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Solution Exercise Sheet 5

Exercise 1. Exhibit an explicit isomorphism between the two real Lie algebras so(1, 3) and sl(2,C).

Hint: Consider the vector space V of 2×2-skew-Hermitian matrices and endow it with the quadratic
form q(v) := det(v). Now, let SL(2,C) act on V via g.v := gvḡt.

Solution. Every element v ∈ V = {v ∈ C2×2 : v̄t = −v} can be written as

v =

(
i(x1 − x3) −x2 + ix4
x2 + ix4 i(x1 + x3)

)
where x1, x2, x3, x4 ∈ R. We compute

q(v) = det(v) = −x21 + x22 + x23 + x24.

It is readily verified that the given action of SL(2,C) on V is well-defined and preserves q. Indeed,

q(g.v) = det(gvḡt) = det(g)det(v)det(ḡ)t = det(v)

for every g ∈ SL(2,C) and every v ∈ V .

Thus we obtain a Lie group homomorphism ϕ : SL(2,C) → SO(1, 3)◦, ϕ(g)(v) = g.v. It is easy to
check that {±I} ⊆ kerϕ. Further, if ϕ(g) = I then in particular

g

(
i 0
0 i

)
ḡt =

(
i 0
0 i

)
,

g

(
0 −1
1 0

)
ḡt =

(
0 −1
1 0

)
,

g

(
0 i
i 0

)
ḡt =

(
0 i
i 0

)
,

and it is elementary to deduce that g = ±I. Hence, kerϕ = {±I} and in particular ϕ is injective on
a neighbourhood of I. Because it is a Lie group homomorphism and therefore has constant rank,
its differential dϕ : sl(2,C) → so(1, 3) is injective. Both Lie algebras have real dimension 6 such
that dϕ : sl(2,C)→ so(1, 3) gives indeed the sought for isomorphism.

Exercise 2 (Duality of Sn and Hn). Show that the symmetric spaces Sn ∼= SO(n+ 1)/ SO(n) and
Hn ∼= SO(1, n)◦/SO(n) are dual to each other.

Solution. Recall that we have seen in the lecture that (SO(n+1),SO(n), σ) and (SO(1, n)◦,SO(n), σ)
are Riemannian symmetric pairs where σ(g) := I1,ngI1,n in both cases. Further we have seen that
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the associated symmetric spaces SO(n + 1)/ SO(n) and SO(1, n)◦/ SO(n) are isometric to the n-
sphere Sn and (real) hyperbolic n-space Hn. (These are Example(3) after Corollary II.17 and
exercise 1 of Exercise Sheet 3, respectively).

These have (so(n+1), ζ) and (so(1, n), ζ) as orthogonal symmetric Lie algebras, respectively, where
ζ(X) = dσ(X) = I1,nXI1,n in both cases.

We have also seen in the lecture that the orthogonal symmetric Lie algebras (so(p + q), ζp,q) and
(so(p, q), ζp,q) are dual to each other for all p, q ≥ 1 where ζp,q(X) = Ip,qXIp,q in both cases. Thus
for p = 1, q = n we obtain the assertion.

Exercise 3 (CAT(0) spaces). Let (X, d) be a complete CAT(0) space and ∅ 6= C ⊆ X be a convex
closed subset of X. Prove that for every x ∈ X there exists a unique point pC(x) ∈ C such that
d(x, pC(x)) ≤ d(x, y) for any y ∈ C.

Solution. Let x be the point that we want to project on C. We consider a sequence of points xi
with d(x, xi) → d(x,C) as i → ∞. We want to show that xi is a Cauchy-sequence. So let ε > 0.
There exists an N > 0 such that d(x, xi) ≤ d(x,C) + ε for all i ≥ N . Consider two points xi, xj
with i, j ≥ N . Now consider the comparison triangle ∆(xx̄ixj) of the triangle ∆(xxixj). This is
visualized in figure . Since C is convex, all points on the geodesic between xi and xj lie in C, so
in the comparison triangle they also need to lie in the annulus between d(x,C) and d(x,C) + ε. A
calculation in R2 shows that such a straight line segment (green line in the figure) can have at most
size 2

√
d(x,C) + ε2 − d(x,C)2, therefore also d(x̄i, x̄j) = d(xi, xj) can have at most this distance

and as ε goes to 0, so does the distance d(xi, xj).

We have shown that {xi} is a Cauchy sequence, so since the space is complete, there exists a limit
point, which we call π(x). Since C is closed and all xi ∈ C, also π(x) is in C. By construction
d(x, π(x)) = d(x,C). We have to show uniqueness:

Let y and y′ be two points with minimal distance d(x, y) = d(x, y′) = d(x,C). Consider the
comparison triangle ∆(x, y, y′). Since d(x, y) = d(x, y) = d(x, y′) = d(x, y′), ∆ is isosceles. Now
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the midpoint z of y and y′ on the unique geodesic between y and y′ is in C, since C convex. We
also have z on the line-segment from y to y′. If y 6= y′, then z 6= y is closer to x than y, i.e.
d(z, x) < d(y, x), thus by the CAT(0)-property also d(x, z) ≤ d(x, z) < d(y, x) = d(x, y), but that is
impossible since z ∈ C and d(x, z) is the minimal distance from x to all points in C. We conclude
that y = y′ and thus the projection πC is well-defined.
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