Solution Exercise Sheet 4

Exercise 1 (Theorem II. 27 - Decomposition of OSLA). Let (\mathfrak{g}, θ) be an effective orthogonal symmetric Lie-algebra. We have the Cartan decomposition $\mathfrak{g}=\mathfrak{u} \oplus \mathfrak{i}$. We decomposed $\mathfrak{i}=\mathfrak{i}_{0} \oplus \mathfrak{i}_{+} \oplus \mathfrak{i}_{-}$ and defined $\mathfrak{u}_{+}=\left[\mathfrak{i}_{+}, \mathfrak{i}_{+}\right]$and $\mathfrak{u}_{-}=\left[\mathfrak{i}_{-}, \mathfrak{i}_{-}\right]$. \mathfrak{u}_{0} is defined to be the orthogonal complement of $\mathfrak{u}_{+} \oplus \mathfrak{u}_{-}$in \mathfrak{u}.
(a) Find an OSLA (\mathfrak{g}, θ), such that $\mathfrak{i}_{0}=0$, but $\mathfrak{u}_{0} \neq 0$.

Solution. The idea is to have a large \mathfrak{u} and a small \mathfrak{i}. This means that θ should fix lots of points. For example one can take $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{R}) \times \mathfrak{s o}(3)$ and define $\theta=\theta_{\mathfrak{s l}(2, \mathbb{R})} \times \operatorname{Id}_{\mathfrak{s o}(3)}$, where $\theta_{\mathfrak{s l}(2, \mathbb{R})}=\mathrm{D}_{e} \sigma$ (for $\sigma(g)={ }^{t} g^{-1}$) is the usual Cartan-involuion on $\mathfrak{s l}(2, \mathbb{R})$. Then $\mathfrak{u}=E_{1} \theta=\mathfrak{k} \times \mathfrak{s o}(3)$ and $\mathfrak{i}=E_{-1} \theta=\mathfrak{p} \times 0$, where $\mathfrak{s l}(2, \mathbb{R})=\mathfrak{k} \oplus \mathfrak{p}$ is the Cartan-decomposition of $\mathfrak{s l}(2, \mathbb{R})$.
We need to check that (\mathfrak{g}, θ) is an orthogonal symmetric Lie-algebra (OSLA): θ is an involutive automorphism since $\theta_{\mathfrak{s l}(2, \mathbb{R})}$ and $\operatorname{Id}_{\mathfrak{s o}(3)}$ are and we also have $\theta \neq \operatorname{Id}_{\mathfrak{g}}$. The definition of OSLA requires \mathfrak{u} to be compactly-embedded in \mathfrak{g}, i.e. $\operatorname{ad}_{\mathfrak{g}}(\mathfrak{u})$ is the Lie-Algebra of a compact subgroup of $\mathrm{GL}(\mathfrak{g})$. This is true since $\mathfrak{k} \times \mathfrak{s o}(3)$ is the lie algebra of the compact group $\mathrm{SO}(2) \times \mathrm{SO}(3)<\mathrm{SL}(2, \mathbb{R}) \times \mathrm{SO}(3)<\mathrm{GL}(\mathfrak{g})$. Note that we were forced to take the Liealgebra of a compact group as the second factor $(\mathfrak{s l}(2, \mathbb{R}) \times \mathfrak{s l}(2, \mathbb{R})$ would not have worked, but $\mathfrak{s o}(3) \times \mathfrak{s o}(3)$ would have $)$.
Now one can calculate the Killing form

$$
A=\left(\begin{array}{cccccc}
-8 & 0 & 0 & & & \\
0 & 8 & 0 & & 0 & \\
0 & 0 & 8 & & & \\
& & & -2 & 0 & 0 \\
& 0 & & \begin{array}{c}
0 \\
-2
\end{array} & 0 \\
& & & 0 & 0 & -2
\end{array}\right)
$$

in the basis

$$
\begin{aligned}
& e_{1}=\left(\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), 0\right), e_{2}=\left(\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), 0\right), e_{3}=\left(\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), 0\right) \\
& e_{4}=\left(0,\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)\right), e_{5}=\left(0,\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right)\right), e_{6}=\left(0,\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right)
\end{aligned}
$$

of $\mathfrak{g}=\mathfrak{k} \times 0 \oplus \mathfrak{p} \times 0 \oplus 0 \times \mathfrak{s o}(3)=\left\langle e_{1}\right\rangle \oplus\left\langle e_{2}, e_{3}\right\rangle \oplus\left\langle e_{4}, e_{5}, e_{6}\right\rangle$. The first factor ($=$ Killing form of $\mathfrak{s l}(2, \mathbb{R})$) can be quite quickly computed by hand. As for the second factor ($=$ Killing form of $\mathfrak{s o}(3))$ one can notice that $\mathfrak{s o}(3)$ is the Lie algebra of a compact semisimple group and hence its Killing form is negative definite.

Since $\mathfrak{i}=\mathfrak{p} \times 0=<e_{2}, e_{3}>\times 0$, we see that (cfr. definition of $\mathfrak{i}_{0}, \mathfrak{i}_{+}, \mathfrak{i}_{-}$in the proof of Theorem II.27)

$$
\mathfrak{i}_{0}=0 \times 0, \quad \mathfrak{i}_{-}=\mathfrak{p} \times 0, \quad \mathfrak{i}_{+}=0 \times 0
$$

Therefore

$$
\mathfrak{u}_{-}=\left[\mathfrak{i}_{-}, \mathfrak{i}_{-}\right]=\mathfrak{k} \times 0, \quad u_{+}=\left[\mathfrak{i}_{+}, \mathfrak{i}_{+}\right]=0
$$

Now $\mathfrak{u}_{+}:=\left[\mathfrak{i}_{+}, \mathfrak{i}_{+}\right]=0$ and $\mathfrak{u}_{-}:=\left[\mathfrak{i}_{-}, \mathfrak{i}_{-}\right]=\mathfrak{k} \times 0$. The remaining orthogonal complement in \mathfrak{u} is $\mathfrak{u}_{0}=0 \times \mathfrak{s o}(3) \neq 0$. So we have found a OSLA with $\mathfrak{i}_{0}=0$ and $\mathfrak{u}_{0} \neq 0$.
The Lie algebra $\mathfrak{g}=\mathfrak{u}_{0} \oplus \mathfrak{u}_{-} \oplus \mathfrak{i}_{-}$is of non-compact type.
(b) Let $\mathfrak{n} \triangleleft \mathfrak{g}$ be an ideal of a Lie-algebra \mathfrak{g}. Prove that $B_{\mathfrak{n}}=\left.B_{\mathfrak{g}}\right|_{\mathfrak{n} \times \mathfrak{n}}$.

Solution. Let us write a basis $e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{m}$ of \mathfrak{g}, where $e_{1}, \ldots e_{n}$ is a basis of \mathfrak{n}. Since \mathfrak{n} is an ideal, for $X \in \mathfrak{n}, Z \in \mathfrak{g}$, we have $[X, Z] \in \mathfrak{n}$. Therefore $\operatorname{ad}_{\mathfrak{g}}(X)$ is of the form

$$
\operatorname{ad}_{\mathfrak{g}}(X)=\left(\begin{array}{cc}
\operatorname{ad}_{\mathfrak{n}}(X) & * \\
0 & 0
\end{array}\right)
$$

and so for $X, Y \in \mathfrak{n}$ we have

$$
\begin{aligned}
B_{\mathfrak{g}}(X, Y) & =\operatorname{tr}\left(\operatorname{ad}_{\mathfrak{g}}(X) \circ \operatorname{ad}_{\mathfrak{g}}(Y)\right) \\
& =\operatorname{tr}\left(\begin{array}{cc}
\operatorname{ad}_{\mathfrak{n}}(X) \circ \operatorname{ad}_{\mathfrak{n}}(Y) & * \\
0 & 0
\end{array}\right) \\
& =\operatorname{tr}\left(\operatorname{ad}_{\mathfrak{n}}(X) \circ \operatorname{ad}_{\mathfrak{n}}(Y)\right) \\
& =B_{\mathfrak{n}}(X, Y)
\end{aligned}
$$

(c) Find an example of a subalgebra $\mathfrak{n} \subset \mathfrak{g}$, such that $B_{\mathfrak{n}} \neq\left. B_{\mathfrak{g}}\right|_{\mathfrak{n} \times \mathfrak{n}}$.

Solution. We consider the Cartan-decomposition $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{R})=\mathfrak{k} \oplus \mathfrak{p}$ and set $\mathfrak{n}:=\mathfrak{k}$. We know that \mathfrak{k} is a subalgebra of \mathfrak{g}. Taking the basis

$$
e_{1}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), e_{2}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), e_{3}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)
$$

we get

$$
\operatorname{ad}_{\mathfrak{g}}\left(e_{1}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -2 \\
0 & 2 & 0
\end{array}\right)
$$

(for a derivation see the third exercise class). Let $X=\lambda_{1} \cdot e_{1}, Y=\lambda_{2} \cdot e_{1} \in \mathfrak{n}=\left\langle e_{1}\right\rangle$. Then

$$
B_{\mathfrak{g}}(X, Y)=\operatorname{tr}\left(\operatorname{ad}_{\mathfrak{g}}(X) \circ \operatorname{ad}_{\mathfrak{g}}(X)\right)=\lambda_{1} \cdot \lambda_{2} \cdot \operatorname{tr}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -4 & 0 \\
0 & 0 & -4
\end{array}\right)=-8 \cdot \lambda_{1} \cdot \lambda_{2}
$$

but

$$
B_{\mathfrak{n}}(X, Y)=\operatorname{tr}\left(\operatorname{ad}_{\mathfrak{n}}(X) \circ \operatorname{ad}_{\mathfrak{n}}(X)\right)=\operatorname{tr}(0 \cdot 0)=0
$$

since $\operatorname{ad}_{\mathfrak{n}}(X)=0$ because $\left[e_{1}, e_{1}\right]=0$.
(d) Let $\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$ a direct sum of two ideals \mathfrak{g}_{1} and \mathfrak{g}_{2}. Further let \mathfrak{k}_{1} and \mathfrak{k}_{2} be subalgebras of \mathfrak{g}_{1} and \mathfrak{g}_{2}. Show that $\mathfrak{k}_{1}+\mathfrak{k}_{2}$ is compactly embedded in \mathfrak{g} if and only if \mathfrak{k}_{1} and \mathfrak{k}_{2} is compactly embedded in \mathfrak{g}_{1} and \mathfrak{g}_{2}.

This implies that $\mathfrak{u}_{0}, \mathfrak{u}_{-}, \mathfrak{u}_{+}$are compactly embedded in $\mathfrak{g}_{0}, \mathfrak{g}_{-}$and \mathfrak{g}_{+}.
Hint: For connected G and $K<G$, there is an isomorphism

$$
K /(K \cap Z(G)) \cong \operatorname{Ad}_{G}(K)
$$

(compare Ex Sheet 2, exercise 5(b)). Use Lie $\left(\operatorname{Ad}_{G}(K)\right)=\operatorname{ad}_{\operatorname{Lie}(G)}(\operatorname{Lie}(K))$.
Solution. By Lie's third theorem, there exist connected, (and simply connected) Lie groups G_{1} and G_{2} with $\operatorname{Lie}\left(G_{1}\right)=\mathfrak{g}_{1}$ and $\operatorname{Lie}\left(G_{2}\right)=\mathfrak{g}_{2}$. The Lie group $G:=G_{1} \times G_{2}$ satisfies $\operatorname{Lie}(G)=\mathfrak{g}_{1} \times \mathfrak{g}_{2}$. Since \mathfrak{k}_{1} and \mathfrak{k}_{2} are Lie-subalgebras, there exist K_{1} and K_{2} Lie-subgroups of G_{1} and G_{2} with $\operatorname{Lie}\left(K_{1}\right)=\mathfrak{k}_{1}$ and $\operatorname{Lie}\left(K_{2}\right)=\mathfrak{k}_{2}$. We also have $K:=K_{1} \times K_{2}$ with $\operatorname{Lie}(K)=\mathfrak{k}_{1} \times \mathfrak{k}_{2}$.
Now we have the center $Z(G)=Z\left(G_{1}\right) \times Z\left(G_{2}\right)$ and

$$
Z(G) \cap K=\left(Z\left(G_{1}\right) \times Z\left(G_{2}\right)\right) \cap\left(K_{1} \times K_{2}\right)=\left(Z\left(G_{1}\right) \cap K_{1}\right) \times\left(Z\left(G_{2}\right) \cap K_{2}\right)
$$

So

$$
\begin{aligned}
\operatorname{Ad}_{G}(K) & =K /(Z(G) \cap K) \\
& =\left(K_{1} \times K_{2}\right) /\left(Z\left(G_{1}\right) \cap K_{1} \times Z\left(G_{2}\right) \cap K_{2}\right) \\
& =K_{1} /\left(Z\left(G_{1}\right) \cap K_{1}\right) \times K_{2} /\left(Z\left(G_{2}\right) \cap K_{2}\right) \\
& =\operatorname{Ad}_{G_{1}}\left(K_{1}\right) \times \operatorname{Ad}_{G_{2}}\left(K_{2}\right) .
\end{aligned}
$$

Now $\operatorname{ad}_{\mathfrak{g}}\left(\mathfrak{k}_{1}+\mathfrak{k}_{2}\right), \operatorname{ad}_{\mathfrak{g}_{1}}\left(\mathfrak{k}_{1}\right)$ and $\operatorname{ad}_{\mathfrak{g}_{2}}\left(\mathfrak{k}_{2}\right)$ are the Lie-algebras of the groups $\operatorname{Ad}_{G}(K), \operatorname{Ad}_{G_{1}}\left(K_{1}\right)$ and $\operatorname{Ad}_{G_{2}}\left(K_{2}\right)$.
So $\mathfrak{k}_{1}+\mathfrak{k}_{2}$ is compactly embedded in \mathfrak{g} by definition if and only if $\operatorname{Ad}(K)$ is compact which is equivalent to saying $\operatorname{Ad}_{G_{1}}\left(K_{1}\right)$ and $\operatorname{Ad}_{G_{2}}\left(K_{2}\right)$ are compact, i.e. both \mathfrak{k}_{1} and \mathfrak{k}_{2} are compactly embedded in \mathfrak{g}_{1} resp. \mathfrak{g}_{2}.

Exercise 2 (Theorem II. 33 - Decomposition of simply connected RSS). (a) Let $H, N \triangleleft G$ be two normal subgroups. Show that $[N, H] \subset N \cap H$.
Solution. Let $n h n^{-1} h^{-1} \in[N, H]$, then $\left(n h n^{1}\right) h^{-1} \in H h^{-1} \subset H$ and $n\left(h n^{-1} h^{-1}\right) \in n N \subset$ N. So $n h n^{-1} h^{-1} \in H \cap N$.
(b) Let $H, N<G$ be connected subgroups. Show that $[N, H]$ is a connected subgroup of G.

Solution. The map $[\cdot, \cdot]: N \times H \rightarrow G$ is continuous, since it is a composition of multiplications. The image of connected sets under a continuous map is connected.
(c) Let M be a simply connected Riemannian symmetric space. Then $\mathfrak{g}=\operatorname{Lie}\left(\operatorname{Iso}(M)^{\circ}\right)=$ $\mathfrak{g}_{0} \oplus \mathfrak{g}_{+} \oplus \mathfrak{g}_{-}$. We get corresponding Lie-subgroups G_{0}, G_{+}, G_{-}and their universal covers $\tilde{G}_{0}, \tilde{G}_{+}, \tilde{G}_{-}$. Let K_{0}, K_{+}, K_{-}be the Lie-subgroups associated to $\mathfrak{k}_{0}, \mathfrak{k}_{+}, \mathfrak{k}_{-}$, which come from the Cartan-decomposition of $\mathfrak{g}_{0}, \mathfrak{g}_{+}, \mathfrak{g}_{-}$.
Show that $\left(\tilde{G}_{0}, K_{0}\right),\left(\tilde{G}_{+}, K_{+}\right)$and $\left(\tilde{G}_{-}, K_{-}\right)$are Riemannian symmetric pairs.

Solution. Let $\mu \in\{0,+,-\}$. The \tilde{G}_{μ} can be assumed to be connected. In the proof of theorem II.33, we have that $\left.\tilde{\psi}\right|_{K_{0} \times K_{-} \times K_{+}}: K_{0} \times K_{-} \times K_{+} \rightarrow p^{-1}(K)$ is a homeomorphism. The product of sets is closed if and only if all the factors are closed, so K_{μ} are closed subgroups of \tilde{G} and therefore also of \tilde{G}_{μ}. Since \mathfrak{k}_{μ} are compactly embedded, we get that $\operatorname{Ad}_{\tilde{G}_{\mu}}\left(K_{\mu}\right)$ are compact.
By the Lie-group-correspondence, since \tilde{G} is simply connected we get $\sigma: \tilde{G} \rightarrow \tilde{G}$ a unique Lie-group automorphism, such that $\mathrm{D}_{e} \sigma=\theta$. Now (using the pullback of the isomorphism ψ), we can restrict σ to $\sigma_{\mu}: \tilde{G}_{\mu} \rightarrow \tilde{G}_{\mu}$. Since $\theta_{\mu}: \mathfrak{g}_{\mu} \rightarrow \mathfrak{g}_{\mu}$ is an involution, so is σ_{μ} (they are not the identity).
It remains to show that $\left(\tilde{G}_{\mu}^{\sigma_{\mu}}\right)^{\circ} \subset K_{\mu} \subset \tilde{G}_{\mu}^{\sigma_{\mu}}$. Let $X \in \mathfrak{k}_{\mu}$. Then $\exp (X) \in \tilde{G}_{\mu}$. We have that $\sigma_{\mu}(\exp (X))=\exp \left(\theta_{\mu} X\right)=\exp (X)$. So for all $g \in K_{\mu}$ in a small neighborhood of e, we have $\sigma_{\mu}(g)=g$. Since a neighborhood generates the connected group K_{μ}, we can write elements $g \in K_{\mu}$ as a product $g=g_{1} \cdot \ldots \cdot g_{n}$ and we get $\sigma_{\mu}(g)=\sigma_{\mu}\left(g_{1}\right) \cdot \ldots \cdot \sigma_{\mu}\left(g_{n}\right)=g$. So $K_{\mu} \subset \tilde{G}_{\mu}^{\sigma_{\mu}}$. Now we consider a neighborhood $V \subset \exp \left(\mathfrak{g}_{\mu}\right)$ of e of $\tilde{G} \mu$. Let $\exp (t X) \in V \cap\left(\tilde{G}_{\mu}^{\sigma_{\mu}}\right)^{\circ}$ for $t \in(-\varepsilon, \varepsilon)$. Then $\exp (t X)=\sigma_{\mu}(\exp (t X))=\exp \left(t \theta_{\mu}(X)\right)$, so (taking the derivative) we get $X=\theta_{\mu}(X)$, i.e. $X \in \mathfrak{k}_{\mu}$ and thus $V \cap\left(\tilde{G}_{\mu}^{\sigma_{\mu}}\right)^{\circ} \subset K_{\mu}$. Now since $\left(\tilde{G}_{\mu}^{\sigma_{\mu}}\right)^{\circ}$ is connected, the elements are generated by elements in K_{μ}, i.e. $\left(\tilde{G}_{\mu}^{\sigma_{\mu}}\right)^{\circ} \subset K_{\mu}$.
We conclude that $\left(\tilde{G}_{\mu}, K_{\mu}\right)$ are Riemannian symmetric pairs for $\{0,-,+\}$.
Exercise 3 (Complexification and Killing form). Let \mathfrak{l}_{0} be a Lie algebra over \mathbb{R} and let \mathfrak{l} be the complexification of \mathfrak{l}_{0}. Let K_{0}, K and $K^{\mathbb{R}}$ denote the Killing forms of the Lie algebras $\mathfrak{l}, \mathfrak{l}_{0}$ and $\mathfrak{l}^{\mathbb{R}}$, respectively. Show that:
(a) $K_{0}(X, Y)=K(X, Y)$ for all $X, Y \in \mathfrak{l}_{0}$;
(b) $K^{\mathbb{R}}(X, Y)=2 \cdot \Re(K(X, Y))$ for all $X, Y \in \mathbb{l}^{\mathbb{R}}$.

Solution. The first relation is obvious. For the second let $\mathcal{B}:=\left\{X_{i}: i=1, \ldots, n\right\}$ be a basis of \mathfrak{l}. Let $X, Y \in \mathfrak{l}$. Then we may write

$$
\begin{equation*}
\operatorname{ad}(X) \operatorname{ad}(Y)\left(X_{i}\right)=\sum_{j=1}^{n} \alpha_{i j} \cdot X_{j}, \quad i=1, \ldots, n \tag{1}
\end{equation*}
$$

for some complex numbers $\alpha_{i j}=\beta_{i j}+i \cdot \gamma_{i j} \in \mathbb{C}$. Denote by A, B, C the $n \times n$-matrices with entries $\alpha_{i j}, \beta_{i j}, \gamma_{i j}$, respectively. Then A is the matrix representation of $\operatorname{ad}(X) \operatorname{ad}(Y)$ with respect to the basis \mathcal{B}

$$
M_{\mathcal{B}}(\operatorname{ad}(X) \operatorname{ad}(Y))=A=B+i C
$$

and B, C are the real, imaginary parts of A. Now, consider the basis $\mathcal{C}=\left\{X_{1}, \ldots, X_{n}, i X_{1}, \ldots, i X_{n}\right\}$ of $\mathfrak{l}^{\mathbb{R}}$. Then

$$
\begin{equation*}
\operatorname{ad}(X) \operatorname{ad}(Y)\left(i X_{i}\right)=\sum_{j=1}^{n}-\gamma_{i j} \cdot X_{j}+\sum_{j=1}^{n} \beta_{i j} \cdot\left(i X_{j}\right), \quad i=1, \ldots, n, \tag{2}
\end{equation*}
$$

and with (??) we obtain that the matrix representation of $\operatorname{ad}(X) \operatorname{ad}(Y)$ with respect to the basis \mathcal{C} is given by

$$
A^{\prime}:=M_{\mathcal{C}}(\operatorname{ad}(X) \operatorname{ad}(Y))=\left(\begin{array}{cc}
B & -C \\
C & B
\end{array}\right)
$$

Thus

$$
2 \Re K(X, Y)=2 \Re(\operatorname{tr} A)=2 B=\operatorname{tr} A^{\prime}=K^{\mathbb{R}}(X, Y)
$$

