Solution Exercise Sheet 5

Exercise 1. Exhibit an explicit isomorphism between the two real Lie algebras $\mathfrak{s o}(1,3)$ and $\mathfrak{s l}(2, \mathbb{C})$.
Hint: Consider the vector space V of 2×2-skew-Hermitian matrices and endow it with the quadratic form $q(v):=\operatorname{det}(v)$. Now, let $\mathrm{SL}(2, \mathbb{C})$ act on V via $g \cdot v:=g v \bar{g}^{t}$.

Solution. Every element $v \in V=\left\{v \in \mathbb{C}^{2 \times 2}: \bar{v}^{t}=-v\right\}$ can be written as

$$
v=\left(\begin{array}{cc}
i\left(x_{1}-x_{3}\right) & -x_{2}+i x_{4} \\
x_{2}+i x_{4} & i\left(x_{1}+x_{3}\right)
\end{array}\right)
$$

where $x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}$. We compute

$$
q(v)=\operatorname{det}(v)=-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}
$$

It is readily verified that the given action of $\operatorname{SL}(2, \mathbb{C})$ on V is well-defined and preserves q. Indeed,

$$
q(g \cdot v)=\operatorname{det}\left(g v \bar{g}^{t}\right)=\operatorname{det}(g) \operatorname{det}(v) \operatorname{det}(\bar{g})^{t}=\operatorname{det}(v)
$$

for every $g \in \mathrm{SL}(2, \mathbb{C})$ and every $v \in V$.
Thus we obtain a Lie group homomorphism $\varphi: \mathrm{SL}(2, \mathbb{C}) \rightarrow \mathrm{SO}(1,3)^{\circ}, \varphi(g)(v)=g . v$. It is easy to check that $\{ \pm I\} \subseteq \operatorname{ker} \varphi$. Further, if $\varphi(g)=I$ then in particular

$$
\begin{aligned}
g\left(\begin{array}{ll}
i & 0 \\
0 & i
\end{array}\right) \bar{g}^{t} & =\left(\begin{array}{ll}
i & 0 \\
0 & i
\end{array}\right), \\
g\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \bar{g}^{t} & =\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \\
g\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) \bar{g}^{t} & =\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right),
\end{aligned}
$$

and it is elementary to deduce that $g= \pm I$. Hence, $\operatorname{ker} \varphi=\{ \pm I\}$ and in particular φ is injective on a neighbourhood of I. Because it is a Lie group homomorphism and therefore has constant rank, its differential $d \varphi: \mathfrak{s l}(2, \mathbb{C}) \rightarrow \mathfrak{s o}(1,3)$ is injective. Both Lie algebras have real dimension 6 such that $d \varphi: \mathfrak{s l}(2, \mathbb{C}) \rightarrow \mathfrak{s o}(1,3)$ gives indeed the sought for isomorphism.
Exercise 2 (Duality of \mathbb{S}^{n} and \mathbb{H}^{n}). Show that the symmetric spaces $\mathbb{S}^{n} \cong \mathrm{SO}(n+1) / \mathrm{SO}(n)$ and $\mathbb{H}^{n} \cong \mathrm{SO}(1, n)^{\circ} / \mathrm{SO}(n)$ are dual to each other.
Solution. Recall that we have seen in the lecture that $(\mathrm{SO}(n+1), \mathrm{SO}(n), \sigma)$ and $\left(\mathrm{SO}(1, n)^{\circ}, \mathrm{SO}(n), \sigma\right)$ are Riemannian symmetric pairs where $\sigma(g):=I_{1, n} g I_{1, n}$ in both cases. Further we have seen that
the associated symmetric spaces $\mathrm{SO}(n+1) / \mathrm{SO}(n)$ and $\mathrm{SO}(1, n)^{\circ} / \mathrm{SO}(n)$ are isometric to the n sphere \mathbb{S}^{n} and (real) hyperbolic n-space \mathbb{H}^{n}. (These are Example(3) after Corollary II. 17 and exercise 1 of Exercise Sheet 3, respectively).

These have $(\mathfrak{s o}(n+1), \zeta)$ and $(\mathfrak{s o}(1, n), \zeta)$ as orthogonal symmetric Lie algebras, respectively, where $\zeta(X)=d \sigma(X)=I_{1, n} X I_{1, n}$ in both cases.

We have also seen in the lecture that the orthogonal symmetric Lie algebras $\left(\mathfrak{s o}(p+q), \zeta_{p, q}\right)$ and $\left(\mathfrak{s o}(p, q), \zeta_{p, q}\right)$ are dual to each other for all $p, q \geq 1$ where $\zeta_{p, q}(X)=I_{p, q} X I_{p, q}$ in both cases. Thus for $p=1, q=n$ we obtain the assertion.

Exercise $3(\operatorname{CAT}(0)$ spaces). Let (X, d) be a complete CAT(0$)$ space and $\emptyset \neq C \subseteq X$ be a convex closed subset of X. Prove that for every $x \in X$ there exists a unique point $p_{C}(x) \in C$ such that $d\left(x, p_{C}(x)\right) \leq d(x, y)$ for any $y \in C$.

Solution. Let x be the point that we want to project on C. We consider a sequence of points x_{i} with $d\left(x, x_{i}\right) \rightarrow d(x, C)$ as $i \rightarrow \infty$. We want to show that x_{i} is a Cauchy-sequence. So let $\varepsilon>0$. There exists an $N>0$ such that $d\left(x, x_{i}\right) \leq d(x, C)+\varepsilon$ for all $i \geq N$. Consider two points x_{i}, x_{j} with $i, j \geq N$. Now consider the comparison triangle $\bar{\Delta}\left(\bar{x} \bar{x}_{i} \bar{x}_{j}\right)$ of the triangle $\Delta\left(x x_{i} x_{j}\right)$. This is visualized in figure. Since C is convex, all points on the geodesic between x_{i} and x_{j} lie in C, so in the comparison triangle they also need to lie in the annulus between $d(x, C)$ and $d(x, C)+\varepsilon$. A calculation in \mathbb{R}^{2} shows that such a straight line segment (green line in the figure) can have at most size $2 \sqrt{d(x, C)+\varepsilon^{2}-d(x, C)^{2}}$, therefore also $d\left(\bar{x}_{i}, \bar{x}_{j}\right)=d\left(x_{i}, x_{j}\right)$ can have at most this distance and as ε goes to 0 , so does the distance $d\left(x_{i}, x_{j}\right)$.

We have shown that $\left\{x_{i}\right\}$ is a Cauchy sequence, so since the space is complete, there exists a limit point, which we call $\pi(x)$. Since C is closed and all $x_{i} \in C$, also $\pi(x)$ is in C. By construction $d(x, \pi(x))=d(x, C)$. We have to show uniqueness:

Let y and y^{\prime} be two points with minimal distance $d(x, y)=d\left(x, y^{\prime}\right)=d(x, C)$. Consider the comparison triangle $\bar{\Delta}\left(\bar{x}, \bar{y}, \bar{y}^{\prime}\right)$. Since $d(\bar{x}, \bar{y})=d(x, y)=d\left(x, y^{\prime}\right)=d\left(\bar{x}, \bar{y}^{\prime}\right), \bar{\Delta}$ is isosceles. Now
the midpoint z of y and y^{\prime} on the unique geodesic between y and y^{\prime} is in C, since C convex. We also have \bar{z} on the line-segment from \bar{y} to \bar{y}^{\prime}. If $y \neq y^{\prime}$, then $\bar{z} \neq \bar{y}$ is closer to \bar{x} than \bar{y}, i.e. $d(\bar{z}, \bar{x})<d(\bar{y}, \bar{x})$, thus by the $\mathrm{CAT}(0)$-property also $d(x, z) \leq d(\bar{x}, \bar{z})<d(\bar{y}, \bar{x})=d(x, y)$, but that is impossible since $z \in C$ and $d(x, z)$ is the minimal distance from x to all points in C. We conclude that $y=y^{\prime}$ and thus the projection π_{C} is well-defined.

