily ¢ € SU;1(C) from this
and that PSLy(R) — Bih(H) is an isomorphism.

Since
y2  z . .
0 y /2 1=ty
)

for any x € R, y € R* the orbit Gi equals H. Furthermore, given g = (Z d) € SLy(R)

) € SU,1(C),

the following equivalences hold
ai +b
ci+d

Taking real and imaginary parts, one deduces that SO>(R) is the stabilizer of i. That
G/K — H is a diffeomorphism follows from standard arguments of differential geometry:
In fact, it is a homeomorphism by Helgason, Theorem II1.3.2, and a diffeomorphism by
Helgason, Theorem 11.4.3.(a).

a b
P_{<O a_1> |a,bER,a>0},

gl =1 < =i<=ai+b=—c+1id.

(e) Set K = S02(R),

Prove the Iwasawa decomposition, i.e. show that

Px K — G, (p,k) — pk

and
N x A— P, (n,a) — na

are diffeomorphisms. Are these also Lie group isomorphisms?
Show that P is a semidirect product N x A and that we have the diffeomorphism N x A
H2.

Solution: Both PNK = { (é (1)) }and NNA = (é (1)> } are easily verifiable identities.

The two maps P x K — G and N x A — P are hence injective. Let us show next that
P x K — @ is surjective: Given g € G we can regard the matrix of g = (f1, f2), fi € R?, as
determining a basis {fi, fo} of R%. We introduce on R? the canonical scalar product (-, -).
Now, we can use the Gram-Schmidt algorithm for (-,-) on {fi, fo} to find a matrix p € P



such that p~'g € K. In addition, a simple algebraic argument shows that N x A — P
is surjective. Neither P x K — G nor N x A — P is a homomorphism. However, since
NA=P,NNA={1} and N < P one has P = N x A.

Caveat: Showing that a differentiable map is bijective does not suffice to prove that it is

a diffeomorphism, i.e. has a differentiable inverse. However, the Gram-Schmidt algorithm
provides us directly with a differentiable inverse.

Finally, H 2 G/K = (N x A x K)/K = N x A.

(f) Prove that K is unimodular by showing that dug> = y~2dxdy, z = x+iy, is a G-invariant
volume form on the G-homogeneous space H?.

Solution: The derivative of f, : z — %+t ig
g cz+d

a(cz + d) — c(az + b)
(cz + d)?
The Cauchy-Riemann differential equations imply

&;f"—) &;yfg—) _ (Re(cz+d)™? —Im(cz+d)2
a(I_g;fs_) ‘9(1_3”1/@_) " \Im(cz+d)™? Re(cz+d)?

= (cz +d)%

and the determinant A of this matrix is
[Re(cz + d) %] g [Im(cz + d) 2] ? = ez + d|™*.
From this we deduce
g*(drdy) = Adxdy = |cz + d|*dxdy.
Furthermore,
az+b
cz+d

g*(y~?) = Im( ) 2=y ?|ez+d|*

and therefore

9*(duy) = g*(y dedy) = y~*dady = dpy,.
Now, the assertion follows from Weil’s theorem

(g) Let
F={2€H?|(|]z] >1and —1/2 <Re(z) <1/2) or (2| =1 and —1/2 < Re(z) <0)}.
Show that for all z € H? the orbit Gz intersects F in a unique point.
Hint: For every Gz-orbit Gzz, z € H?, consider w € Gzz with maximal imaginary part.

Solution: First of all, note that
az+b,  Im(z)

I = .
m(cz+d lcz + d|?

If ¢ = 0 then Im(2)/|cz +d|* = Im(z)/|d|? and Im(2) /|cz +d|* < Im(z)~!|c|? elsewise. Hence,
given some 2z € ‘H the function

Gz — H, v~ Im(yz)

obtains a maximum on Gz, i.e. there exists v, € Gz such that

Im(7o2) = max{Im(yz)}.



: . 11 !
Write w = v,z € Gzz. Since (O 1) acts as a translation z — (z + 1) on H we may assume

that —1/2 < Re(w) < 1/2. In addition, since ( y

1 0) acts as inversion z — —z~ ! on ‘H

and 1 1o e

m(w

Im(——) = (——+ =)/(2i) =

m(—) = (- + )/(2) = T

one clearly has |w| > 1. It remains to show that we may impose —1/2 < Re(w) < 0 if
|w| = 1 but this follows easily from the fact that z — —z~! sends

{z€eH | (J]z] =1 and 0 < Re(z) <1/2)}

to

{z€H| (J]z] =1 and —1/2 < Re(z) <0)}.
Thus, each orbit Gzz intersects F. To actually show that F is a fundamental domain it
remains to prove that {z,vz} C F for some v € Gz implies vz = z, i.e. 7 € Stab(z). This
can be done using considerations similar to those above and we leave these to the reader.

(h) Show that the volume of F with respect to gz is 7/3. Deduce that u(G/Gz) < oo.

Solution: This is a simple calculation:

1/2 )
/ dpy, = / y~ 2dydx
F ~1/2 JV/1=2?

1/2
y=00

- /_1/2 ]

1/2
= / (1 — %)~ Y2dy
—1/2

- [arcsin(m)]izl_/f/2 = 77/ 3:

The second assertion follows from part (b) applied to A = F.



2. Consider the hyperbolic n-space

H" = {p e R""": b(p,p) = —1 and pp41 > 1}

defined by the bilinear form b(p,q) = p1g1 + ... + PnGn — Pnt+19dn+1. The tangent space at a
point p € H™ is defined as

(a)

TH — {33 c R There exists a smooth path v: (—1,1) — H”}
HH" = : .

such that y(0) = p and ¥(0) =«
Show that T,H" = {z € R""!: b(p,z) = 0}.
Solution. Let z € T,H". Let v: (—1,1) — H" be a smooth path such that v(0) = p
and 4(0) = x. For every t € (—1,1), b(v(t),7(t)) = —1, since « takes values in H". We
write y(t) = (71(¢), -+, Ynt1(t)). Taking derivatives results in
d d [ 5 o - . .
0= 2 b(v(£), (1) = — | D_%(® =41 | = D 20BFi() — 2y ()i (1)
i=1 i=1
and at ¢ = 0 this is

0= Z%(O)%(O) = n+1(0)n41(0) = Zpixi — Pnt1 - Tng1 = b(p, @).
i=1

i=1
We have shown that T,H" C {z € R"™': b(p,z) = 0} but since dim T,H" = n we have
equality.

Show that g, = b|7,un : T,H" x T,H™ — R is a positive definite symmetric bilinear form
on T,H™. This means that g, is a scalar product and (H", g) is a Riemannian manifold.
Hint: Use (a) and the Cauchy-Schwarz-inequality on R™.

Solution. Bilinearity and symmetry b(z,y) = b(y, x) follow directly. To show positive
definiteness, we use the definition of H"™ and (a) to write

pz(?,m)eH"cR"xR

T = (?,%> € T,H" CR" xR

71> +1
where < - ,- > is the standard scalar product in R™. To show positive definiteness it
remains to prove that for all x € T,H"
b(z,z) > 0.

Indeed, by the Cauchy-Schwarz-inequality
<pa>* <|PPIZP <[PPIZP+ 7P = (PP + D7

and thus )
2P > <p,x>
“ PP +1

and

<p,x>2?

_ 2 _
b(w,x) = | 7| WZO



(c) Show that the map s,: R"™! — R ¢+ —2p-b(p, ¢) — ¢ defines a well defined geodesic
symmetry of H", i.e. it is an involution, with an isolated fixed point p. This means that
the hyperbolic plane H" is a symmetric space.

Solution. To see that s, is well-defined we write

pZ(\/??QiJFJ, q=<\/ﬁ%)eH"cR”xR.
—2Pb(p,q) — )
g +1

|2 4 1b(p, q) —

We have
sp(q) = —2pb(p,q) —q = (_2 |

where

b(p,q) =< 7, q > —\/I?P + 1\/\?\2 T

The calculation
b(sp(q), sp(q)) = 4T 1*b(p,q)> +4 < T, T > b(p,q) + |7
— 40T + Db, @) + /1T + 13/1 712 + 1b(0.0) + [T +1
=4< T T > blp.q) — 4b(p.)* — 4T + 1/ [T + 1b(p.g) 1
= 4b(p, q)b(p, q) — 4b(p,¢)* — 1= —1

shows that s,(q) € H2.

Note that s,(p) = —2p(—1) —p = p is a fixed point.

Next we show that s, is an isometry. We need to look at the differential
dpsp: TyM — Ts (yM =T, M.

of sp: q+— —2pb(p, q) —q. If we write the points ¢, p € H" C R"! in the standard basis {e; };,
we get the partial derivatives

0 p; ifi<n
axib(p,-) = {_an fi=n+1

is _ —2p-p;—e; fi<n
Or; P |20 Pny1 —€ny1 Hi=n+1




and thus for v € T, M we have

—2p7 — 1 —2p1p2 e 2p1Pns1
—2pap1 —2p3 — 1 E 2paPn+1
(dpsp)v = . . . . v
—2pn11p1 —2pn11D2 e 2p2 -1
—2p3vy — 2p1pavs — -+ + 2P1Pnt1Vnt1
—2pop1v1 — 2p3vs — -+ + 2PoPr 1 Unt1
= . —
—2Dp41P101 — 2Pn41P2V2 — -+ + 2Ph L Unp
—2b(p, v)p1
—2b(p, v)p2
= . —v=—v
—2b(p, v)pn

where we used that b(p,v) = 0 from part (a). By bilinearity from (b)

gsp(p)((Dpsp)Uv (Dpsp)w) = gp(—v, —w) = gp(v,w),

SO Sp 18 an isometry.

We need to show that s, is a symmetry. That p is an isolated fixed point of s, can be seen
by the following argument. Let ¢ € H™ be a fixed point s,(q) = ¢, then —2pb(p,q) — ¢ = ¢,
so ¢ = —b(p,q)p, in particular ¢ = Ap is a scaled version of p for A = —b(p,q). But since
p,qg € H*, —1 = b(q,q) = b(Ap,\p) = A\?b(p,p) = —1, so A = £1. The A = —1 solution
corresponds to g,4+1 < 0 which is excluded since H™ is only the upper hyperboloid. We
showed that ¢ = p is the only fixed point of s, in particular it is an isolated fixed point.

By lemma IL5 of the lecture, d,s, = —Id7, g~ is equivalent to s, o s, = Idgn. Alternatively
the calculation
sp 0 5p(q) = s(=2pb(p, ) — q)
= —2pb(p, —2pb(p, q) — q) — (—=2pb(p,q) — q)
= 4pb(p, 9)b(p, p) + 2pb(p, q) + 2pb(p.q) +q=q
shows the same.

This concludes the proof, that H" is a symmetric space.

. Show that A — gAg' defines a group action of SL(n,R) 3 g on
P(n) = {A € Myxn(R): A= A" detA=1, A>>0}.

Show that this action is transitive, i.e. VA, B € P(n) 3g € SL(n,R): gAg* = B. You may
use the Linear-Algebra-fact that symmetric matrices are orthogonally diagonalizable, i.e. if
A = At then 3Q € SO(n,R) such that QAQ? is diagonal.



Solution. We write the group action as g.A = gAly. We first need to show that the action
is well defined.

Symmetry: (g.4) = (gAlg) = g'Alg = gAlg = g.A.

Determinant: det(g.A) = detgdet Adet gy = detA = 1.

Positive definiteness: Let z € R™ \ 0. ‘zg.Az = 'rgA gz = (gz) Algz > 0, since ‘gz € R\ 0.
Next, we check the two axioms of a group action.

Identity: Idsy (. g)-A =Id Ald = A,

Compatibility: (gh).A = ghA'(gh) = ghA'h'lg = g(h.A) g = g.(h.A).

It remains to show that the action is transitive. Let A, B € P(n). We can use linear algebra
to get @, R € SO(n) < SL(n,R) such that Q.A and R.B are diagonal, have determinant 1 and
are positive definite (by the well-definedness of the group action). Positive definiteness implies
that all entries are non-negative. Then the matrix A = (Q.A) - (R.B)~! is also diagonal, has
determinant 1 and positive elements on the diagonal. We can therefore take the component
wise root VA of A. Define g = Q~'vAR € SL(n,R) and use the fact that R.B commutes
with v/A since they are diagonal to see that

gB=Q ' VARB=Q 'VARB)VA=Q (x/XVT\ - R.B)
=Q ' (A-RB) =Q '.((QA)(RB)"YR.B)=Q QA=A

this shows that from any point B € P(n) you can go to any point A € P(n) by the action of
SL(n,R), i.e. the action is transitive.



