Solutions Exercise Sheet 2

Exercise 1 (Compact Lie groups as symmetric spaces). Let G be a compact connected Lie group and let

$$
G^{*}=\{(g, g) \in G \times G: g \in G\}<G \times G
$$

denote the diagonal subgroup.
(a) Show that the pair $\left(G \times G, G^{*}\right)$ is a Riemannian symmetric pair, and the coset space $G \times G / G^{*}$ is diffeomorphic to G.

Solution. Consider the mapping $\sigma:\left(g_{1}, g_{2}\right) \mapsto\left(g_{2}, g_{1}\right)$. This is an involutive automorphism of the product group $G \times G$. The fixed set of σ is precisely the diagonal G^{*}. It follows that the pair $\left(G \times G, G^{*}\right)$ is a Riemannian symmetric pair. The coset space $G \times G / G^{*}$ is diffeomorphic to G under the mapping

$$
\begin{aligned}
\varphi: G \times G / G^{*} & \rightarrow G \\
{\left[\left(g_{1}, g_{2}\right)\right] } & \mapsto g_{1} g_{2}^{-1}
\end{aligned}
$$

(b) Using the above, explain how any compact connected Lie group G can be regarded as a Riemannian globally symmetric space.

Solution. By Theorem II. 16 from the lecture, $G \times G / G^{*}$ is a Riemannian globally symmetric space with respect to any $G \times G$-invariant metric (and there is one). Notice that if a Riemannian metric on $G \times G / G^{*}$ is $G \times G$-invariant if and only if the corresponding Riemannian metric on G is bi-invariant. This follows from the identity $\varphi \circ L_{g_{1}, g_{2}}=R_{g_{2}^{-1} \circ} \circ L_{g_{1}} \circ \varphi$ for every $g_{1}, g_{2} \in G$. Thus G is a Riemannian symmetric space with respect to any bi-invariant metric (and there is one). (We remark that not every Lie group admits a bi-invariant metric, but compact Lie groups do).
(c) Let \mathfrak{g} denote the Lie algebra of G. Show that the exponential map from \mathfrak{g} into the Lie group G coincides with the Riemannian exponential map from \mathfrak{g} into the Riemannian globally symmetric space G.

Solution. Note that the product algebra $\mathfrak{g} \times \mathfrak{g}$ is the Lie algebra of $G \times G$. Let

$$
\begin{aligned}
& \exp _{G}: \mathfrak{g} \rightarrow G \text { be the exponential map of } G \\
& \exp _{G \times G}=\exp _{G} \times \exp _{G}: \mathfrak{g} \times \mathfrak{g} \rightarrow G \times G \text { be the exponential map of } G \times G \\
& \operatorname{Exp}_{e}: \mathfrak{g} \cong T_{e} G \rightarrow G \text { be the Riemannian exponential map of } G .
\end{aligned}
$$

We want to show that $\exp _{G} X=\operatorname{Exp}_{e} X$ for all $X \in \mathfrak{g}$.

Let $\pi: G \times G \rightarrow G,\left(g_{1}, g_{2}\right) \mapsto g_{1} g_{2}^{-1}$ be the projection. Then by Theorem II. 21 of the lecture applied to $G \times G$ we have

$$
\left.\pi \circ \exp _{G \times G}\right|_{\mathfrak{p}}=\left.\operatorname{Exp}_{e} \circ d_{e, e} \pi\right|_{\mathfrak{p}},
$$

where $\mathfrak{p}=E_{-1}\left(d_{e, e} \sigma\right) \subset \mathfrak{g} \times \mathfrak{g}$.
Let now $X \in \mathfrak{g}$. Then $(X,-X) \in \mathfrak{p}$ and therefore

$$
\pi\left(\exp _{G \times G}(X,-X)=\operatorname{Exp}_{e}\left(d_{e, e} \pi(X,-X)\right) .\right.
$$

Since $d_{e, e} \pi(X, Y)=X-Y$ and $\exp _{G \times G}(X,-X)=\left(\exp _{G}(X), \exp _{G}(-X)\right)$ we have

$$
\exp (2 X)=\exp _{G}(X) \exp _{G}(-X)^{-1}=\operatorname{Exp}_{e}(2 X)
$$

where we used that the Lie group exponential is a one-parameter subgroup. Since X was arbitrary, this concludes the proof.
Exercise 2 (Compact semisimple Lie groups as symmetric spaces). A compact semisimple Lie group G has a bi-invariant Riemannian structure Q such that Q_{e} is the negative of the Killing form of the Lie algebra $\mathfrak{g}=\operatorname{Lie}(G)$. If G is considered as a symmetric space $G \times G / G^{*}$ as in the above exercise, it acquires a bi-invariant Riemannian structure Q^{*} from the Killing form of $\mathfrak{g} \times \mathfrak{g}$. Show that $Q=2 Q^{*}$.
Solution. Let π and σ be as in the above solution. The map $d \pi$ maps the -1 eigenspace of $d \sigma$ onto \mathfrak{g} as follows: $d \pi(X,-X)=2 X$. Using this, we can check that

$$
2 B_{\mathfrak{g} \times \mathfrak{g}}((X,-X),(X,-X))=B_{\mathfrak{g}}(2 X, 2 X),
$$

which is equivalent to $Q=2 Q^{*}$.
Exercise 3 (Closed differential forms). Let M be a Riemannian globally symmetric space and let ω be a differential form on M invariant under $\operatorname{Iscom}(M)^{\circ}$. Prove that $d \omega=0$.

Solution. Let s_{m} denote the geodesic symmetry at some point $m \in M$, and let $\omega \in \Omega^{p}(M)$ be an invariant differential p-form on M. Because $d_{m} s_{m}=-$ Id: $T_{p} M \rightarrow T_{p} M$, we get $\left(s_{m}^{*} \omega\right)_{m}=(-1)^{p} \omega_{m}$ at the point $m \in M$. Because ω is invariant, $s_{m}^{*} \omega$ is invariant as well. Because $\operatorname{Iso}(M)^{\circ}$ acts transitively, invariant differential forms are determined by their value at a single point such that

$$
s_{m}^{*} \omega=(-1)^{p} \omega
$$

on all of M.
Therefore, we obtain

$$
d \omega=(-1)^{p} d\left(s_{m}^{*} \omega\right)=(-1)^{p} s_{m}^{*} d \omega=(-1)^{2 p+1} d \omega,
$$

whence $d \omega=0$.
Exercise 4 (A symmetric space with non-compact K). Let $G=\widetilde{\mathrm{SL}(2, \mathbb{R})}$ and $K=\widetilde{\mathrm{SO}(2, \mathbb{R})}$. The aim of this exercise is to show that (G, K) is a symmetric pair with non-compact K.
(a) Prove that $\sigma: \mathrm{SL}(2, \mathbb{R}) \rightarrow \mathrm{SL}(2, \mathbb{R}), g \mapsto^{t} g^{-1}$ is an involution.

Solution. Note that σ needs to be an automorphism. Being a homomorphism $\sigma(g h)=$ $\sigma(g) \sigma(h)$ and $\sigma \circ \sigma=$ Id follows directly from properties of the inverse and the transpose. Bijectivity follows from $\sigma \circ \sigma=$ Id. Finally, most matrices in $\operatorname{SL}(2, \mathbb{R})$ are not fixed by σ, so $\sigma \neq$ Id.
(b) By covering space theory we can lift σ to the universal cover G. Prove that $\tilde{\sigma}: G \rightarrow G$ is an involution as well. You may use that the universal cover of a path-connected topological group is again a topological group.
Solution. Recall from covering space theory the following fact:
Let $\pi: C \rightarrow X$ be a cover and $f: Y \rightarrow X$ a continuous map. Pick $y_{0} \in Y$ and $c_{0} \in C$, which lies over $f\left(y_{0}\right)$, i.e. $\pi\left(c_{0}\right)=f\left(y_{0}\right)$. If Y is simply connected, then there exists a unique lift $\tilde{f}: Y \rightarrow C$ with $\pi \circ \tilde{f}=f$ and $\tilde{f}\left(y_{0}\right)=c_{0}$. In our case, $Y=C=G$ is the universal cover and thus simply connected. Let us write $\pi: G \rightarrow \mathrm{SL}(2, \mathbb{R})$, and $f=\sigma \circ \pi$. Fix an element Id in the universal cover with $\pi(\tilde{\mathrm{Id}})=\mathrm{Id}$, then we get a unique map $\tilde{\sigma}: G \rightarrow G$ with $\tilde{\sigma}(\tilde{\mathrm{Id}})=\tilde{\mathrm{Id}}$ (Note: $\tilde{\sigma}$ is called the lift of σ, even though strictly speaking it is the lift of $\sigma \circ \pi$).
We have to show that $\tilde{\sigma}$ is a homomorphism: For this, consider the map

$$
\begin{aligned}
h: G \times G & \rightarrow G \\
(g, h) \quad & \mapsto \tilde{\sigma}(g h)^{-1} \tilde{\sigma}(g) \tilde{\sigma}(h)
\end{aligned}
$$

Since $\pi(g h)=\pi(g) \pi(h)$ (the multiplication in the universal covering is the lift of the multiplication in the group), π is a homomorphism. We have

$$
\begin{aligned}
\pi(h(g, h)) & =\pi\left(\tilde{\sigma}(g h)^{-1} \tilde{\sigma}(g) \tilde{\sigma}(h)\right) \\
& =\pi\left(\tilde{\sigma}(g h)^{-1}\right) \pi(\tilde{\sigma}(h)) \pi(\tilde{\sigma}(h)) \\
& =\pi(\tilde{\sigma}(g h))^{-1} \pi(\tilde{\sigma}(h)) \pi(\tilde{\sigma}(h)) \\
& =\sigma(\pi(g h))^{-1} \sigma(\pi(g)) \sigma(\pi(h)) \\
& =\sigma(\pi(g) \pi(h))^{-1} \sigma(\pi(g) \pi(h)) \\
& =\operatorname{Id}=\pi(\tilde{\mathrm{Id}})
\end{aligned}
$$

so h is a lift of $\pi \circ h$ and so is the constant function $(g, h) \mapsto \tilde{\text { Id }}$. Since the lift is unique we have $h(g, h)=\tilde{\mathrm{Id}}$, i.e. $\tilde{\sigma}(g h)=\tilde{\sigma}(g) \tilde{\sigma}(h)$.
The composition $\tilde{\sigma} \circ \tilde{\sigma}$ satisfies $\pi \circ \tilde{\sigma} \circ \tilde{\sigma}=\sigma \circ \pi \circ \tilde{\sigma}=\sigma \circ \sigma \circ \pi=\pi$, so $\tilde{\sigma} \circ \tilde{\sigma}$ as well as the constant function $g \mapsto \tilde{I d}$ is a lift of π. By the uniqueness, we get that $\tilde{\sigma} \circ \tilde{\sigma}(g)=\tilde{I d}$ for all $g \in G$. In particular, $\tilde{\sigma}$ is an automorphism.
Finally, since σ is not the identity, its lift is also not the lift of the identity, i.e. $\tilde{\sigma}$ is not the identity-map on G. This concludes the proof that $\tilde{\sigma}$ is an involution.
(c) Prove that $G^{\tilde{\sigma}}=K \cong \mathbb{R}$.

Solution. The map $\left.\sigma\right|_{\mathrm{SO}(2)}: \mathrm{SO}(2) \rightarrow \mathrm{SO}(2)$ is the identity. Its lift $\left.\tilde{\sigma}\right|_{\widetilde{\mathrm{SO}(2)}}: \widetilde{\mathrm{SO}(2)} \rightarrow \widetilde{\mathrm{SO}(2)}$ therefore also has to be the identity by uniqueness of the lift. So if $g \in K=\widetilde{\mathrm{SO}_{(2)}}$, then $\tilde{\sigma}(g)=g$, i.e. $g \in G^{\tilde{\sigma}}$.

If on the other hand $g \in G$ satisfies $\tilde{\sigma}(g)=g$, then $\pi(g)=\pi(\tilde{\sigma}(g))=\sigma(\pi(g))$, so $\pi(g) \in$ $\mathrm{SL}(2, \mathbb{R})^{\sigma}=\mathrm{SO}(2)$. Thus $g \in \widetilde{\mathrm{SO}(2)}$.
This implies $G^{\tilde{\sigma}}=K$.
(d) Prove that $\operatorname{Ad}_{G}(K)=\operatorname{Ad}_{\mathrm{SL}(2, \mathbb{R})}(\mathrm{SO}(2, \mathbb{R}))$.

Solution. The Lie algebra \mathfrak{g} only depends on a neighborhood, so

$$
\operatorname{Lie}(\operatorname{SL}(2, \mathbb{R}))=\mathfrak{g}=\operatorname{Lie}(\widetilde{\mathrm{SL}(2, \mathbb{R})})
$$

Since the left-multiplication on the universal cover is the lift of the left-multiplication of $\mathrm{SL}(2, \mathbb{R})$, they can be identified in a small neighborhood around $o=\mathrm{Id}$. The adjoint representation $\operatorname{Ad}(g)=d_{o} \operatorname{Int}(g)$ is a derivative at a point and thus also only depends on a neighborhood. We conclude that image of the adjoint representations is equal.
(e) Show that $\operatorname{Ad}_{\mathrm{SL}(2, \mathbb{R})}(\mathrm{SO}(2, \mathbb{R})) \simeq \mathrm{SO}(2, \mathbb{R}) /\{ \pm 1\}$.

Solution. The elements g in the kernel satisfy $X=g X g^{-1}$ for all $X \in \mathfrak{s l}(2, \mathbb{R})=\left\{X \in \mathbb{R}^{2 \times 2}: \operatorname{tr}(X)=0\right\}$. Let

$$
g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad X=\left(\begin{array}{cc}
x & y \\
z & -x
\end{array}\right)
$$

then we have $X=g X g^{-1}$ implies

$$
X g=\left(\begin{array}{ll}
a x+b z & a y-b x \\
c x+d z & c y-d x
\end{array}\right)=\left(\begin{array}{ll}
a x+c y & b x+d y \\
a z-c x & b z-d x
\end{array}\right)=g X
$$

so $b z=c y$ for all $z, y \in \mathbb{R}$, so $b=0=c$. So we have $a y=d y$ and $d z=a z$ which imply $a=d$. Since $g \in \operatorname{SO}(2)$, $\operatorname{det}(g)=a d=a^{2}=1$. So $a= \pm 1$. We conclude that g has to be \pm Id. And indeed both \pm Id are in $\mathrm{SO}(2)$. By the isomorphism-theorem we have

$$
\operatorname{Ad}_{\mathrm{SL}(2, \mathbb{R})}(\mathrm{SO}(2, \mathbb{R})) \cong \mathrm{SO}(2, \mathbb{R}) / \pm \mathrm{Id}
$$

Exercise 5. (a) Let G be a connected topological group and $N \triangleleft G$ a normal subgroup which is discrete. Show that $N \subset Z(G)$ is contained in the center $Z(G)$ of G.
(b) Let (G, K) be a Riemannian symmetric pair and $Z(G)$ the center of G. Show that $\operatorname{Ad}_{G}: G \rightarrow$ $\mathrm{GL}(\mathfrak{g})$ induces an isomorphism of Lie groups:

$$
K /(K \cap Z(G)) \rightarrow \operatorname{Ad}_{G}(K)<\mathrm{GL}(\mathfrak{g})
$$

