Solutions Exercise Sheet 1

The Lie Groups lecture notes to which we refer in the solutions can be found on the course webpage.

1. Let $G = \mathrm{SL}_2(\mathbb{R})$. The aim of this exercise is to show that $G_{\mathbb{Z}} = \mathrm{SL}_2(\mathbb{Z})$ is a lattice in G.

(a) Argue that $G_{\mathbb{Z}}$ is discrete in G and that both G and $G_{\mathbb{Z}}$ are unimodular.

Solution: Since $SL_n(\mathbb{Z})$ is contained in the topological space $\mathbb{Z}^{n \times n}$, a discrete set of $\mathbb{R}^{n \times n}$, the fact that $G_{\mathbb{Z}}$ is discrete in G follows by restriction from $\mathbb{R}^{n \times n}$ to G. As a discrete group $G_{\mathbb{Z}}$ is unimodular (note that each counting measure on $G_{\mathbb{Z}}$ is a bi-invariant Haar measure). G is unimodular as a closed normal Lie subgroup (Lie Groups Letter Notes, Prop. 2.3) of the unimodular Lie group $GL_n(\mathbb{R})$. Recall that $GL_n(\mathbb{R})$ has bi-invariant Haar measure $|\det(x_{ij})|^{-1}dx_{11}\ldots dx_{nn}$.

From this we know that $G/G_{\mathbb{Z}}$ admits a nonzero *G*-invariant measure μ which is unique up to a non-zero constant. In order to show that $G_{\mathbb{Z}}$ is a lattice we have to show that $\mu(G/G_{\mathbb{Z}}) < \infty$. For this, we will use the following fact:

(b) Assume that there exists a measurable set $A \subseteq G$ of finite measure such that every $G_{\mathbb{Z}}$ -orbit intersects A, i.e. for every $g \in G$ there exists some $\gamma \in G_{\mathbb{Z}}$ such that $g\gamma \in A$. Show that $\mu(G/G_{\mathbb{Z}})$ is finite.

Solution: Weil's Theorem (Lie groups lecture Notes, Thm 2.4) for the (integrable) characteristic function χ_A of A in G states that

$$\mu(A) = \int_{G} \chi_{A}(g) dg = \int_{G/G_{\mathbb{Z}}} \left(\int_{G_{\mathbb{Z}}} \chi_{A}(\gamma h) dh \right) d(\gamma G_{\mathbb{Z}}).$$

By assumption, the inner integral is always greater than some absolute constant depending only on the Haar measure of $G_{\mathbb{Z}}$. (Recall that the Haar measure on $G_{\mathbb{Z}}$ must be a counting measure.) Thus, we infer from the above equation that $\mu(A) \ge c\mu(G/G_{\mathbb{Z}})$.

We delay the general proof for a moment to consider a classical case, namely n = 2. It is also closely related to symmetric spaces. In fact, the complex upper half plane \mathcal{H} is a globally symmetric space, as we will see. As a Riemannian manifold it is isomorphic to the hyperbolic plane H^2 , a symmetric space of non-compact type. It is even a complex manifold and the complex structure is compatible with its structure as a Riemannian manifold. Thus, it belongs to the important subclass of Hermitian symmetric spaces.

(c) Show that the map sending

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{R}) \text{ to } z \longmapsto g \cdot z := \frac{az+b}{cz+d}$$

is a group homomorphism $\operatorname{SL}_2(\mathbb{R}) \to \operatorname{Bih}(\mathbb{H}^2)$, where $\operatorname{Bih}(\mathbb{H}^2)$ denotes the biholomorphic maps of the complex upper half plane $\mathbb{H}^2 = \{z \in \mathbb{C} | \operatorname{Im}(z) > 0\}$. Show that its kernel is $\{\pm I\}$ where I denotes as usual the 2×2 identity matrix.

Solution: Define the automorphy factor $j : SL_2(\mathbb{R}) \times \mathcal{H} \to \mathbb{C}$ by

$$j(\gamma, z) = (cz + d)$$
, where $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

For all $z \in \mathcal{H}$ one has the trivial matrix relation

$$\gamma \begin{pmatrix} z \\ 1 \end{pmatrix} = \begin{pmatrix} az+b \\ cz+d \end{pmatrix} = j(\gamma, z) \begin{pmatrix} \gamma z \\ 1 \end{pmatrix}.$$

Given $\alpha, \beta \in SL_2(\mathbb{R})$ one now calculates $\alpha\beta \begin{pmatrix} z \\ 1 \end{pmatrix}$ in two different ways: This yields both

$$\alpha\beta\begin{pmatrix}z\\1\end{pmatrix} = j(\alpha\beta, z)\begin{pmatrix}(\alpha\beta)z\\1\end{pmatrix}$$

and

$$\alpha\beta\begin{pmatrix}z\\1\end{pmatrix} = j(\alpha,\beta z)j(\beta,z)\begin{pmatrix}\alpha(\beta z)\\1\end{pmatrix}.$$

One deduces the automorphy relation

$$j(\alpha\beta, z) = j(\alpha, \beta z)j(\beta, z)$$
 for all $\alpha, \beta \in SL_2(\mathbb{R}), z \in \mathcal{H}$,

and furthermore

$$(\alpha\beta)z = \alpha(\beta z)$$
 for $\alpha, \beta \in SL_2(\mathbb{R}), z \in \mathcal{H}$.

This relation shows that the map $SL_2(\mathbb{R}) \to Bih(\mathcal{H})$ is indeed a homomorphism. The remaining assertions are straightforward to verify.

(d) Prove that the induced homomorphism

$$\operatorname{PSL}_2(\mathbb{R}) = \operatorname{SL}_2(\mathbb{R}) / \{\pm I\} \to \operatorname{Bih}(\mathbb{H}^2)$$

of (c) is actually an isomorphism. For the action of $SL_2(\mathbb{R})$ on \mathbb{H}^2 from above determine the orbit Gi and stabilizer K of $i \in \mathbb{H}^2$. (Show also that K is compact.) Using this, show that we have a diffeomorphism

$$G/K \longrightarrow \mathbb{H}^2, g \longmapsto g \cdot i.$$

Solution: It suffices to show that every biholomorphism of \mathcal{H} is actually in the image of $SL_2(\mathbb{R}) \to Bih(\mathcal{H})$. The Cayley transform

$$\varphi:z\longmapsto \frac{z-i}{z+i}$$

sends the upper half plane \mathcal{H} biholomorphically onto the unit disc \mathcal{D} around 0. Therefore, it establishes an isomorphism $\operatorname{Bih}(\mathcal{H}) \xrightarrow{\sim} \operatorname{Bih}(\mathcal{D})$ by $\psi \mapsto \varphi \circ \psi \circ \varphi^{-1}$. Since

$$\begin{bmatrix} \frac{1}{\sqrt{2i}} \begin{pmatrix} 1 & -i \\ 1 & i \end{pmatrix} \end{bmatrix} SL_2(\mathbb{R}) \begin{bmatrix} \frac{1}{\sqrt{2i}} \begin{pmatrix} i & i \\ -1 & 1 \end{pmatrix} \end{bmatrix} = SU_{1,1}(\mathbb{C})$$

with

$$SU_{1,1}(\mathbb{C}) = \{ \begin{pmatrix} a & b \\ \bar{b} & \bar{a} \end{pmatrix} \mid a, b \in \mathbb{C}, \ |a|^2 - |b|^2 = 1 \}$$

it suffices to show that every biholomorphism of \mathcal{D} is in the image of the homomorphism $g \mapsto f_g$ defined as follows: For each

$$g = \begin{pmatrix} a & b\\ \overline{b} & \overline{a} \end{pmatrix} \in SU_{1,1}(\mathbb{C}), \ a, b \in \mathbb{C}, \ |a|^2 - |b|^2 = 1,$$

the map

$$f_g: z \longmapsto (az+b)/(\bar{b}z+\bar{a})$$

is a biholomorphism of \mathcal{D} . Indeed,

$$|(az+b)/(\bar{b}z+\bar{a})| < 1 \iff (az+b)(\bar{a}\bar{z}+\bar{b}) < (\bar{b}z+\bar{a})(b\bar{z}+a)$$

$$\iff |a|^2|z|^2 + |b|^2 < |b|^2|z|^2 + |a|^2$$

$$\iff |z| < 1.$$

shows that f_g sends \mathcal{D} to \mathcal{D} . It has inverse $f_{g^{-1}}$ because the argument from (3a) shows that $f_{g_2} \circ f_{g_1} = f_{g_2g_1}$, i.e. $g \mapsto f_g$ is a homomorphism. Now, let φ be an arbitrary biholomorphism of \mathcal{D} . Then,

$$\psi = (f_g \circ \varphi), \text{ where } g = \frac{1}{\sqrt{1 + |\varphi(0)|^2}} \begin{pmatrix} 1 & -\varphi(0) \\ -\varphi(0) & 1 \end{pmatrix} \in SU_{1,1}(\mathbb{C}),$$

is also a biholomorphism of \mathcal{D} with the additional property that $\psi(0) = 0$. The classical Schwarz Lemma yields $\psi(z) = e^{i\theta}z$, $\theta \in [0, 2\pi)$. One infers easily $\varphi \in SU_{1,1}(\mathbb{C})$ from this and that $PSL_2(\mathbb{R}) \to Bih(\mathcal{H})$ is an isomorphism.

Since

$$\begin{pmatrix} y^{1/2} & x \\ 0 & y^{-1/2} \end{pmatrix} i = x + iy$$

for any $x \in \mathbb{R}$, $y \in \mathbb{R}^+$ the orbit Gi equals \mathcal{H} . Furthermore, given $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R})$ the following equivalences hold

$$gi = i \iff \frac{ai+b}{ci+d} = i \iff ai+b = -c+id.$$

Taking real and imaginary parts, one deduces that $SO_2(\mathbb{R})$ is the stabilizer of *i*. That $G/K \longrightarrow \mathcal{H}$ is a diffeomorphism follows from standard arguments of differential geometry: In fact, it is a homeomorphism by Helgason, Theorem II.3.2, and a diffeomorphism by Helgason, Theorem II.4.3.(a).

(e) Set
$$K = SO_2(\mathbb{R})$$
.

$$P = \left\{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \mid a, b \in \mathbb{R}, a > 0 \right\},$$
$$A = \left\{ \begin{pmatrix} y^{1/2} & 0 \\ 0 & y^{-1/2} \end{pmatrix} \mid y \in \mathbb{R}^+ \right\}, \text{ and}$$
$$N = \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \mid x \in \mathbb{R} \right\}.$$

Prove the Iwasawa decomposition, i.e. show that

$$P \times K \longrightarrow G, (p,k) \longmapsto pk$$

and

$$N \times A \longrightarrow P, (n, a) \longmapsto na$$

are diffeomorphisms. Are these also Lie group isomorphisms? Show that P is a semidirect product $N \rtimes A$ and that we have the diffeomorphism $N \times A \cong \mathbb{H}^2$.

Solution: Both $P \cap K = \{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \}$ and $N \cap A = \{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \}$ are easily verifiable identities. The two maps $P \times K \to G$ and $N \times A \to P$ are hence injective. Let us show next that $P \times K \to G$ is surjective: Given $g \in G$ we can regard the matrix of $g = (f_1, f_2), f_i \in \mathbb{R}^2$, as determining a basis $\{f_1, f_2\}$ of \mathbb{R}^2 . We introduce on \mathbb{R}^2 the canonical scalar product $\langle \cdot, \cdot \rangle$. Now, we can use the Gram-Schmidt algorithm for $\langle \cdot, \cdot \rangle$ on $\{f_1, f_2\}$ to find a matrix $p \in P$ such that $p^{-1}g \in K$. In addition, a simple algebraic argument shows that $N \times A \to P$ is surjective. Neither $P \times K \to G$ nor $N \times A \to P$ is a homomorphism. However, since $NA = P, N \cap A = \{1\}$ and $N \triangleleft P$ one has $P = N \rtimes A$.

Caveat: Showing that a differentiable map is bijective does not suffice to prove that it is a diffeomorphism, i.e. has a differentiable inverse. However, the Gram-Schmidt algorithm provides us directly with a differentiable inverse.

Finally, $\mathcal{H} \cong G/K \cong (N \times A \times K)/K \cong N \times A$.

(f) Prove that K is unimodular by showing that $d\mu_{\mathbb{H}^2} = y^{-2} dx dy$, z = x + iy, is a G-invariant volume form on the G-homogeneous space \mathbb{H}^2 .

Solution: The derivative of $f_g: z \mapsto \frac{az+b}{cz+d}$ is

$$\frac{a(cz+d) - c(az+b)}{(cz+d)^2} = (cz+d)^{-2}.$$

The Cauchy-Riemann differential equations imply

$$\begin{pmatrix} \frac{\partial(\operatorname{Re} f_g)}{\partial x} & \frac{\partial(\operatorname{Re} f_g)}{\partial y} \\ \frac{\partial(\operatorname{Im} f_g)}{\partial x} & \frac{\partial(\operatorname{Im} f_g)}{\partial y} \end{pmatrix} = \begin{pmatrix} \operatorname{Re}(cz+d)^{-2} & -\operatorname{Im}(cz+d)^{-2} \\ \operatorname{Im}(cz+d)^{-2} & \operatorname{Re}(cz+d)^{-2} \end{pmatrix}$$

and the determinant Δ of this matrix is

$$\left[\operatorname{Re}(cz+d)^{-2}\right]^{2} + \left[\operatorname{Im}(cz+d)^{-2}\right]^{2} = |cz+d|^{-4}.$$

From this we deduce

$$g^*(dxdy) = \Delta dxdy = |cz+d|^{-4}dxdy.$$

Furthermore,

$$g^*(y^{-2}) = \operatorname{Im}(\frac{az+b}{cz+d})^{-2} = y^{-2}|cz+d|^4$$

and therefore

$$g^*(d\mu_{\mathcal{H}}) = g^*(y^{-2}dxdy) = y^{-2}dxdy = d\mu_{\mathcal{H}}$$

Now, the assertion follows from Weil's theorem

(g) Let

$$\mathcal{F} := \{ z \in \mathbb{H}^2 \mid (|z| > 1 \text{ and } -1/2 \le \operatorname{Re}(z) < 1/2) \text{ or } (|z| = 1 \text{ and } -1/2 \le \operatorname{Re}(z) \le 0) \}$$

Show that for all $z \in \mathbb{H}^2$ the orbit $G_{\mathbb{Z}}z$ intersects \mathcal{F} in a unique point. <u>Hint:</u> For every $G_{\mathbb{Z}}$ -orbit $G_{\mathbb{Z}}z$, $z \in \mathbb{H}^2$, consider $w \in G_{\mathbb{Z}}z$ with maximal imaginary part.

Solution: First of all, note that

$$\operatorname{Im}(\frac{az+b}{cz+d}) = \frac{\operatorname{Im}(z)}{|cz+d|^2}.$$

If c = 0 then $\text{Im}(z)/|cz+d|^2 = \text{Im}(z)/|d|^2$ and $\text{Im}(z)/|cz+d|^2 \leq \text{Im}(z)^{-1}|c|^2$ elsewise. Hence, given some $z \in \mathcal{H}$ the function

$$G_{\mathbb{Z}} \longrightarrow \mathcal{H}, \ \gamma \mapsto \operatorname{Im}(\gamma z)$$

obtains a maximum on $G_{\mathbb{Z}}$, i.e. there exists $\gamma_0 \in G_{\mathbb{Z}}$ such that

$$\operatorname{Im}(\gamma_0 z) = \max_{\gamma \in G_{\mathbb{Z}}} \{\operatorname{Im}(\gamma z)\}$$

Write $w = \gamma_0 z \in G_{\mathbb{Z}} z$. Since $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ acts as a translation $z \mapsto (z+1)$ on \mathcal{H} we may assume that $-1/2 \leq \operatorname{Re}(w) < 1/2$. In addition, since $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ acts as inversion $z \mapsto -z^{-1}$ on \mathcal{H}

and

$$\operatorname{Im}(-\frac{1}{w}) = (-\frac{1}{w} + \frac{1}{\bar{w}})/(2i) = \frac{\operatorname{Im}(w)}{|w|^2}$$

one clearly has $|w| \ge 1$. It remains to show that we may impose $-1/2 \le \operatorname{Re}(w) \le 0$ if |w| = 1 but this follows easily from the fact that $z \mapsto -z^{-1}$ sends

$$\{z \in \mathcal{H} \mid (|z| = 1 \text{ and } 0 < \operatorname{Re}(z) \le 1/2)\}$$

 to

$$\{z \in \mathcal{H} \mid (|z| = 1 \text{ and } -1/2 \le \operatorname{Re}(z) < 0)\}.$$

Thus, each orbit $G_{\mathbb{Z}}z$ intersects \mathcal{F} . To actually show that \mathcal{F} is a fundamental domain it remains to prove that $\{z, \gamma z\} \subset \mathcal{F}$ for some $\gamma \in G_{\mathbb{Z}}$ implies $\gamma z = z$, i.e. $\gamma \in Stab(z)$. This can be done using considerations similar to those above and we leave these to the reader.

(h) Show that the volume of \mathcal{F} with respect to $\mu_{\mathbb{H}^2}$ is $\pi/3$. Deduce that $\mu(G/G_{\mathbb{Z}}) < \infty$.

Solution: This is a simple calculation:

$$\int_{\mathcal{F}} d\mu_{\mathcal{H}} = \int_{-1/2}^{1/2} \int_{\sqrt{1-x^2}}^{\infty} y^{-2} dy dx$$
$$= \int_{-1/2}^{1/2} \left[-y^{-1} \right]_{y=\sqrt{1-x^2}}^{y=\infty} dx$$
$$= \int_{-1/2}^{1/2} (1-x^2)^{-1/2} dx$$
$$= \left[\arcsin(x) \right]_{x=-1/2}^{x=1/2} = \pi/3.$$

The second assertion follows from part (b) applied to $A = \mathcal{F}$.

2. Consider the hyperbolic n-space

$$\mathbb{H}^n = \left\{ p \in \mathbb{R}^{n+1} \colon b(p,p) = -1 \text{ and } p_{n+1} \ge 1 \right\}$$

defined by the bilinear form $b(p,q) = p_1q_1 + \ldots + p_nq_n - p_{n+1}q_{n+1}$. The tangent space at a point $p \in \mathbb{H}^n$ is defined as

$$T_p \mathbb{H}^n = \left\{ x \in \mathbb{R}^{n+1} \colon \begin{array}{c} \text{There exists a smooth path } \gamma \colon (-1,1) \to \mathbb{H}^n \\ \text{such that } \gamma(0) = p \text{ and } \dot{\gamma}(0) = x \end{array} \right\}.$$

(a) Show that $T_p \mathbb{H}^n = \{x \in \mathbb{R}^{n+1} \colon b(p, x) = 0\}.$

Solution. Let $x \in T_p \mathbb{H}^n$. Let $\gamma: (-1,1) \to \mathbb{H}^n$ be a smooth path such that $\gamma(0) = p$ and $\dot{\gamma}(0) = x$. For every $t \in (-1,1)$, $b(\gamma(t),\gamma(t)) = -1$, since γ takes values in \mathbb{H}^n . We write $\gamma(t) = (\gamma_1(t), \cdots, \gamma_{n+1}(t))$. Taking derivatives results in

$$0 = \frac{d}{dt}b(\gamma(t), \gamma(t)) = \frac{d}{dt}\left(\sum_{i=1}^{n} \gamma_i(t)^2 - \gamma_{n+1}^2\right) = \sum_{i=1}^{n} 2\gamma_i(t)\dot{\gamma}_i(t) - 2\gamma_{n+1}(t)\dot{\gamma}_{n+1}(t)$$

and at t = 0 this is

$$0 = \sum_{i=1}^{n} \gamma_i(0)\dot{\gamma}_i(0) - \gamma_{n+1}(0)\dot{\gamma}_{n+1}(0) = \sum_{i=1}^{n} p_i x_i - p_{n+1} \cdot x_{n+1} = b(p, x)$$

We have shown that $T_p\mathbb{H}^n \subset \{x \in \mathbb{R}^{n+1} : b(p,x) = 0\}$ but since dim $T_p\mathbb{H}^n = n$ we have equality.

(b) Show that $g_p = b|_{T_p \mathbb{H}^n} \colon T_p \mathbb{H}^n \times T_p \mathbb{H}^n \to \mathbb{R}$ is a positive definite symmetric bilinear form on $T_p \mathbb{H}^n$. This means that g_p is a scalar product and (\mathbb{H}^n, g) is a Riemannian manifold. *Hint*: Use (a) and the Cauchy-Schwarz-inequality on \mathbb{R}^n .

Solution. Bilinearity and symmetry b(x, y) = b(y, x) follow directly. To show positive definiteness, we use the definition of \mathbb{H}^n and (a) to write

$$p = \left(\overrightarrow{p}, \sqrt{|\overrightarrow{p}|^2 + 1}\right) \in \mathbb{H}^n \subset \mathbb{R}^n \times \mathbb{R}$$
$$x = \left(\overrightarrow{x}, \frac{\langle \overrightarrow{p}, \overrightarrow{x} \rangle}{\sqrt{|\overrightarrow{p}|^2 + 1}}\right) \in T_p \mathbb{H}^n \subset \mathbb{R}^n \times \mathbb{R}$$

where $\langle \cdot, \cdot \rangle$ is the standard scalar product in \mathbb{R}^n . To show positive definiteness it remains to prove that for all $x \in T_p \mathbb{H}^n$

$$b(x,x) \ge 0.$$

Indeed, by the Cauchy-Schwarz-inequality

$$< p, x >^2 \le |\overrightarrow{p}|^2 |\overrightarrow{x}|^2 \le |\overrightarrow{p}|^2 |\overrightarrow{x}|^2 + |\overrightarrow{x}|^2 = (|\overrightarrow{p}|^2 + 1) |\overrightarrow{x}|^2$$

and thus

$$|\overrightarrow{x}|^2 \ge \frac{< p, x >^2}{|\overrightarrow{p}|^2 + 1}$$

and

$$b(x,x) = |\overrightarrow{x}|^2 - \frac{\langle p, x \rangle^2}{|\overrightarrow{p}|^2 + 1} \ge 0.$$

(c) Show that the map $s_p \colon \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}, q \mapsto -2p \cdot b(p,q) - q$ defines a well defined geodesic symmetry of \mathbb{H}^n , i.e. it is an involution, with an isolated fixed point p. This means that the hyperbolic plane \mathbb{H}^n is a symmetric space.

Solution. To see that s_p is well-defined we write

$$p = \left(\frac{\overrightarrow{p}}{\sqrt{|\overrightarrow{p}|^2 + 1}}\right), \quad q = \left(\frac{\overrightarrow{q}}{\sqrt{|\overrightarrow{q}|^2 + 1}}\right) \in \mathbb{H}^n \subset \mathbb{R}^n \times \mathbb{R}.$$

We have

$$s_p(q) = -2pb(p,q) - q = \begin{pmatrix} -2\overrightarrow{p}b(p,q) - \overrightarrow{q} \\ -2\sqrt{|\overrightarrow{p}|^2 + 1}b(p,q) - \sqrt{|\overrightarrow{q}|^2 + 1} \end{pmatrix}$$

where

$$b(p,q) = \langle \overrightarrow{p}, \overrightarrow{q} \rangle - \sqrt{|\overrightarrow{p}|^2 + 1} \sqrt{|\overrightarrow{q}|^2 + 1}.$$

The calculation

$$\begin{split} b(s_p(q), s_p(q)) &= 4 |\overrightarrow{p}|^2 b(p, q)^2 + 4 < \overrightarrow{p}, \overrightarrow{q} > b(p, q) + |\overrightarrow{q}|^2 \\ &- \left[4(|\overrightarrow{p}|^2 + 1)b(p, q)^2 + 4\sqrt{|\overrightarrow{p}|^2 + 1}\sqrt{|\overrightarrow{q}|^2 + 1}b(p, q) + |\overrightarrow{q}|^2 + 1 \right] \\ &= 4 < \overrightarrow{p}, \overrightarrow{q} > b(p, q) - 4b(p, q)^2 - 4\sqrt{|\overrightarrow{p}|^2 + 1}\sqrt{|\overrightarrow{q}|^2 + 1}b(p, q) - 1 \\ &= 4b(p, q)b(p, q) - 4b(p, q)^2 - 1 = -1 \end{split}$$

shows that $s_p(q) \in \mathbb{H}^2$.

Note that $s_p(p) = -2p(-1) - p = p$ is a fixed point.

Next we show that s_p is an isometry. We need to look at the differential

$$d_p s_p \colon T_p M \to T_{s_p(p)} M = T_p M$$

of $s_p: q \mapsto -2pb(p,q)-q$. If we write the points $q, p \in \mathbb{H}^n \subset \mathbb{R}^{n+1}$ in the standard basis $\{e_i\}_i$, we get the partial derivatives

$$\begin{split} \frac{\partial}{\partial x_i} b(p,\cdot) &= \begin{cases} p_i & \text{if } i \leq n \\ -p_{n+1} & \text{if } i = n+1 \\ \\ \frac{\partial}{\partial x_i} s_p &= \begin{cases} -2p \cdot p_i - e_i & \text{if } i \leq n \\ 2p \cdot p_{n+1} - e_{n+1} & \text{if } i = n+ \end{cases} \end{split}$$

1

and thus for $v \in T_p M$ we have

$$\begin{aligned} (d_p s_p) v &= \begin{pmatrix} -2p_1^2 - 1 & -2p_1 p_2 & \cdots & 2p_1 p_{n+1} \\ -2p_2 p_1 & -2p_2^2 - 1 & \cdots & 2p_2 p_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ -2p_{n+1} p_1 & -2p_{n+1} p_2 & \cdots & 2p_{n+1}^2 - 1 \end{pmatrix} v \\ &= \begin{pmatrix} -2p_1^2 v_1 - 2p_1 p_2 v_2 - \cdots + 2p_1 p_{n+1} v_{n+1} \\ -2p_2 p_1 v_1 - 2p_2^2 v_2 - \cdots + 2p_2 p_{n+1} v_{n+1} \\ \vdots \\ -2p_{n+1} p_1 v_1 - 2p_{n+1} p_2 v_2 - \cdots + 2p_{n+1}^2 v_{n+1} \end{pmatrix} - v \\ &= \begin{pmatrix} -2b(p, v) p_1 \\ -2b(p, v) p_2 \\ \vdots \\ -2b(p, v) p_n \end{pmatrix} - v = -v \end{aligned}$$

where we used that b(p, v) = 0 from part (a). By bilinearity from (b)

$$g_{s_p(p)}((D_p s_p)v, (D_p s_p)w) = g_p(-v, -w) = g_p(v, w),$$

so s_p is an isometry.

We need to show that s_p is a symmetry. That p is an isolated fixed point of s_p can be seen by the following argument. Let $q \in \mathbb{H}^n$ be a fixed point $s_p(q) = q$, then -2pb(p,q) - q = q, so q = -b(p,q)p, in particular $q = \lambda p$ is a scaled version of p for $\lambda = -b(p,q)$. But since $p, q \in \mathbb{H}^n$, $-1 = b(q,q) = b(\lambda p, \lambda p) = \lambda^2 b(p,p) = -1$, so $\lambda = \pm 1$. The $\lambda = -1$ solution corresponds to $q_{n+1} < 0$ which is excluded since \mathbb{H}^n is only the upper hyperboloid. We showed that q = p is the only fixed point of s_p , in particular it is an isolated fixed point.

By lemma II.5 of the lecture, $d_p s_p = -\operatorname{Id}_{T_p \mathbb{H}^n}$ is equivalent to $s_p \circ s_p = \operatorname{Id}_{\mathbb{H}^n}$. Alternatively the calculation

$$s_p \circ s_p(q) = s_p(-2pb(p,q) - q)$$

= -2pb(p, -2pb(p,q) - q) - (-2pb(p,q) - q)
= 4pb(p,q)b(p,p) + 2pb(p,q) + 2pb(p,q) + q = q

shows the same.

This concludes the proof, that \mathbb{H}^n is a symmetric space.

3. Show that $A \mapsto gAg^t$ defines a group action of $SL(n, \mathbb{R}) \ni g$ on

$$\mathcal{P}(n) = \left\{ A \in M_{n \times n}(\mathbb{R}) \colon A = A^t, \ \det A = 1, \ A \gg 0 \right\}.$$

Show that this action is transitive, i.e. $\forall A, B \in \mathcal{P}(n) \exists g \in SL(n, \mathbb{R}) \colon gAg^t = B$. You may use the Linear-Algebra-fact that symmetric matrices are orthogonally diagonalizable, i.e. if $A = A^t$, then $\exists Q \in SO(n, \mathbb{R})$ such that QAQ^t is diagonal.

Solution. We write the group action as $g A = g A^{t} g$. We first need to show that the action is well defined.

Symmetry: ${}^{t}(g.A) = {}^{t}(gA {}^{t}g) = g {}^{t}A {}^{t}g = gA {}^{t}g = g.A.$

Determinant: $det(g.A) = detg detA det^{t}g = detA = 1.$

Positive definiteness: Let $x \in \mathbb{R}^n \setminus 0$. ${}^txg.Ax = {}^txgA {}^tgx = {}^t({}^tgx)A {}^tgx > 0$, since ${}^tgx \in \mathbb{R}^n \setminus 0$. Next, we check the two axioms of a group action.

Identity: $\operatorname{Id}_{\operatorname{SL}(n,\mathbb{R})} A = \operatorname{Id} A \operatorname{Id} = A.$

Compatibility: $(gh).A = ghA^{t}(gh) = ghA^{t}h^{t}g = g(h.A)^{t}g = g.(h.A).$

It remains to show that the action is transitive. Let $A, B \in \mathcal{P}(n)$. We can use linear algebra to get $Q, R \in \mathrm{SO}(n) < \mathrm{SL}(n, \mathbb{R})$ such that Q.A and R.B are diagonal, have determinant 1 and are positive definite (by the well-definedness of the group action). Positive definiteness implies that all entries are non-negative. Then the matrix $\Lambda = (Q.A) \cdot (R.B)^{-1}$ is also diagonal, has determinant 1 and positive elements on the diagonal. We can therefore take the component wise root $\sqrt{\Lambda}$ of Λ . Define $g = Q^{-1}\sqrt{\Lambda}R \in \mathrm{SL}(n,\mathbb{R})$ and use the fact that R.B commutes with $\sqrt{\Lambda}$ since they are diagonal to see that

$$g.B = Q^{-1}.\sqrt{\Lambda}.R.B = Q^{-1}.\sqrt{\Lambda}(R.B)^{t}\sqrt{\Lambda} = Q^{-1}.\left(\sqrt{\Lambda}^{t}\sqrt{\Lambda}\cdot R.B\right)$$
$$= Q^{-1}.(\Lambda \cdot R.B) = Q^{-1}.((Q.A)(R.B)^{-1}(R.B)) = Q^{-1}.Q.A = A.$$

this shows that from any point $B \in \mathcal{P}(n)$ you can go to any point $A \in \mathcal{P}(n)$ by the action of $SL(n, \mathbb{R})$, i.e. the action is transitive.