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Solution Exercise Sheet 4

Exercise 1 (Theorem I1.27 - Decomposition of OSLA). Let (g,6) be an effective orthogonal sym-
metric Lie-algebra. We have the Cartan decomposition g = u ®i. We decomposed i =ig ®ip Hi_
and defined uy = [ig,i4] and u_ = [i_,i_]. ug is defined to be the orthogonal complement of
uy Qu_ in u.

(a) Find an OSLA (g,0), such that ip = 0, but ug # 0.

Solution. The idea is to have a large u and a small i. This means that 6 should fix lots
of points. For example one can take g = sl(2,R) x s0(3) and define 0 = O412,r) X Idso(3),
where 052 r) = Deo (for o(g) = ‘g!) is the usual Cartan-involuion on sl(2,R). Then
u=FE10=¢txs0(3)andi=FE_10 = p x0, where s[(2,R) = ¢Dyp is the Cartan-decomposition
of sl(2,R).

We need to check that (g, 6) is an orthogonal symmetric Lie-algebra (OSLA): 6 is an involutive
automorphism since 042 r) and Idg,(3) are and we also have 6 # Idg. The definition of
OSLA requires u to be compactly-embedded in g, i.e. adg(u) is the Lie-Algebra of a compact
subgroup of GL(g). This is true since ¢ x so(3) is the lie algebra of the compact group
SO(2) x SO(3) < SL(2,R) x SO(3) < GL(g). Note that we were forced to take the Lie-
algebra of a compact group as the second factor (s[(2,R) x s[(2,R) would not have worked,
but s0(3) x s0(3) would have).

Now one can calculate the Killing form

-8 0 O
0 8 0 0
0 0 8
A= -2 0 0
0 0 -2 0
0o 0 -2

in the basis

(03 (6 %)) (€ )

0 0 0 0 1 0 -1 0
ex= (0,10 “1|],es=10,[0 0 0]|,es=({0 1 0 o
0 0 -1 0 0 0 0 0

of g=Etx0dpx0d0xs0(3) = (e1) D (ez, e3) D (eq, €5, eg). The first factor (= Killing form of
5[(2,R)) can be quite quickly computed by hand. As for the second factor (= Killing form of
50(3)) one can notice that so(3) is the Lie algebra of a compact semisimple group and hence
its Killing form is negative definite.



Since i = px0 =< eq,e3 > x0, we see that (cfr. definition of ig,i4,i_ in the proof of Theorem
11.27)
ip=0x0, i_=px0, iy =0x0.

Therefore
U_:[i_,i_]:EXO, u+=[i+,i+]:0.

Now uy :=[if,iy] =0and u_ :=[i_,i_] = € x 0. The remaining orthogonal complement in
uisuyg =0 x 50(3) # 0. So we have found a OSLA with ig = 0 and ug # 0.

The Lie algebra g = 1y ® u_ @ i_ is of non-compact type.
Let n < g be an ideal of a Lie-algebra g. Prove that B, = Bg|nxn.

Solution. Let us write a basis e1,...,€n,€n41,.-.,6m of g, where eq,...¢e, is a basis of n.
Since n is an ideal, for X € n, Z € g, we have [X, Z] € n. Therefore ad4(X) is of the form

adg(X) = <ad“0(X ) 3)

and so for X,Y € n we have
By (X,Y) = tr(adg(X) oadg(Y))

. (adn<X> oads(7) 3)

= tr(ad,(X) o ad,(Y))
= B, (X,Y).

Find an example of a subalgebra n C g, such that By # Bgluxn-

Solution. We consider the Cartan-decomposition g = s[(2,R) = ¢ @ p and set n := ¢. We
know that € is a subalgebra of g. Taking the basis

0 -1\ (1 0 (01
€1 = 1 0 , 62 = 0 —1 , €3 = 1 0/’

we get
0 0 O
adg(er) = (0 0 -2
0 2 0

(for a derivation see the third exercise class). Let X = Aj-e1,Y =Xy -e; € n=(ey). Then

0 0 0
BE(X,Y):tr(adg(X)Oadg(X)):)\1')\2"61‘ 0 —4 0 :—8')\1')\2,
0 0 -4

but
B.(X,Y) =tr(ady(X) ocad, (X)) =tr(0-0) =0

since ad,(X) = 0 because [e1,e1] = 0.



(d)

Let g = g1 P go a direct sum of two ideals g; and gs. Further let ¢; and €5 be subalgebras of
g1 and go. Show that € + €5 is compactly embedded in g if and only if ¢; and €5 is compactly
embedded in g; and go.

This implies that ug, u_,u; are compactly embedded in gg,g— and g.

Hint: For connected G and K < G, there is an isomorphism
K/(KNZ(G)) 2 Adg(K)
(compare Ex Sheet 2, exercise 5(b)). Use Lie(Adg(K)) = adyc(q)(Lie(K)).

Solution. By Lie’s third theorem, there exist connected, (and simply connected) Lie groups
G and G5 with Lie(G1) = g1 and Lie(G2) = go. The Lie group G := G x G satisfies
Lie(G) = g1 X go. Since ¢ and €5 are Lie-subalgebras, there exist K; and Ky Lie-subgroups
of G; and Gy with Lie(K;) = ¢ and Lie(K3) = ;. We also have K := K; x Ky with
Lle(K) = El X Eg.

Now we have the center Z(G) = Z(G1) x Z(G2) and
Z(G) NK = (Z(Gl) X Z(Gg)) N (K1 X KQ) = (Z(Gl) ﬂKl) X (Z(GQ) ﬂKQ),

Adg(K) = K/(Z(G) N K)

= (K1 x K2)/(Z(G1) N Ky x Z(G2) N K3)

=K1/(Z(G1) N K1) x Ka/(Z(G2) N K3)

= Adg, (K1) x Adg, (K2).
Now ady(t +¥£2), adg, (¢1) and adg, (£2) are the Lie-algebras of the groups Adg(K), Adg, (K1)
and Adg, (K2).

So t; + £5 is compactly embedded in g by definition if and only if Ad(K) is compact which is
equivalent to saying Adg, (K1) and Adg, (K2) are compact, i.e. both £ and ¢, are compactly
embedded in g; resp. go.

Exercise 2 (Theorem I1.33 - Decomposition of simply connected RSS). (a) Let H,N < G be

two normal subgroups. Show that [N, H] C NN H.

Solution. Let nhn~'h~! € [N, H], then (nhn')h=' € Hh™' C H and n(hn='h™') € nN C
N. Sonhn=*h=t e HN N.

Let H, N < G be connected subgroups. Show that [N, H]| is a connected subgroup of G.

Solution. The map [-,-]: N x H — G is continuous, since it is a composition of multiplica-
tions. The image of connected sets under a continuous map is connected.

Let M be a simply connected Riemannian symmetric space. Then g = Lie(Iso(M)°) =
g0 ® g4+ ® g—. We get corresponding Lie-subgroups Go, G+, G and their universal covers
Go, é+, G_. Let Ky, K, K_ be the Lie-subgroups associated to £y, €, €t_, which come from
the Cartan-decomposition of go, g+, 9—.

Show that (Go, Ko), (G4, K4) and (G_, K_) are Riemannian symmetric pairs.



Solution. Let p € {0,+,—}. The éu can be assumed to be connected. In the proof of
theorem I1.33, we have that 1/;|K0><K7X;(+ : Ko x K_ x Ky — p~}(K) is a homeomorphism.
The product of sets is closed if and only if all the factors are closed, so K, are closed subgroups
of G and therefore also of éﬂ. Since ¢,, are compactly embedded, we get that Adé“ (K,) are
compact.

By the Lie-group-correspondence, since G is simply connected we get o: G- Ga unique
Lie-group automorphism, such that D, o = 6. Now (using the pullback of the isomorphism
), we can restrict o to o,: éu — CN?H. Since 8,,: g, — g, is an involution, so is o, (they are
not the identity).

It remains to show that (G3*)° € K, C Gy*. Let X € ¢,. Then exp(X) € G,,. We have that
ou(exp(X)) = exp(0,X) = exp(X). So for all g € K, in a small neighborhood of e, we have
o,(g) = g. Since a neighborhood generates the connected group K, we can write elements
g € K, as a product g = g1 -...-g, and we get 0,(9) = 0,(g1)-...-0.(9n) = g. So K, C G,
Now we consider a neighborhood V' C exp(g,) of e of Gu. Let exp(tX) € V N (Gp*)° for
t € (—¢,e). Then exp(tX) = o,(exp(tX)) = exp(t6,(X)), so (taking the derivative) we get
X = 0,(X), i.e. X €€, and thus V N (G*)° C K,. Now since (G5*)° is connected, the
elements are generated by elements in K, i.e. (Ga)° K,.

We conclude that (G u, K,,) are Riemannian symmetric pairs for {0, —, +}.

Exercise 3 (Complexification and Killing form). Let [y be a Lie algebra over R and let [ be the
complexification of [y. Let Ky, K and K® denote the Killing forms of the Lie algebras [, [y and (¥,
respectively. Show that:

(a) Ko(X,Y)=K(X,Y) for all X,Y € ly;
(b) KR(X,Y)=2-R(K(X,Y)) for all X,Y € [,

Solution. The first relation is obvious. For the second let B :={X; :i =1,...,n} be a basis
of [. Let X,Y € [. Then we may write

ad(X)ad(Y)(X;) =Y ay-X;,  i=1,....n, (1)
j=1

for some complex numbers «;; = B;; +1-7;; € C. Denote by A, B, C the n X n-matrices with
entries «;j;, 55, Vij, respectively. Then A is the matrix representation of ad(X)ad(Y’) with
respect to the basis B

Mp(ad(X)ad(Y)) = A= B +iC

and B, C are the real, imaginary parts of A. Now, consider the basis C = {X;,..., X,,,iX1,...,iX,}
of . Then

a'd(X) ad(Y)(ZXz) = Z —ij - Xj + Z Bij : (in)v i=1,...,n, (2)



and with (??) we obtain that the matrix representation of ad(X)ad(Y) with respect to the
basis C is given by

A = My (ad(X) ad(Y)) = (g _BC> .

Thus
2RK(X,Y) = 2R(trA) = 2B = trA’ = K¥(X,Y).



