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Solutions Exercise Sheet 2

Exercise 1 (Compact Lie groups as symmetric spaces). Let G be a compact connected Lie group
and let

G ={(g,9) €eGxG:9eG}<GxG

denote the diagonal subgroup.

(a)

Show that the pair (G x G, G*) is a Riemannian symmetric pair, and the coset space G x G/G*
is diffeomorphic to G.

Solution. Consider the mapping o: (g1,92) — (g2, g1). This is an involutive automorphism
of the product group G x G. The fixed set of o is precisely the diagonal G*. It follows that the
pair (G x G,G*) is a Riemannian symmetric pair. The coset space G x G/G* is diffeomorphic
to G under the mapping

0:Gx GG =G
[(g1,92)] = 9195 "

Using the above, explain how any compact connected Lie group G can be regarded as a
Riemannian globally symmetric space.

Solution. By Theorem I1.16 from the lecture, G x G/G* is a Riemannian globally symmetric
space with respect to any G x G-invariant metric (and there is one). Notice that if a Rie-
mannian metric on G x G/G* is G x G-invariant if and only if the corresponding Riemannian
metric on G is bi-invariant. This follows from the identity oLy, 4, = Rg;l o Ly, o for every
91,92 € G. Thus G is a Riemannian symmetric space with respect to any bi-invariant metric
(and there is one). (We remark that not every Lie group admits a bi-invariant metric, but

compact Lie groups do).

Let g denote the Lie algebra of G. Show that the exponential map from g into the Lie group
G coincides with the Riemannian exponential map from g into the Riemannian globally
symmetric space G.

Solution. Note that the product algebra g x g is the Lie algebra of G x G. Let

expg : § — G be the exponential map of G
eXPaya = €XPg X €XPg : § X § = G X G be the exponential map of G x G
Exp, : g = T.G — G be the Riemannian exponential map of G.

We want to show that expy X = Exp, X for all X € g.



Let m: Gx G — G, (g1,92) — glggl be the projection. Then by Theorem II.21 of the lecture
applied to G x GG we have
T 0 exXPgxa |p = Exp, ode ey,

where p = E_1(d¢,0) C g X g.
Let now X € g. Then (X, —X) € p and therefore
m(expaxa (X, —X) = Exp,(de (X, —X)).
Since de (X, Y) = X =Y and expg (X, —X) = (expg(X), expe(—X)) we have
exp(2X) = expg(X) expg(—X) ™" = Exp, (2X),

where we used that the Lie group exponential is a one-parameter subgroup. Since X was
arbitrary, this concludes the proof.

Exercise 2 (Compact semisimple Lie groups as symmetric spaces). A compact semisimple Lie
group G has a bi-invariant Riemannian structure ) such that Q. is the negative of the Killing form
of the Lie algebra g = Lie(G). If G is considered as a symmetric space G x G/G* as in the above
exercise, it acquires a bi-invariant Riemannian structure Q* from the Killing form of g x g. Show
that @ = 2Q*.

Solution. Let 7 and ¢ be as in the above solution. The map dm maps the —1 eigenspace of do
onto g as follows: dn(X,—X) = 2X. Using this, we can check that

2Bgxq((X,—X), (X, -X)) = By(2X,2X),
which is equivalent to Q@ = 2Q*.

Exercise 3 (Closed differential forms). Let M be a Riemannian globally symmetric space and let
w be a differential form on M invariant under Isom(M)°. Prove that dw = 0.

Solution. Let s, denote the geodesic symmetry at some point m € M, and let w € QP (M) be an
invariant differential p-form on M. Because d,,, S, = —Id: T, M — T, M, we get (s},w)m = (—1)Pwyy,

at the point m € M. Because w is invariant, s} w is invariant as well. Because Iso(M)° acts

transitively, invariant differential forms are determined by their value at a single point such that
spw=(-1)Pw
on all of M.

Therefore, we obtain
w) = (=1)Psk dw = (—1)* dw,
whence dw = 0.
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Exercise 4 (A symmetric space with non-compact K). Let G = SL(2,R) and K = SO(2,R). The
aim of this exercise is to show that (G, K) is a symmetric pair with non-compact K.

(a) Prove that o: SL(2,R) — SL(2,R), g+ g~ is an involution.



Solution. Note that o needs to be an automorphism. Being a homomorphism o(gh) =
o(g)o(h) and o o 0 = Id follows directly from properties of the inverse and the transpose.
Bijectivity follows from o o 0 = Id. Finally, most matrices in SL(2,R) are not fixed by o, so
o # 1d.

By covering space theory we can lift o to the universal cover GG. Prove that 6: G — G is
an involution as well. You may use that the universal cover of a path-connected topological
group is again a topological group.

Solution. Recall from covering space theory the following fact:

Let m: C — X be a cover and f: Y — X a continuous map. Pick yo € Y and ¢y € C, which
lies over f(yo), i.e. m(co) = f(yo). If Y is simply connected, then there exists a unique lift
f:Y = Cwithmo f=fand f(yo) = ¢g. In our case, Y = C = G is the universal cover and
thus simply connected. Let us write 7: G — SL(2,R), and f = o o w. Fix an element Id in
the universal cover with 7(Id) = Id, then we get a unique map &: G — G with &(Id) = Id
(Note: ¢ is called the lift of o, even though strictly speaking it is the lift of o o 7).

We have to show that ¢ is a homomorphism: For this, consider the map

h:GxG—G
(g, h) — &(gh)~'5(g)a(h)

Since w(gh) = w(g)m(h) (the multiplication in the universal covering is the lift of the multi-
plication in the group), 7 is a homomorphism. We have

so h is a lift of m o h and so is the constant function (g, h) Id. Since the lift is unique we
have h(g,h) =1d, i.e. a(gh) = d(g)a(h).

The composition ¢ o ¢ satisfies ToG o =comod =0cocom =m,s0 700 as well as the
constant function g — Id is a lift of 7. By the uniqueness, we get that & o 6(g) = Id for all
g € G. In particular, & is an automorphism.

Finally, since o is not the identity, its lift is also not the lift of the identity, i.e. ¢ is not the
identity-map on G. This concludes the proof that ¢ is an involution.

Prove that G = K = R.

Solution. The map o|so(2): SO(2) — SO(2) is the identity. Its lift &|§(—)v(2): S/(—)\/(2) — S/(—)\/(Q)

therefore also has to be the identity by uniqueness of the lift. So if g € K = SO(2), then
g(g) =g, ie geG°.



If on the other hand g € G satisfies (g) = g, then n(g) = 7(5(g)) = o(w(g)), so w(g) €
SL(2,R)? = SO(2). Thus g € SO(2).
This implies G° = K.

(d) Prove that Adg(K) = Adgr2,r)(SO(2,R)).

Solution. The Lie algebra g only depends on a neighborhood, so
Lie(SL(2,R)) = g = Lie (SL(2,R)) .

Since the left-multiplication on the universal cover is the lift of the left-multiplication of
SL(2,R), they can be identified in a small neighborhood around o = Id. The adjoint rep-
resentation Ad(g) = d,Int(g) is a derivative at a point and thus also only depends on a
neighborhood. We conclude that image of the adjoint representations is equal.

(e) Show that Adsp, .z (SO(2,R)) ~ SO(2,R)/{1}.

Solution. The elements g in the kernel satisfy X = gXg¢~' forall X € s[(2,R) = {X € R?*?: tr(X) = 0}.

Let
_f[a b [z oy
=y =)

L implies

then we have X = gX g~

_fax+bz ay—bx\ [(ar+cy bxr+dy\ ¥
S \ex+dz cy—dx) \az—cx bz-—dzx =9

so bz = ¢y for all z,y € R, so b =0 = ¢. So we have ay = dy and dz = az which imply a = d.
Since g € SO(2), det(g) = ad = a®> = 1. So a = 1. We conclude that g has to be £1d. And
indeed both £1d are in SO(2). By the isomorphism-theorem we have

Adgr,2,r)(SO(2,R)) = SO(2,R)/ £ 1d.

Exercise 5. (a) Let G be a connected topological group and N < G a normal subgroup which
is discrete. Show that N C Z(QG) is contained in the center Z(G) of G.

(b) Let (G, K) be a Riemannian symmetric pair and Z(G) the center of G. Show that Adg: G —
GL(g) induces an isomorphism of Lie groups:

K/(K N Z(G)) — Adg(K) < GL(g).



