Solutions Exercise Sheet 1

The Lie Groups lecture notes to which we refer in the solutions can be found on the course webpage.

1. Let $G=\mathrm{SL}_{2}(\mathbb{R})$. The aim of this exercise is to show that $G_{\mathbb{Z}}=\mathrm{SL}_{2}(\mathbb{Z})$ is a lattice in G.
(a) Argue that $G_{\mathbb{Z}}$ is discrete in G and that both G and $G_{\mathbb{Z}}$ are unimodular.

Solution: Since $S L_{n}(\mathbb{Z})$ is contained in the topological space $\mathbb{Z}^{n \times n}$, a discrete set of $\mathbb{R}^{n \times n}$, the fact that $G_{\mathbb{Z}}$ is discrete in G follows by restriction from $\mathbb{R}^{n \times n}$ to G. As a discrete group $G_{\mathbb{Z}}$ is unimodular (note that each counting measure on $G_{\mathbb{Z}}$ is a bi-invariant Haar measure). G is unimodular as a closed normal Lie subgroup (Lie Groups Lecture Notes, Prop. 2.3) of the unimodular Lie group $G L_{n}(\mathbb{R})$. Recall that $G L_{n}(\mathbb{R})$ has bi-invariant Haar measure $\left|\operatorname{det}\left(x_{i j}\right)\right|^{-1} d x_{11} \ldots d x_{n n}$.

From this we know that $G / G_{\mathbb{Z}}$ admits a nonzero G-invariant measure μ which is unique up to a non-zero constant. In order to show that $G_{\mathbb{Z}}$ is a lattice we have to show that $\mu\left(G / G_{\mathbb{Z}}\right)<\infty$. For this, we will use the following fact:
(b) Assume that there exists a measurable set $A \subseteq G$ of finite measure such that every $G_{\mathbb{Z}}$-orbit intersects A, i.e. for every $g \in G$ there exists some $\gamma \in G_{\mathbb{Z}}$ such that $g \gamma \in A$. Show that $\mu\left(G / G_{\mathbb{Z}}\right)$ is finite.

Solution: Weil's Theorem (Lie groups Lecture Notes, Thm 2.4) for the (integrable) characteristic function χ_{A} of A in G states that

$$
\mu(A)=\int_{G} \chi_{A}(g) d g=\int_{G / G_{\mathbb{Z}}}\left(\int_{G_{\mathbb{Z}}} \chi_{A}(\gamma h) d h\right) d\left(\gamma G_{\mathbb{Z}}\right)
$$

By assumption, the inner integral is always greater than some absolute constant depending only on the Haar measure of $G_{\mathbb{Z}}$. (Recall that the Haar measure on $G_{\mathbb{Z}}$ must be a counting measure.) Thus, we infer from the above equation that $\mu(A) \geq c \mu\left(G / G_{\mathbb{Z}}\right)$.

We delay the general proof for a moment to consider a classical case, namely $n=2$. It is also closely related to symmetric spaces. In fact, the complex upper half plane \mathcal{H} is a globally symmetric space, as we will see. As a Riemannian manifold it is isomorphic to the hyperbolic plane H^{2}, a symmetric space of non-compact type. It is even a complex manifold and the complex structure is compatible with its structure as a Riemannian manifold. Thus, it belongs to the important subclass of Hermitian symmetric spaces.
(c) Show that the map sending

$$
g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{R}) \text { to } z \longmapsto g \cdot z:=\frac{a z+b}{c z+d}
$$

is a group homomorphism $\mathrm{SL}_{2}(\mathbb{R}) \rightarrow \operatorname{Bih}\left(\mathbb{H}^{2}\right)$, where $\operatorname{Bih}\left(\mathbb{H}^{2}\right)$ denotes the biholomorphic maps of the complex upper half plane $\mathbb{H}^{2}=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$. Show that its kernel is $\{ \pm I\}$ where I denotes as usual the 2×2 identity matrix.

Solution: Define the automorphy factor $j: S L_{2}(\mathbb{R}) \times \mathcal{H} \rightarrow \mathbb{C}$ by

$$
j(\gamma, z)=(c z+d), \text { where } \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

For all $z \in \mathcal{H}$ one has the trivial matrix relation

$$
\gamma\binom{z}{1}=\binom{a z+b}{c z+d}=j(\gamma, z)\binom{\gamma z}{1} .
$$

Given $\alpha, \beta \in S L_{2}(\mathbb{R})$ one now calculates $\alpha \beta\binom{z}{1}$ in two different ways: This yields both

$$
\alpha \beta\binom{z}{1}=j(\alpha \beta, z)\binom{(\alpha \beta) z}{1}
$$

and

$$
\alpha \beta\binom{z}{1}=j(\alpha, \beta z) j(\beta, z)\binom{\alpha(\beta z)}{1} .
$$

One deduces the automorphy relation

$$
j(\alpha \beta, z)=j(\alpha, \beta z) j(\beta, z) \text { for all } \alpha, \beta \in S L_{2}(\mathbb{R}), z \in \mathcal{H},
$$

and furthermore

$$
(\alpha \beta) z=\alpha(\beta z) \text { for } \alpha, \beta \in S L_{2}(\mathbb{R}), z \in \mathcal{H} .
$$

This relation shows that the map $S L_{2}(\mathbb{R}) \rightarrow \operatorname{Bih}(\mathcal{H})$ is indeed a homomorphism. The remaining assertions are straightforward to verify.
(d) Prove that the induced homomorphism

$$
\operatorname{PSL}_{2}(\mathbb{R})=\operatorname{SL}_{2}(\mathbb{R}) /\{ \pm I\} \rightarrow \operatorname{Bih}\left(\mathbb{H}^{2}\right)
$$

of (c) is actually an isomorphism. For the action of $\mathrm{SL}_{2}(\mathbb{R})$ on \mathbb{H}^{2} from above determine the orbit $G i$ and stabilizer K of $i \in \mathbb{H}^{2}$. (Show also that K is compact.) Using this, show that we have a diffeomorphism

$$
G / K \longrightarrow \mathbb{H}^{2}, g \longmapsto g \cdot i .
$$

Solution: It suffices to show that every biholomorphism of \mathcal{H} is actually in the image of $S L_{2}(\mathbb{R}) \rightarrow \operatorname{Bih}(\mathcal{H})$. The Cayley transform

$$
\varphi: z \longmapsto \frac{z-i}{z+i}
$$

sends the upper half plane \mathcal{H} biholomorphically onto the unit disc \mathcal{D} around 0 . Therefore, it establishes an isomorphism $\operatorname{Bih}(\mathcal{H}) \stackrel{\sim}{\rightarrow} \operatorname{Bih}(\mathcal{D})$ by $\psi \mapsto \varphi \circ \psi \circ \varphi^{-1}$. Since

$$
\left[\frac{1}{\sqrt{2 i}}\left(\begin{array}{cc}
1 & -i \\
1 & i
\end{array}\right)\right] S L_{2}(\mathbb{R})\left[\frac{1}{\sqrt{2 i}}\left(\begin{array}{cc}
i & i \\
-1 & 1
\end{array}\right)\right]=S U_{1,1}(\mathbb{C})
$$

with

$$
S U_{1,1}(\mathbb{C})=\left\{\left(\begin{array}{ll}
a & b \\
\bar{b} & \bar{a}
\end{array}\right)\left|a, b \in \mathbb{C},|a|^{2}-|b|^{2}=1\right\}\right.
$$

it suffices to show that every biholomorphism of \mathcal{D} is in the image of the homomorphism $g \mapsto f_{g}$ defined as follows: For each

$$
g=\left(\begin{array}{ll}
a & b \\
\bar{b} & \bar{a}
\end{array}\right) \in S U_{1,1}(\mathbb{C}), a, b \in \mathbb{C},|a|^{2}-|b|^{2}=1,
$$

the map

$$
f_{g}: z \longmapsto(a z+b) /(\bar{b} z+\bar{a})
$$

is a biholomorphism of \mathcal{D}. Indeed,

$$
\begin{aligned}
|(a z+b) /(\bar{b} z+\bar{a})|<1 & \Longleftrightarrow(a z+b)(\bar{a} \bar{z}+\bar{b})<(\bar{b} z+\bar{a})(b \bar{z}+a) \\
& \Longleftrightarrow|a|^{2}|z|^{2}+|b|^{2}<|b|^{2}|z|^{2}+|a|^{2} \\
& \Longleftrightarrow|z|<1 .
\end{aligned}
$$

shows that f_{g} sends \mathcal{D} to \mathcal{D}. It has inverse $f_{g^{-1}}$ because the argument from (3a) shows that $f_{g_{2}} \circ f_{g_{1}}=f_{g_{2} g_{1}}$, i.e. $g \mapsto f_{g}$ is a homomorphism. Now, let φ be an arbitrary biholomorphism of \mathcal{D}. Then,

$$
\psi=\left(f_{g} \circ \varphi\right), \text { where } g=\frac{1}{\sqrt{1+|\varphi(0)|^{2}}}\left(\begin{array}{cc}
\frac{1}{-\varphi(0)} & -\varphi(0) \\
1
\end{array}\right) \in S U_{1,1}(\mathbb{C})
$$

is also a biholomorphism of \mathcal{D} with the additional property that $\psi(0)=0$. The classical Schwarz Lemma yields $\psi(z)=e^{i \theta} z, \theta \in[0,2 \pi)$. One infers easily $\varphi \in S U_{1,1}(\mathbb{C})$ from this and that $P S L_{2}(\mathbb{R}) \rightarrow \operatorname{Bih}(\mathcal{H})$ is an isomorphism.

Since

$$
\left(\begin{array}{cc}
y^{1 / 2} & x \\
0 & y^{-1 / 2}
\end{array}\right) i=x+i y
$$

for any $x \in \mathbb{R}, y \in \mathbb{R}^{+}$the orbit Gi equals \mathcal{H}. Furthermore, given $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{R})$ the following equivalences hold

$$
g i=i \Longleftrightarrow \frac{a i+b}{c i+d}=i \Longleftrightarrow a i+b=-c+i d .
$$

Taking real and imaginary parts, one deduces that $\mathrm{SO}_{2}(\mathbb{R})$ is the stabilizer of i. That $G / K \longrightarrow \mathcal{H}$ is a diffeomorphism follows from standard arguments of differential geometry: In fact, it is a homeomorphism by Helgason, Theorem II.3.2, and a diffeomorphism by Helgason, Theorem II.4.3.(a).
(e) Set $K=\mathrm{SO}_{2}(\mathbb{R})$,

$$
\begin{aligned}
& P=\left\{\left.\left(\begin{array}{cc}
a & b \\
0 & a^{-1}
\end{array}\right) \right\rvert\, a, b \in \mathbb{R}, a>0\right\}, \\
& A=\left\{\left.\left(\begin{array}{cc}
y^{1 / 2} & 0 \\
0 & y^{-1 / 2}
\end{array}\right) \right\rvert\, y \in \mathbb{R}^{+}\right\}, \text {and } \\
& N=\left\{\left.\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \right\rvert\, x \in \mathbb{R}\right\} .
\end{aligned}
$$

Prove the Iwasawa decomposition, i.e. show that

$$
P \times K \longrightarrow G,(p, k) \longmapsto p k
$$

and

$$
N \times A \longrightarrow P,(n, a) \longmapsto n a
$$

are diffeomorphisms. Are these also Lie group isomorphisms?
Show that P is a semidirect product $N \rtimes A$ and that we have the diffeomorphism $N \times A \cong$ \mathbb{H}^{2}.

Solution: Both $P \cap K=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right\}$ and $N \cap A=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right\}$ are easily verifiable identities. The two maps $P \times K \rightarrow G$ and $N \times A \rightarrow P$ are hence injective. Let us show next that $P \times K \rightarrow G$ is surjective: Given $g \in G$ we can regard the matrix of $g=\left(f_{1}, f_{2}\right), f_{i} \in \mathbb{R}^{2}$, as determining a basis $\left\{f_{1}, f_{2}\right\}$ of \mathbb{R}^{2}. We introduce on \mathbb{R}^{2} the canonical scalar product $\langle\cdot, \cdot\rangle$. Now, we can use the Gram-Schmidt algorithm for $\langle\cdot, \cdot\rangle$ on $\left\{f_{1}, f_{2}\right\}$ to find a matrix $p \in P$
such that $p^{-1} g \in K$. In addition, a simple algebraic argument shows that $N \times A \rightarrow P$ is surjective. Neither $P \times K \rightarrow G$ nor $N \times A \rightarrow P$ is a homomorphism. However, since $N A=P, N \cap A=\{1\}$ and $N \triangleleft P$ one has $P=N \rtimes A$.

Caveat: Showing that a differentiable map is bijective does not suffice to prove that it is a diffeomorphism, i.e. has a differentiable inverse. However, the Gram-Schmidt algorithm provides us directly with a differentiable inverse.

Finally, $\mathcal{H} \cong G / K \cong(N \times A \times K) / K \cong N \times A$.
(f) Prove that K is unimodular by showing that $d \mu_{\mathbb{H}^{2}}=y^{-2} d x d y, z=x+i y$, is a G-invariant volume form on the G-homogeneous space \mathbb{H}^{2}.

Solution: The derivative of $f_{g}: z \mapsto \frac{a z+b}{c z+d}$ is

$$
\frac{a(c z+d)-c(a z+b)}{(c z+d)^{2}}=(c z+d)^{-2} .
$$

The Cauchy-Riemann differential equations imply

$$
\left(\begin{array}{cc}
\frac{\partial\left(\operatorname{Re} f_{g}\right)}{\partial x} & \frac{\partial\left(\operatorname{Re} f_{g}\right)}{\partial y} \\
\frac{\partial\left(\operatorname{II} f_{g}\right)}{\partial x} & \frac{\partial\left(\operatorname{Im} f_{g}\right)}{\partial y}
\end{array}\right)=\left(\begin{array}{cc}
\operatorname{Re}(c z+d)^{-2} & -\operatorname{Im}(c z+d)^{-2} \\
\operatorname{Im}(c z+d)^{-2} & \operatorname{Re}(c z+d)^{-2}
\end{array}\right)
$$

and the determinant Δ of this matrix is

$$
\left[\operatorname{Re}(c z+d)^{-2}\right]^{2}+\left[\operatorname{Im}(c z+d)^{-2}\right]^{2}=|c z+d|^{-4} .
$$

From this we deduce

$$
g^{*}(d x d y)=\Delta d x d y=|c z+d|^{-4} d x d y .
$$

Furthermore,

$$
g^{*}\left(y^{-2}\right)=\operatorname{Im}\left(\frac{a z+b}{c z+d}\right)^{-2}=y^{-2}|c z+d|^{4}
$$

and therefore

$$
g^{*}\left(d \mu_{\mathcal{H}}\right)=g^{*}\left(y^{-2} d x d y\right)=y^{-2} d x d y=d \mu_{\mathcal{H}} .
$$

Now, the assertion follows from Weil's theorem
(g) Let

$$
\mathcal{F}:=\left\{z \in \mathbb{H}^{2} \mid(|z|>1 \text { and }-1 / 2 \leq \operatorname{Re}(z)<1 / 2) \text { or }(|z|=1 \text { and }-1 / 2 \leq \operatorname{Re}(z) \leq 0)\right\} .
$$

Show that for all $z \in \mathbb{H}^{2}$ the orbit $G_{\mathbb{Z}} z$ intersects \mathcal{F} in a unique point.
Hint: For every $G_{\mathbb{Z}}$-orbit $G_{\mathbb{Z}} z, z \in \mathbb{H}^{2}$, consider $w \in G_{\mathbb{Z}} z$ with maximal imaginary part.

Solution: First of all, note that

$$
\operatorname{Im}\left(\frac{a z+b}{c z+d}\right)=\frac{\operatorname{Im}(z)}{|c z+d|^{2}} .
$$

If $c=0$ then $\operatorname{Im}(z) /|c z+d|^{2}=\operatorname{Im}(z) /|d|^{2}$ and $\operatorname{Im}(z) /|c z+d|^{2} \leq \operatorname{Im}(z)^{-1}|c|^{2}$ elsewise. Hence, given some $z \in \mathcal{H}$ the function

$$
G_{\mathbb{Z}} \longrightarrow \mathcal{H}, \gamma \mapsto \operatorname{Im}(\gamma z)
$$

obtains a maximum on $G_{\mathbb{Z}}$, i.e. there exists $\gamma_{0} \in G_{\mathbb{Z}}$ such that

$$
\operatorname{Im}\left(\gamma_{0} z\right)=\max _{\gamma \in G_{\mathbb{Z}}}\{\operatorname{Im}(\gamma z)\} .
$$

Write $w=\gamma_{0} z \in G_{\mathbb{Z}} z$. Since $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ acts as a translation $z \mapsto(z+1)$ on \mathcal{H} we may assume that $-1 / 2 \leq \operatorname{Re}(w)<1 / 2$. In addition, since $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ acts as inversion $z \mapsto-z^{-1}$ on \mathcal{H}
and

$$
\operatorname{Im}\left(-\frac{1}{w}\right)=\left(-\frac{1}{w}+\frac{1}{\bar{w}}\right) /(2 i)=\frac{\operatorname{Im}(w)}{|w|^{2}}
$$

one clearly has $|w| \geq 1$. It remains to show that we may impose $-1 / 2 \leq \operatorname{Re}(w) \leq 0$ if $|w|=1$ but this follows easily from the fact that $z \mapsto-z^{-1}$ sends

$$
\{z \in \mathcal{H} \mid(|z|=1 \text { and } 0<\operatorname{Re}(z) \leq 1 / 2)\}
$$

to

$$
\{z \in \mathcal{H} \mid(|z|=1 \text { and }-1 / 2 \leq \operatorname{Re}(z)<0)\} .
$$

Thus, each orbit $G_{\mathbb{Z}} z$ intersects \mathcal{F}. To actually show that \mathcal{F} is a fundamental domain it remains to prove that $\{z, \gamma z\} \subset \mathcal{F}$ for some $\gamma \in G_{\mathbb{Z}}$ implies $\gamma z=z$, i.e. $\gamma \in \operatorname{Stab}(z)$. This can be done using considerations similar to those above and we leave these to the reader.
(h) Show that the volume of \mathcal{F} with respect to $\mu_{\mathbb{H}^{2}}$ is $\pi / 3$. Deduce that $\mu\left(G / G_{\mathbb{Z}}\right)<\infty$.

Solution: This is a simple calculation:

$$
\begin{aligned}
\int_{\mathcal{F}} d \mu_{\mathcal{H}} & =\int_{-1 / 2}^{1 / 2} \int_{\sqrt{1-x^{2}}}^{\infty} y^{-2} d y d x \\
& =\int_{-1 / 2}^{1 / 2}\left[-y^{-1}\right]_{y=\sqrt{1-x^{2}}}^{y=\infty} d x \\
& =\int_{-1 / 2}^{1 / 2}\left(1-x^{2}\right)^{-1 / 2} d x \\
& =[\arcsin (x)]_{x=-1 / 2}^{x=1 / 2}=\pi / 3
\end{aligned}
$$

The second assertion follows from part (b) applied to $A=\mathcal{F}$.
2. Consider the hyperbolic n-space

$$
\mathbb{H}^{n}=\left\{p \in \mathbb{R}^{n+1}: b(p, p)=-1 \text { and } p_{n+1} \geq 1\right\}
$$

defined by the bilinear form $b(p, q)=p_{1} q_{1}+\ldots+p_{n} q_{n}-p_{n+1} q_{n+1}$. The tangent space at a point $p \in \mathbb{H}^{n}$ is defined as

$$
T_{p} \mathbb{H}^{n}=\left\{x \in \mathbb{R}^{n+1}: \begin{array}{c}
\text { There exists a smooth path } \gamma:(-1,1) \rightarrow \mathbb{H}^{n} \\
\text { such that } \gamma(0)=p \text { and } \dot{\gamma}(0)=x
\end{array}\right\}
$$

(a) Show that $T_{p} \mathbb{H}^{n}=\left\{x \in \mathbb{R}^{n+1}: b(p, x)=0\right\}$.

Solution. Let $x \in T_{p} \mathbb{H}^{n}$. Let $\gamma:(-1,1) \rightarrow \mathbb{H}^{n}$ be a smooth path such that $\gamma(0)=p$ and $\dot{\gamma}(0)=x$. For every $t \in(-1,1), b(\gamma(t), \gamma(t))=-1$, since γ takes values in \mathbb{H}^{n}. We write $\gamma(t)=\left(\gamma_{1}(t), \cdots, \gamma_{n+1}(t)\right)$. Taking derivatives results in

$$
0=\frac{d}{d t} b(\gamma(t), \gamma(t))=\frac{d}{d t}\left(\sum_{i=1}^{n} \gamma_{i}(t)^{2}-\gamma_{n+1}^{2}\right)=\sum_{i=1}^{n} 2 \gamma_{i}(t) \dot{\gamma}_{i}(t)-2 \gamma_{n+1}(t) \dot{\gamma}_{n+1}(t)
$$

and at $t=0$ this is

$$
0=\sum_{i=1}^{n} \gamma_{i}(0) \dot{\gamma}_{i}(0)-\gamma_{n+1}(0) \dot{\gamma}_{n+1}(0)=\sum_{i=1}^{n} p_{i} x_{i}-p_{n+1} \cdot x_{n+1}=b(p, x)
$$

We have shown that $T_{p} \mathbb{H}^{n} \subset\left\{x \in \mathbb{R}^{n+1}: b(p, x)=0\right\}$ but since $\operatorname{dim} T_{p} \mathbb{H}^{n}=n$ we have equality.
(b) Show that $g_{p}=\left.b\right|_{T_{p} \mathbb{H}^{n}}: T_{p} \mathbb{H}^{n} \times T_{p} \mathbb{H}^{n} \rightarrow \mathbb{R}$ is a positive definite symmetric bilinear form on $T_{p} \mathbb{H}^{n}$. This means that g_{p} is a scalar product and $\left(\mathbb{H}^{n}, g\right)$ is a Riemannian manifold. Hint: Use (a) and the Cauchy-Schwarz-inequality on \mathbb{R}^{n}.
Solution. Bilinearity and symmetry $b(x, y)=b(y, x)$ follow directly. To show positive definiteness, we use the definition of \mathbb{H}^{n} and (a) to write

$$
\begin{gathered}
p=\left(\vec{p}, \sqrt{|\vec{p}|^{2}+1}\right) \in \mathbb{H}^{n} \subset \mathbb{R}^{n} \times \mathbb{R} \\
x=\left(\vec{x}, \frac{<\vec{p}, \vec{x}>}{\sqrt{|\vec{p}|^{2}+1}}\right) \in T_{p} \mathbb{H}^{n} \subset \mathbb{R}^{n} \times \mathbb{R}
\end{gathered}
$$

where $<\cdot, \cdot>$ is the standard scalar product in \mathbb{R}^{n}. To show positive definiteness it remains to prove that for all $x \in T_{p} \mathbb{H}^{n}$

$$
b(x, x) \geq 0
$$

Indeed, by the Cauchy-Schwarz-inequality

$$
<p, x>^{2} \leq|\vec{p}|^{2}|\vec{x}|^{2} \leq|\vec{p}|^{2}|\vec{x}|^{2}+|\vec{x}|^{2}=\left(|\vec{p}|^{2}+1\right)|\vec{x}|^{2}
$$

and thus

$$
|\vec{x}|^{2} \geq \frac{<p, x>^{2}}{|\vec{p}|^{2}+1}
$$

and

$$
b(x, x)=|\vec{x}|^{2}-\frac{<p, x>^{2}}{|\vec{p}|^{2}+1} \geq 0
$$

(c) Show that the map $s_{p}: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}, q \mapsto-2 p \cdot b(p, q)-q$ defines a well defined geodesic symmetry of \mathbb{H}^{n}, i.e. it is an involution, with an isolated fixed point p. This means that the hyperbolic plane \mathbb{H}^{n} is a symmetric space.

Solution. To see that s_{p} is well-defined we write

$$
p=\binom{\vec{p}}{\sqrt{|\vec{p}|^{2}+1}}, \quad q=\binom{\vec{q}}{\sqrt{|\vec{q}|^{2}+1}} \in \mathbb{H}^{n} \subset \mathbb{R}^{n} \times \mathbb{R}
$$

We have

$$
s_{p}(q)=-2 p b(p, q)-q=\binom{-2 \vec{p} b(p, q)-\vec{q}}{-2 \sqrt{|\vec{p}|^{2}+1} b(p, q)-\sqrt{|\vec{q}|^{2}+1}}
$$

where

$$
b(p, q)=<\vec{p}, \vec{q}>-\sqrt{|\vec{p}|^{2}+1} \sqrt{|\vec{q}|^{2}+1}
$$

The calculation

$$
\begin{aligned}
b\left(s_{p}(q), s_{p}(q)\right)= & 4|\vec{p}|^{2} b(p, q)^{2}+4<\vec{p}, \vec{q}>b(p, q)+|\vec{q}|^{2} \\
& -\left[4\left(|\vec{p}|^{2}+1\right) b(p, q)^{2}+4 \sqrt{|\vec{p}|^{2}+1} \sqrt{|\vec{q}|^{2}+1} b(p, q)+|\vec{q}|^{2}+1\right] \\
= & 4<\vec{p}, \vec{q}>b(p, q)-4 b(p, q)^{2}-4 \sqrt{|\vec{p}|^{2}+1} \sqrt{|\vec{q}|^{2}+1} b(p, q)-1 \\
= & 4 b(p, q) b(p, q)-4 b(p, q)^{2}-1=-1
\end{aligned}
$$

shows that $s_{p}(q) \in \mathbb{H}^{2}$.
Note that $s_{p}(p)=-2 p(-1)-p=p$ is a fixed point.
Next we show that s_{p} is an isometry. We need to look at the differential

$$
d_{p} s_{p}: T_{p} M \rightarrow T_{s_{p}(p)} M=T_{p} M
$$

of $s_{p}: q \mapsto-2 p b(p, q)-q$. If we write the points $q, p \in \mathbb{H}^{n} \subset \mathbb{R}^{n+1}$ in the standard basis $\left\{e_{i}\right\}_{i}$, we get the partial derivatives

$$
\begin{aligned}
\frac{\partial}{\partial x_{i}} b(p, \cdot) & =\left\{\begin{aligned}
p_{i} & \text { if } i \leq n \\
-p_{n+1} & \text { if } i=n+1
\end{aligned}\right. \\
\frac{\partial}{\partial x_{i}} s_{p} & =\left\{\begin{aligned}
-2 p \cdot p_{i}-e_{i} & \text { if } i \leq n \\
2 p \cdot p_{n+1}-e_{n+1} & \text { if } i=n+1
\end{aligned}\right.
\end{aligned}
$$

and thus for $v \in T_{p} M$ we have

$$
\begin{aligned}
\left(d_{p} s_{p}\right) v & =\left(\begin{array}{cccc}
-2 p_{1}^{2}-1 & -2 p_{1} p_{2} & \cdots & 2 p_{1} p_{n+1} \\
-2 p_{2} p_{1} & -2 p_{2}^{2}-1 & \cdots & 2 p_{2} p_{n+1} \\
\vdots & \vdots & \ddots & \vdots \\
-2 p_{n+1} p_{1} & -2 p_{n+1} p_{2} & \cdots & 2 p_{n+1}^{2}-1
\end{array}\right) v \\
& =\left(\begin{array}{c}
-2 p_{1}^{2} v_{1}-2 p_{1} p_{2} v_{2}-\cdots+2 p_{1} p_{n+1} v_{n+1} \\
-2 p_{2} p_{1} v_{1}-2 p_{2}^{2} v_{2}-\cdots+2 p_{2} p_{n+1} v_{n+1} \\
\vdots \\
-2 p_{n+1} p_{1} v_{1}-2 p_{n+1} p_{2} v_{2}-\cdots+2 p_{n+1}^{2} v_{n+1}
\end{array}\right)-v \\
& =\left(\begin{array}{c}
-2 b(p, v) p_{1} \\
-2 b(p, v) p_{2} \\
\vdots \\
-2 b(p, v) p_{n}
\end{array}\right)-v=-v
\end{aligned}
$$

where we used that $b(p, v)=0$ from part (a). By bilinearity from (b)

$$
g_{s_{p}(p)}\left(\left(D_{p} s_{p}\right) v,\left(D_{p} s_{p}\right) w\right)=g_{p}(-v,-w)=g_{p}(v, w)
$$

so s_{p} is an isometry.
We need to show that s_{p} is a symmetry. That p is an isolated fixed point of s_{p} can be seen by the following argument. Let $q \in \mathbb{H}^{n}$ be a fixed point $s_{p}(q)=q$, then $-2 p b(p, q)-q=q$, so $q=-b(p, q) p$, in particular $q=\lambda p$ is a scaled version of p for $\lambda=-b(p, q)$. But since $p, q \in \mathbb{H}^{n},-1=b(q, q)=b(\lambda p, \lambda p)=\lambda^{2} b(p, p)=-1$, so $\lambda= \pm 1$. The $\lambda=-1$ solution corresponds to $q_{n+1}<0$ which is excluded since \mathbb{H}^{n} is only the upper hyperboloid. We showed that $q=p$ is the only fixed point of s_{p}, in particular it is an isolated fixed point.

By lemma II. 5 of the lecture, $d_{p} s_{p}=-\mathrm{Id}_{T_{p} \mathbb{H}^{n}}$ is equivalent to $s_{p} \circ s_{p}=\mathrm{Id}_{\mathbb{H}^{n}}$. Alternatively the calculation

$$
\begin{aligned}
s_{p} \circ s_{p}(q) & =s_{p}(-2 p b(p, q)-q) \\
& =-2 p b(p,-2 p b(p, q)-q)-(-2 p b(p, q)-q) \\
& =4 p b(p, q) b(p, p)+2 p b(p, q)+2 p b(p, q)+q=q
\end{aligned}
$$

shows the same.
This concludes the proof, that \mathbb{H}^{n} is a symmetric space.
3. Show that $A \mapsto g A g^{t}$ defines a group action of $\operatorname{SL}(n, \mathbb{R}) \ni g$ on

$$
\mathcal{P}(n)=\left\{A \in M_{n \times n}(\mathbb{R}): A=A^{t}, \operatorname{det} A=1, \quad A \gg 0\right\}
$$

Show that this action is transitive, i.e. $\forall A, B \in \mathcal{P}(n) \exists g \in \operatorname{SL}(n, \mathbb{R}): g A g^{t}=B$. You may use the Linear-Algebra-fact that symmetric matrices are orthogonally diagonalizable, i.e. if $A=A^{t}$, then $\exists Q \in \mathrm{SO}(n, \mathbb{R})$ such that $Q A Q^{t}$ is diagonal.

Solution. We write the group action as $g \cdot A=g A^{t} g$. We first need to show that the action is well defined.
Symmetry: ${ }^{t}(g . A)={ }^{t}\left(g A^{t} g\right)=g^{t} A^{t} g=g A^{t} g=g . A$.
Determinant: $\operatorname{det}(g . A)=\operatorname{det} g \operatorname{det} A \operatorname{det}^{t} g=\operatorname{det} A=1$.
Positive definiteness: Let $x \in \mathbb{R}^{n} \backslash 0 .{ }^{t} x g . A x={ }^{t} x g A^{t} g x={ }^{t}\left({ }^{t} g x\right) A^{t} g x>0$, since ${ }^{t} g x \in \mathbb{R}^{n} \backslash 0$.
Next, we check the two axioms of a group action.
Identity: $\operatorname{Id}_{\mathrm{SL}(n, \mathbb{R})} \cdot A=\operatorname{Id} A \operatorname{Id}=A$.
Compatibility: $(g h) \cdot A=g h A^{t}(g h)=g h A^{t} h^{t} g=g(h \cdot A)^{t} g=g .(h \cdot A)$.
It remains to show that the action is transitive. Let $A, B \in \mathcal{P}(n)$. We can use linear algebra to get $Q, R \in \mathrm{SO}(n)<\mathrm{SL}(n, \mathbb{R})$ such that $Q . A$ and $R . B$ are diagonal, have determinant 1 and are positive definite (by the well-definedness of the group action). Positive definiteness implies that all entries are non-negative. Then the matrix $\Lambda=(Q . A) \cdot(R . B)^{-1}$ is also diagonal, has determinant 1 and positive elements on the diagonal. We can therefore take the component wise root $\sqrt{\Lambda}$ of Λ. Define $g=Q^{-1} \sqrt{\Lambda} R \in \mathrm{SL}(n, \mathbb{R})$ and use the fact that $R . B$ commutes with $\sqrt{\Lambda}$ since they are diagonal to see that

$$
\begin{aligned}
g \cdot B & =Q^{-1} \cdot \sqrt{\Lambda} \cdot R \cdot B=Q^{-1} \cdot \sqrt{\Lambda}(R \cdot B)^{t} \sqrt{\Lambda}=Q^{-1} \cdot\left(\sqrt{\Lambda}^{t} \sqrt{\Lambda} \cdot R \cdot B\right) \\
& =Q^{-1} \cdot(\Lambda \cdot R \cdot B)=Q^{-1} \cdot\left((Q \cdot A)(R \cdot B)^{-1}(R \cdot B)\right)=Q^{-1} \cdot Q \cdot A=A .
\end{aligned}
$$

this shows that from any point $B \in \mathcal{P}(n)$ you can go to any point $A \in \mathcal{P}(n)$ by the action of $\mathrm{SL}(n, \mathbb{R})$, i.e. the action is transitive.

