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Solution Exercise Sheet 5

Exercise 1. Exhibit an explicit isomorphism between the two real Lie algebras so0(1, 3) and sl(2, C).

Hint: Consider the vector space V' of 2 x 2-skew-Hermitian matrices and endow it with the quadratic
form ¢(v) := det(v). Now, let SL(2,C) act on V via g.v := gvg’.

Solution. Every element v € V = {v € C?>*2 : ' = —v} can be written as

v — <Z($1 — .Ig) —T2 + i$4>

xo +ixy i(x1 + 23)
where x1, 9, z3, 14 € R. We compute
q(v) = det(v) = —a7 + x5 + 23 + 27.
It is readily verified that the given action of SL(2,C) on V is well-defined and preserves ¢. Indeed,
q(g.v) = det(gvg") = det(g)det(v)det(g)" = det(v)
for every g € SL(2,C) and every v € V.

Thus we obtain a Lie group homomorphism ¢ : SL(2,C) — SO(1,3)°, ¢(g)(v) = g.v. It is easy to
check that {1} C kery. Further, if ¢(g) = I then in particular

i 0\, (i 0
9\o )9 =\o i)’
0 -1\, (0 -1
9\1 0o )9 =1 o)
0 i\, [0 i
9\i 0)9 i 0)°

and it is elementary to deduce that g = 1. Hence, kerp = {1} and in particular ¢ is injective on
a neighbourhood of I. Because it is a Lie group homomorphism and therefore has constant rank,
its differential dyp : sl(2,C) — so(1, 3) is injective. Both Lie algebras have real dimension 6 such
that de : sl(2,C) — so(1, 3) gives indeed the sought for isomorphism.

Exercise 2 (Duality of S and H"). Show that the symmetric spaces S"™ 2 SO(n + 1)/ SO(n) and
H™ = SO(1,n)°/SO(n) are dual to each other.

Solution. Recall that we have seen in the lecture that (SO(n+1),SO(n), o) and (SO(1,7)°,SO(n), o)
are Riemannian symmetric pairs where o(g) := I1 91, in both cases. Further we have seen that



the associated symmetric spaces SO(n + 1)/ SO(n) and SO(1,n)°/SO(n) are isometric to the n-
sphere S™ and (real) hyperbolic n-space H". (These are Example(3) after Corollary I1.17 and
exercise 1 of Exercise Sheet 3, respectively).

These have (so(n+1),() and (so(1,n), () as orthogonal symmetric Lie algebras, respectively, where
((X)=do(X)=1,XI, in both cases.

We have also seen in the lecture that the orthogonal symmetric Lie algebras (so(p + q),(p,q) and
(s0(p, q),{p,q) are dual to each other for all p, ¢ > 1 where ¢, ((X) = I, ;X I, 4 in both cases. Thus
for p = 1,¢q = n we obtain the assertion.

Exercise 3 (CAT(0) spaces). Let (X,d) be a complete CAT(0) space and §) # C C X be a convex
closed subset of X. Prove that for every € X there exists a unique point pc(z) € C such that
d(z,pc(v)) < d(z,y) for any y € C.

Solution. Let z be the point that we want to project on C. We consider a sequence of points x;
with d(z,z;) — d(x,C) as ¢ — co. We want to show that x; is a Cauchy-sequence. So let € > 0.
There exists an N > 0 such that d(z,z;) < d(z,C) + ¢ for all i > N. Consider two points z;, z;
with 4,7 > N. Now consider the comparison triangle A(ZZ;Z;) of the triangle A(zz;z;). This is
visualized in figure . Since C' is convex, all points on the geodesic between z; and z; lie in C, so
in the comparison triangle they also need to lie in the annulus between d(z, C') and d(z,C) +¢. A
calculation in R? shows that such a straight line segment (green line in the figure) can have at most

size 21/d(z,C) + €2 — d(z, C)?2, therefore also d(Z;,%;) = d(z;,z;) can have at most this distance

and as € goes to 0, so does the distance d(x;, x;).

We have shown that {x;} is a Cauchy sequence, so since the space is complete, there exists a limit
point, which we call w(x). Since C is closed and all z; € C, also 7(z) is in C. By construction
d(z,n(x)) = d(x,C). We have to show uniqueness:

Let y and ¢’ be two points with minimal distance d(z,y)
comparison triangle A(Z,%,y’). Since d(z,y) = d(z,y) = d

= d(z,y’) = d(x,C). Consider the
(z,y') = d(Z,7'), A is isosceles. Now



the midpoint z of ¥ and 3’ on the unique geodesic between y and ¢’ is in C, since C' convex. We
also have 7 on the line-segment from 7 to 3’. If y # ¢, then Z # ¥ is closer to T than 7, i.e.
d(z,7) < d(y,T), thus by the CAT(0)-property also d(x, z) < d(Z,z) < d(¥,T) = d(x,y), but that is
impossible since z € C and d(z, z) is the minimal distance from z to all points in C. We conclude
that y = ¢’ and thus the projection ¢ is well-defined.



