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Solutions Exercise Sheet 2

Exercise 1 (Compact Lie groups as symmetric spaces). Let G be a compact connected Lie group
and let

G∗ = {(g, g) ∈ G×G : g ∈ G} < G×G

denote the diagonal subgroup.

(a) Show that the pair (G×G,G∗) is a Riemannian symmetric pair, and the coset space G×G/G∗

is diffeomorphic to G.

Solution. Consider the mapping σ : (g1, g2) 7→ (g2, g1). This is an involutive automorphism
of the product group G×G. The fixed set of σ is precisely the diagonal G∗. It follows that the
pair (G×G,G∗) is a Riemannian symmetric pair. The coset space G×G/G∗ is diffeomorphic
to G under the mapping

ϕ : G×G/G∗ → G

[(g1, g2)] 7→ g1g
−1
2 .

(b) Using the above, explain how any compact connected Lie group G can be regarded as a
Riemannian globally symmetric space.

Solution. By Theorem II.16 from the lecture, G×G/G∗ is a Riemannian globally symmetric
space with respect to any G × G-invariant metric (and there is one). Notice that if a Rie-
mannian metric on G×G/G∗ is G×G-invariant if and only if the corresponding Riemannian
metric on G is bi-invariant. This follows from the identity ϕ◦Lg1,g2 = Rg−1

2
◦Lg1 ◦ϕ for every

g1, g2 ∈ G. Thus G is a Riemannian symmetric space with respect to any bi-invariant metric
(and there is one). (We remark that not every Lie group admits a bi-invariant metric, but
compact Lie groups do).

(c) Let g denote the Lie algebra of G. Show that the exponential map from g into the Lie group
G coincides with the Riemannian exponential map from g into the Riemannian globally
symmetric space G.

Solution. Note that the product algebra g× g is the Lie algebra of G×G. Let

expG : g→ G be the exponential map of G

expG×G = expG× expG : g× g→ G×G be the exponential map of G×G
Expe : g ∼= TeG→ G be the Riemannian exponential map of G.

We want to show that expGX = ExpeX for all X ∈ g.
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Let π : G×G→ G, (g1, g2) 7→ g1g
−1
2 be the projection. Then by Theorem II.21 of the lecture

applied to G×G we have
π ◦ expG×G |p = Expe ◦de,eπ|p,

where p = E−1(de,eσ) ⊂ g× g.

Let now X ∈ g. Then (X,−X) ∈ p and therefore

π(expG×G(X,−X) = Expe(de,eπ(X,−X)).

Since de,eπ(X,Y ) = X − Y and expG×G(X,−X) = (expG(X), expG(−X)) we have

exp(2X) = expG(X) expG(−X)−1 = Expe(2X),

where we used that the Lie group exponential is a one-parameter subgroup. Since X was
arbitrary, this concludes the proof.

Exercise 2 (Compact semisimple Lie groups as symmetric spaces). A compact semisimple Lie
group G has a bi-invariant Riemannian structure Q such that Qe is the negative of the Killing form
of the Lie algebra g = Lie(G). If G is considered as a symmetric space G×G/G∗ as in the above
exercise, it acquires a bi-invariant Riemannian structure Q∗ from the Killing form of g × g. Show
that Q = 2Q∗.

Solution. Let π and σ be as in the above solution. The map dπ maps the −1 eigenspace of dσ
onto g as follows: dπ(X,−X) = 2X. Using this, we can check that

2Bg×g((X,−X), (X,−X)) = Bg(2X, 2X),

which is equivalent to Q = 2Q∗.

Exercise 3 (Closed differential forms). Let M be a Riemannian globally symmetric space and let
ω be a differential form on M invariant under Isom(M)◦. Prove that dω = 0.

Solution. Let sm denote the geodesic symmetry at some point m ∈M , and let ω ∈ Ωp(M) be an
invariant differential p-form onM . Because dmsm = −Id : TpM → TpM , we get (s∗mω)m = (−1)pωm
at the point m ∈ M . Because ω is invariant, s∗mω is invariant as well. Because Iso(M)◦ acts
transitively, invariant differential forms are determined by their value at a single point such that

s∗mω = (−1)pω

on all of M .

Therefore, we obtain

dω = (−1)pd(s∗mω) = (−1)ps∗mdω = (−1)2p+1dω,

whence dω = 0.

Exercise 4 (A symmetric space with non-compact K). Let G = ˜SL(2,R) and K = ˜SO(2,R). The
aim of this exercise is to show that (G,K) is a symmetric pair with non-compact K.

(a) Prove that σ : SL(2,R)→ SL(2,R), g 7→ tg−1 is an involution.
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Solution. Note that σ needs to be an automorphism. Being a homomorphism σ(gh) =
σ(g)σ(h) and σ ◦ σ = Id follows directly from properties of the inverse and the transpose.
Bijectivity follows from σ ◦ σ = Id. Finally, most matrices in SL(2,R) are not fixed by σ, so
σ 6= Id.

(b) By covering space theory we can lift σ to the universal cover G. Prove that σ̃ : G → G is
an involution as well. You may use that the universal cover of a path-connected topological
group is again a topological group.

Solution. Recall from covering space theory the following fact:

Let π : C → X be a cover and f : Y → X a continuous map. Pick y0 ∈ Y and c0 ∈ C, which
lies over f(y0), i.e. π(c0) = f(y0). If Y is simply connected, then there exists a unique lift
f̃ : Y → C with π ◦ f̃ = f and f̃(y0) = c0. In our case, Y = C = G is the universal cover and
thus simply connected. Let us write π : G → SL(2,R), and f = σ ◦ π. Fix an element Ĩd in
the universal cover with π(Ĩd) = Id, then we get a unique map σ̃ : G → G with σ̃(Ĩd) = Ĩd
(Note: σ̃ is called the lift of σ, even though strictly speaking it is the lift of σ ◦ π).

We have to show that σ̃ is a homomorphism: For this, consider the map

h : G×G→ G

(g, h) 7→ σ̃(gh)−1σ̃(g)σ̃(h)

Since π(gh) = π(g)π(h) (the multiplication in the universal covering is the lift of the multi-
plication in the group), π is a homomorphism. We have

π(h(g, h)) = π(σ̃(gh)−1σ̃(g)σ̃(h))

= π(σ̃(gh)−1)π(σ̃(h))π(σ̃(h))

= π(σ̃(gh))−1π(σ̃(h))π(σ̃(h))

= σ(π(gh))−1σ(π(g))σ(π(h))

= σ(π(g)π(h))−1σ(π(g)π(h))

= Id = π(Ĩd)

so h is a lift of π ◦ h and so is the constant function (g, h) 7→ Ĩd. Since the lift is unique we
have h(g, h) = Ĩd, i.e. σ̃(gh) = σ̃(g)σ̃(h).

The composition σ̃ ◦ σ̃ satisfies π ◦ σ̃ ◦ σ̃ = σ ◦ π ◦ σ̃ = σ ◦ σ ◦ π = π, so σ̃ ◦ σ̃ as well as the
constant function g 7→ Ĩd is a lift of π. By the uniqueness, we get that σ̃ ◦ σ̃(g) = Ĩd for all
g ∈ G. In particular, σ̃ is an automorphism.

Finally, since σ is not the identity, its lift is also not the lift of the identity, i.e. σ̃ is not the
identity-map on G. This concludes the proof that σ̃ is an involution.

(c) Prove that Gσ̃ = K ∼= R.

Solution. The map σ|SO(2) : SO(2)→ SO(2) is the identity. Its lift σ̃|
S̃O(2)

: S̃O(2)→ S̃O(2)

therefore also has to be the identity by uniqueness of the lift. So if g ∈ K = S̃O(2), then
σ̃(g) = g, i.e. g ∈ Gσ̃.
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If on the other hand g ∈ G satisfies σ̃(g) = g, then π(g) = π(σ̃(g)) = σ(π(g)), so π(g) ∈
SL(2,R)σ = SO(2). Thus g ∈ S̃O(2).

This implies Gσ̃ = K.

(d) Prove that AdG(K) = AdSL(2,R)(SO(2,R)).

Solution. The Lie algebra g only depends on a neighborhood, so

Lie(SL(2,R)) = g = Lie
(

˜SL(2,R)
)
.

Since the left-multiplication on the universal cover is the lift of the left-multiplication of
SL(2,R), they can be identified in a small neighborhood around o = Id. The adjoint rep-
resentation Ad(g) = do Int(g) is a derivative at a point and thus also only depends on a
neighborhood. We conclude that image of the adjoint representations is equal.

(e) Show that AdSL(2,R)(SO(2,R)) ' SO(2,R)/{±1}.

Solution. The elements g in the kernel satisfyX = gXg−1 for allX ∈ sl(2,R) =
{
X ∈ R2×2 : tr(X) = 0

}
.

Let

g =

(
a b
c d

)
X =

(
x y
z −x

)
,

then we have X = gXg−1 implies

Xg =

(
ax+ bz ay − bx
cx+ dz cy − dx

)
=

(
ax+ cy bx+ dy
az − cx bz − dx

)
= gX

so bz = cy for all z, y ∈ R, so b = 0 = c. So we have ay = dy and dz = az which imply a = d.
Since g ∈ SO(2), det(g) = ad = a2 = 1. So a = ±1. We conclude that g has to be ± Id. And
indeed both ± Id are in SO(2). By the isomorphism-theorem we have

AdSL(2,R)(SO(2,R)) ∼= SO(2,R)/± Id .

Exercise 5. (a) Let G be a connected topological group and N C G a normal subgroup which
is discrete. Show that N ⊂ Z(G) is contained in the center Z(G) of G.

(b) Let (G,K) be a Riemannian symmetric pair and Z(G) the center of G. Show that AdG : G→
GL(g) induces an isomorphism of Lie groups:

K/(K ∩ Z(G))→ AdG(K) < GL(g).
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