10 Harmonic forms and Functions and differential forms with prescribed principal parts

Speaker: Weber Thomas Raphael
Date: 8 May
Topic: Complex conjugation, the $*$-operator, Harmonic differential forms, scalar prduct on $\mathcal{E}^{(1)}(X)$, prove that $p_{a}(X)=b_{1}(X)$ for any Riemann Surface (pages 153-158 of [2]).
Time permitting cover also the section 'Functions and differential forms with prescribed principal parts': Mittag-Leffler distributions of meromorphic functions, the Wronskian determinant, differential forms with prescribed principal parts (pages 146-152 of [2]).

Harmonic Differential Forms (sig)
Def (19.1) Let $\omega \in \xi^{(a)}(x)$ be a differentiable 1-form on the Riemann safocce X. The complex conjugation of functions induces a conjugate complex differential 1-form $\bar{\omega} \in \mathcal{E}^{(1)}(X)$: Locally $\omega=\sum$ fid gi, where the functions f_{i} and g a are differatiable (bc. ω is differatiabl). Thus $\bar{\omega}=\sum \overline{f_{1}} d \bar{g}$.
A 1 -for $\omega \in \mathcal{E}^{(1)}(X)$ is said to be real if $\omega=\bar{\omega}$.
The real part of a differential form ω is defined by $\operatorname{Re}(\omega):=\frac{1}{2}(\omega+\bar{\omega})$.
00 is real $\Leftrightarrow \omega=\operatorname{Re}(\omega)$

- If C is a curve on X (and ω is dosed or a piecewise continuously differentiable), then $\overline{\int_{c} \omega}=\int_{c} \bar{\omega}$ and thus $\operatorname{Re}\left(\int_{c} \omega\right)=\int_{c} \operatorname{Re}(\omega)$. If $\omega \in \Omega(x)$ is a holomapplic 1-form, then $\bar{\omega}$ is called antiholomorphic.
Dense the space of all arti-holomoppic 1 -forms on x by $\bar{\Omega}(X)$.
Def: (192) Ax 1 -furn $w \in \varepsilon^{(1)}(X)$ may be uniquely decomposed as $\omega=\omega_{1}+\omega_{2}$ where $\omega_{1} \in \varepsilon^{10}(X), \omega_{2} \in \varepsilon^{0,1}(X)$.
Set $* \omega=i\left(\bar{\omega}_{1}-\bar{\omega}_{2}\right)$.
The mapping $* \varepsilon^{(t)}(X) \rightarrow \varepsilon^{(1)}(X)$ is an \mathbb{R}-linear isomorphism which maps $\varepsilon^{10}(X)$ onto $\varepsilon^{0,1}(X)$ and vice versa.

Properties For $u \in C^{(1)}(x), \omega_{1} \in \mathcal{C}^{-1,0}(X), \omega_{2} \in \xi^{a^{-1}}(X)$ and $f \in \mathcal{E}(X)$, ane has:
(a) $* * \omega=-\omega, \overline{* \omega}=* \bar{\omega}$,
(b) $d x\left(\omega_{2}+\omega_{2}\right)=i d^{\prime} \bar{\omega}_{1}-i d^{\prime \prime} \bar{\omega}_{2}$
(d) $* d^{\prime} f=i d^{\prime} f \quad * d^{\prime} f=d^{\prime} \bar{f}$,
(d) $d x d f=$ id id $^{2} d f$

Det(19.3) A 1 -for $\omega \in \varepsilon^{(1)}(X)$ on a RS x is called harmonic if $d \omega=d * \omega=0$.
Thy Let $w \in \mathcal{E}^{(1)}(X)$. Then the following conditions are equivalent:
(i) ω is harmonic,
(ii) $d^{\prime} \omega=d^{\prime \prime} \omega=0$,
(iii) $\omega=\omega_{1}+\omega_{2}$, where $\omega_{1} \in \Omega(X)$ and $\omega_{2} \in \bar{\Omega}(X)$
(iv) $\forall a \in X$ there exists an open neighborhood U^{2} of a and a harmonic function f on U st. $\omega=d t$.

Proof: The equivalence of (i), (ii) and (iii) follows from above. Bc:
$(i) \Rightarrow$ (iv): Since in particular a hanoi diteretial form is closed, locally $\omega=d f$, where f is differentiable function. Since $0=d+\omega=d^{\prime} d f=2 i d^{\prime} d^{\prime \prime} f$, it follows that f is harmonic.
(iv) \Rightarrow (i): If $\omega=d f$ and f is harmonic, the $d \omega=d d f=0$ and $d * \omega=d * d f=0$.

Notation: We denote the vector space of all harmonic 1-forms on the RS x by $\operatorname{Harm}^{1}(x)$. Thus $\operatorname{Han}^{1}(x)=\Omega(x) \oplus \bar{\Omega}(x)$.
Thus if x is a compact RS of gems g, then $\operatorname{din} \operatorname{Han}^{1}(X)=2 g$.

Thm(19.4) Every real harmonic 1 -form $\sigma \in \operatorname{Harm}^{1}(X)$ is the real part of precisely one holomorphic 1 -form $\omega \in \Omega(X)$.

Prod: Suppose $\sigma=\omega_{1}+\overline{\omega_{2}}$ with $\omega_{1}, \omega_{2} \in \Omega(X)$. BC. $\sigma=\omega_{1}+\bar{\omega}_{2}=\bar{\sigma}=\bar{\omega}_{1}+\omega_{2}$, it follows that $\omega_{1}=\omega_{2}$. This $\sigma=\operatorname{Re}\left(2 \omega_{1}\right)$.

- To prove uniqueness, suppose $\omega \in \Omega(X)$ and $\operatorname{Re}(\omega)=0$. Since locally $\omega=d f$, where f is a holonophic function, it follows that f has constant real part. Then f itself is constant and thus $\omega=0$.

Assume now X is a compact $R S$.

Def (19.5) For $\omega_{1}, \omega_{2} \in \mathcal{E}^{(1)}(X)$ let $\left\langle\omega_{1}, \omega_{2}\right\rangle:=\iint_{x} \omega_{1} 1 * \omega_{2}$ Clearly, the mapping $\left.\left.\left(\omega_{1}, \omega_{2}\right) \mapsto\right\rangle \omega_{1}, \omega_{2}\right\rangle$ is linear in the first, and semi-linear in the second argument and $\left\langle\omega_{2}, \omega_{1}\right\rangle=\overline{\left\langle\omega_{1}, \omega_{2}\right\rangle}$, We now chain that $<,>$ is positive definite:
SPoof: Suppose $\omega \in \mathcal{E}^{(1)}(X)$. With respect to a local chat $(4,2)$, where $z=x+i y$,
suppose $\omega=f d z+g d \bar{z}$. Then $* \omega=i(\bar{f} d \bar{z}-\bar{g} d z)$ and

$$
\omega \wedge * \omega=i\left(|f|^{2}+|g|^{2}\right) d z 1 d \bar{z}=2\left(|f|^{2}+|g|^{2}\right) d x 1 d y
$$

This shans that $\langle\omega, \omega\rangle \geqslant 0$ and $\langle\omega, \omega\rangle=0$ only if $\omega=0$.
Hence with this scalar product $\varepsilon^{(1)}(X)$ becomes a unitary vector space. However it is not a Hilbert space, since it is not complete.

Lemma (19.6) X compact RS.
(a) $d^{\prime} \varepsilon(X), d^{\prime \prime} \varepsilon(X), \Omega(X)$ and $\bar{\Omega}(X)$ are pairwise orthogonal vector subspaces of $\varepsilon^{(1)}(X)$.
(b) $d \varepsilon(x)$ and $* d \varepsilon(x)$ are orthogonal vector subspaces of $\varepsilon^{(1)}(X)$ and $d \varepsilon(X) \oplus * d \varepsilon(X)=d^{\prime} \varepsilon(X) \oplus d^{\prime \prime} \varepsilon(X)$.
Proof: (a) Since $\varepsilon^{10}(X)$ and $\varepsilon^{0,1}(X)$ are trivially orthogonal, it suffices to show that $d^{\prime} \mathcal{E}(x) \perp \Omega(x)$ and $d^{\prime \prime} \mathcal{E}(x) \perp \bar{\Omega}(x)$.
Suppose $f \in \mathcal{E}(x)$ and $\omega \in \Omega(x)$. Then $\omega \wedge x d^{\prime} f=\omega \wedge\left(i d^{\prime} \bar{f}\right)=i \omega \wedge d \bar{f} \bar{f}=-i d(f)$
Thus $\left\langle\omega, d^{\prime} f\right\rangle=-i \int_{x} d\left(\bar{f}(\omega)=0\right.$ by $T_{m}(10,20)$
Similarly ore can show $\left\langle\bar{\omega}, d^{\prime \prime} f\right\rangle=0$.
(b) Suppose $f, g \in \mathcal{E}(x)$. Then $d f_{1 *}(* d g)=-d f 1 d g=-d(f d g)$

Thus $\langle d f, * d g\rangle=-\iint_{x} d(f d g)=0$
The equality $d \mathcal{E}(x) \oplus * d \varepsilon(x)=d^{\prime} \mathcal{E}(x) \oplus d^{\prime} \varepsilon(x)$ follows from $(19.2 . c)_{\square}$
$L_{\triangle B C}$

$$
\begin{aligned}
& * d^{\prime} f=i d^{\prime \prime} \bar{f}, f d l^{\prime \prime} f=-i \bar{f} \\
& \Leftrightarrow d^{\prime \prime} f=-i * d^{\prime} \bar{f}, d^{\prime} f=i * d^{\prime \prime} \bar{f} \\
& {\left[\begin{array}{ll}
\Rightarrow & d f=d^{\prime} f+d^{\prime \prime} f \\
& \left.d f=* d^{\prime} f+* d^{\prime \prime} f=i d^{\prime \prime} f-i d \bar{f}\right\} \Rightarrow{ }^{\prime \prime} \leq^{\prime \prime} \\
\left.\Rightarrow d^{\prime} f=d f-d^{\prime} f=d f+i * d^{\prime} \bar{f}\right\} \Rightarrow{ }^{\prime \prime} ?^{\prime \prime} \\
d^{\prime} f=d f-d^{\prime} f=d f-i * d^{\prime \prime} \bar{f}
\end{array}\right.}
\end{aligned}
$$

$\frac{\text { Cordlary: On a compact }}{(19.7)}$ RS X every exact differential form $\sigma \in \operatorname{Harm}^{2}(X)$ vanishes and every harmonic function $f \in \varepsilon(X)$ is constant

Proof: $d \varepsilon(X) \perp \operatorname{Harn}^{1}(X) \quad$ (by lena 196)
$\frac{\text { Cordlary }}{(19.8)} X$ compact $R S, \sigma \in \operatorname{Harn}^{1}(X), \omega \in \Omega(X)$. If for every closed curve γ on X one has $\int_{\gamma} \sigma=0$ resp. $\operatorname{Re}\left(J_{\gamma} \omega\right)=0$, then $\sigma=0$, resp. $\omega=0$.

Proof: Since $\sigma($ resp. $\operatorname{Re}(\omega))$ is exact by Thu (10.15), the result follows from (19.7) and (194).

Theorem 19.9 On any compact $R S X$ there is an orthogonal decomposition

$$
\varepsilon^{0,1}(X)=d^{\prime} \varepsilon(X) \oplus \bar{\Omega}(X) .
$$

Proof: Let g be the ganas of X. Since $H^{1}(X, \theta) \cong \varepsilon^{0,1}(X) / d^{\prime \prime} \varepsilon(x)$ by Dolbeault's The (15.14), ore has $\operatorname{dim}\left(\varepsilon^{0,1}(x) / d^{\prime \prime} \varepsilon(x)\right)=g$.
On the other hand, $\operatorname{dim} \bar{I}(x)=g$ by (17.10). The result now follows from Lemma (19.6.a).
$\frac{\text { Corollary }}{(19.10)} X$ compact RS, $\sigma \in \mathcal{E}^{0,1}(X)$. The equation $d^{\prime \prime} f=\sigma$ has a solution (19.10) if and only if $\iint_{x} \sigma \wedge \omega=0$ for every $\omega \in \Omega(X)$.

\rightarrow Striterent follows from the 19.9.
Theorem 19.11 On any compact RS X there is an orthogonal decomposition

$$
\varepsilon^{(1)}(X)=* d \varepsilon(X) \oplus d \varepsilon(X) \oplus \operatorname{Harm}^{1}(X)
$$

Proof: Taking complex conjugates in The (1999) one gets

$$
\varepsilon^{1,0}(X)=d^{\prime} \varepsilon(X) \oplus \Omega(X) \text {. Thus } \varepsilon^{(1)}(X)=d^{\prime} \varepsilon(X) \oplus d^{\prime \prime} \varepsilon(X) \oplus d^{\prime \prime}(X) \oplus \Omega(X) \oplus \bar{\Omega}(X) \text {. }
$$

Hence the Result follows from (19.6).

Theorem 1912 Suppose X is a compact RS. Then

$$
\operatorname{Ker}\left(\varepsilon^{(1)}(X) \xrightarrow{d} \varepsilon^{(2)}(X)\right)=d \varepsilon(X) \oplus \operatorname{Ham}^{1}(X) .
$$

Proof: Since $\mathcal{Z}(x):=\operatorname{Ker}\left(\varepsilon^{(1)}(x) \xrightarrow{d} \varepsilon^{(2)}(x)\right) \supset d \varepsilon(x) \oplus \operatorname{Harn}^{1}(x)$, it suffices (by $\pi_{m} 19.11$) to show $\mathcal{Z}(x) \perp * d \varepsilon(x)$. Suppose $\omega \in \mathcal{L}(x)$ and $f \in \mathcal{E}(X)$. Then $\omega_{1} *(* d f)=-\omega \wedge d f=d\left(f_{\omega}\right) \quad(b e \cdot d o=0)$ Hence $\langle v, * d f\rangle=\iint_{x} d(f w)=0$.
$\frac{\text { Corollary Suppose } X \text { is a compact RS. Then a differential form }}{(1913)}$ (1913) $\sigma \in \mathcal{E}^{(1)}(X)$ is exact iff for every dosed 1-forn $\omega \in \mathcal{E}^{(1)}(X)$ one has $\iint_{X} \sigma \wedge \omega=0$.
Proof: The given condition is equivalent to $\langle\omega, * \sigma\rangle=0$ for evoy closed 1-forn v. Bat by hm 19.11 this means $* \sigma \epsilon * d \varepsilon(x)$, ie. $\sigma \in d E(x)$.

Theorem 1914 (deRahm-Hodge) Suppose X is a compact RS. Then

$$
H^{1}(X, \mathbb{C}) \cong R h^{1}(X) \cong \operatorname{Harm}^{1}(X)
$$

Proof: Because of (19.12) this follows directly from deRain's then

Rem: Since the sheaf \mathbb{C} of locally constant complex-valued functions on X depends only on the topological structure of X, it follows that $b_{1}(x):=\operatorname{din}\left(H^{1}(x, \mathbb{C})\right)$ the first Betti. nab er of x, is a topological invociant. Fran (1g.14), one has $b_{1}(x)=2 g=2 p_{a}(x)$

Weierstrass points (618)
Def (18.4) Let f_{1}, \ldots, f_{g} be holomorphic functions on a domain Uc©. The the Wronskian determinant of f_{1}, \ldots, f_{g} is the detervinant of the matrix of deriucting $f_{k}^{(m)}$, where $0 \leq m \leqslant g-1$, $k \leq g$, ie.,

$$
W\left(f_{1}, \ldots f_{g}\right)=\operatorname{det}\left(\begin{array}{cccc}
f_{1} & f_{2} & \cdots & f_{g} \\
f_{1}^{\prime} & f_{2}^{\prime} & \cdots & f_{g}^{\prime \prime} \\
\vdots & \vdots & & \vdots \\
f_{1}^{(g-1)} & f_{2}^{(G-1)} & \cdots & f_{9}^{(g-1)}
\end{array}\right)
$$

Rem: If $f_{1, \ldots,}, f_{g}$ are linearly independent over \mathbb{C}, then the Wronskian determinant is not identically zero. (Can bo proved)

Det X compact $R S$ of genus $g \geqslant 1$ and w_{1}, \ldots, w_{g} a basis of $\Omega(X)$. For any coordinate neighborhood (U, z) we can define a holomorphic function $W_{z}\left(\omega_{1}, \ldots, \omega_{2}\right)$ on U as follows: The 1 -forms u_{k} may be written $\omega_{k}=f_{k} d_{z}$ on U (f_{k} borompork). Set $W_{2}\left(\omega_{1}, \ldots, \omega_{g}\right):=W\left(f_{1}, \ldots, f_{g}\right)$ (derivatives of the f_{k} are taken wet. 2)
Th m 18.5 Suppose (u, z) and (\tilde{u}, \tilde{z}) are two coordinate neighborhoods on X. Then on $U_{n} \tilde{u}^{2}$ one has $W_{z}\left(\omega_{1}, \ldots, \omega_{g}\right)=\left(\frac{d \tilde{z}}{d z}\right)^{0} W_{z}\left(\omega_{1}, \ldots, \omega_{g}\right)$, where

$$
N=\frac{g(g+1)}{2}
$$

Laproot p. 150

Rem: If $\tilde{\omega}_{1}, \ldots, \tilde{\omega}_{g}$ is another basis of $\Omega(x)$, than $\exists_{c_{j k}} \in C$ with $\operatorname{det}\left(c_{j k}\right)=c \neq O$ st. $\omega_{j}=\sum_{k} c_{j k} \tilde{\omega}_{k}$. Then $W_{z}\left(\omega_{1}, \ldots, \omega_{g}\right)=c W_{z}\left(\tilde{\omega}_{1}, \ldots, \tilde{\omega}_{g}\right)$.
m The following definition is meaningful, ie. it dbesit depend on the choice of basis of $\Omega(x)$ nor on the local coordinate.

Deft $18.6 \times$ compact RS of genus $g \geqslant 1$. A point $p \in X$ is called a Weierstrass point, if for a basis $\omega_{1}, \ldots, \omega_{g}$ of $\Omega(X)$ and a coordinate neighborhood (U, z) of p, the Wronskian determinant $W_{2}\left(\omega_{1}, \ldots, \omega_{g}\right)$ has a zero at p. The order of this zero is called the weight of the

Weierstrass point.
By definition a RS of gems 0, ie, \mathbb{P}^{1}, doesn't have any Weierstrass points.
Theorem 18.7 X compact RS of genus g, $p \in X$. Then there exists a non-constant meromorphic function $f \in \mu(x)$ which has a pole of order $\leqslant g$ at p and is holomorphic on XI \{p\} ~ i f f ~ p is a Weierstrass point.
Excursion (for proof)
Def (18.1): X RS, $U=\left(U_{i}\right)_{i \in I}$ on opera cowering of X. A cock in
$\mu=\left(f_{i}\right) \in C^{\circ}(l, \mu)$ is called a Mithag-Leffler distribution
if the difference $f_{j}-f$; ore hdomophic on $U_{i} \cap U_{j}, i, e, \delta_{\mu} \in z^{K}(U, O)$.
Thus the functions f_{i} and f_{j} have the same principal parts on
their common domain of definition. A solution of μ is a global meromorphic function $f \in \mu(x)$ which has the same principal parts as μ, ie. $f \mid U_{i}-f_{i} \in O\left(u_{i}\right)$ Vie. Denote by $\left[\delta_{\mu}\right] \in H^{+}(X, \theta)$ the cohonology class represented by the cocycle δ_{μ}.
Tim A Mittag-Leffler distribution μ has a solution if $\left[\delta_{\mu}\right]=0$. (Prot pure)
Tha(162) Suppose $\mu \in C^{0}(2 l, \mu)$ is a M 'itag-Leffler distribution of meromorphic functions on the compact RS X. Than μ has a solution iff $\operatorname{Res}(\omega \mu)=0 \quad \forall \omega \in \Omega(X)$. (roof p. M $1 *$)
Rem: If $u_{11}, \ldots, \omega_{g}$ is a basis of $\Omega(x)$, then $\operatorname{Res}(\omega \mu)=0 \quad \forall \omega \in \Omega(x)$ if $\operatorname{Res}\left(\omega_{k} \mu\right)=0$ for $k=1, \ldots, g$.

Proof of Thu 18.7 Let w_{1}, \ldots, vg a basis of $\Omega(X)$ and (U, z) a coordinate neighborhood of p with $z(p)=0$. We can expand the ω_{k} in serine about $p \quad \omega_{k}=\sum_{v=0}^{\infty} a_{k} z^{v} d z, k=1, \ldots, g$. The function f which we are looking for has a principal part at p of the form $h=\sum_{i=0}^{g-1} \frac{c_{v}}{2^{t++}}, \quad\left(c_{0}, \ldots, c_{g n}\right) \neq(0, \ldots, 0)$ and thus is a solution of the Miffag-Leffler distribution $\mu=(h, 0) \in C^{0}(U, M)$, $U=(U, X \mid\{\rho\})$. So (by 18.2) such f exists iff $\operatorname{Res}\left(\omega_{k} \mu\right)=0$ $\forall k \in\{0, \ldots, g-1\}$. But $\operatorname{Ros}\left(v_{k} \mu\right)=\operatorname{Ree_{p}}\left(\omega_{k} h\right)=\sum_{v=0}^{s-1} a_{k v} c_{v}$.
So the equations $R \operatorname{eesp}_{p}\left(\omega_{k} h\right)=0$ have a mon-trivial solution $\left(c_{0}, \ldots, c_{y-1}\right)$ if $\operatorname{det}\left(a_{k v}\right)=0$. But this is equivalent to $W_{2}\left(w_{1}, \cdots, \omega_{g}\right)(p)=0$.

Theorem 18.8 On a compact RS of genus g the number of Weiorstass points, counted according to their weights, is $(g-1) g(g+1)$
Proof: Suppose $\left(U_{i}, z_{i}\right)$, ie I, is a covering of X by coordinate neighboracous. On $U_{i} n U_{j}$ the function $\psi_{i j}:=\left(d_{z_{j}}\left(d z_{i}\right)\right.$ is holomorphic and has no zeros. Fix a basis $\omega_{1_{1}}, \ldots, w_{g}$ of $\Omega(x)$. Let $W_{i}=W_{2_{i}}\left(\omega_{1}, \ldots, \omega_{g}\right) \in O\left(u_{i}\right)$. By The 18.5 one has $W_{i}=\psi_{i j}^{N} W_{j}$ on $U_{i} n U_{j}$, where $N=\frac{g(g+1)}{2}$. Set $D(x)=\operatorname{add}_{x}\left(W_{i}\right)$ for $x \in U_{i}$, this defines the diusor D on X corresponding to the Weirstuns paints together with their respective weights. Thus deg is the total of weights of the Weiestass points and the proof is complete once we show $\operatorname{deg} D=(g-1)_{g}(g+1)$. Let D_{1} be the divisor of v_{1}. Then deg $D_{1}=2 g-2$ by The
17.12. (The divisor of a non-vanishing meroropphic 1 -form of on a compact RS of genus g satiation $\operatorname{deg}(\omega)=2 g-2$) If we set $\omega_{1}=f_{1 i} d z_{i}$ on U_{i}, then $D_{1}(x)=\operatorname{ord}_{x}\left(f_{i i}\right)$ for wry $x \in U_{i}$. Moreover $f_{1 i}=\psi_{i j} f_{i}$ on $U_{i n} U_{j}$. This (together with the fact that $w_{i}=\psi_{i j}^{N} w_{j}$ on $\left.U_{i} n u_{j}\right)$ now implies that $W_{i} f_{1 i}^{-N}=W_{j} f_{1 j}^{-N}$ on $U_{i} n U_{j}$.
Thus there exists a global veronarphic function $f \in M(X)$ with $f\left(u_{i}=W_{i} f_{1 i}^{-N}\right.$. For the divisor of f one has $(f)=D-N D_{1}$.
Since $\operatorname{deg}(f)=0$, it follows that

$$
\operatorname{deg} D=N \operatorname{deg} D_{1}=\frac{g(g+1)}{2}(2 g-2)=(g-1) g(g+1)
$$

Corollary 189 g Every compact $R S$ X of genus $g \geqslant 2$ admits a holomorphic coursing napping $f: X \rightarrow \mathbb{P}^{1}$ having at most g sheets. In particular, every
compact RS of gens 2 is hypereliptic.

Remark: $g(C)=1 \Rightarrow \exists f: C \longrightarrow \mathbb{P}^{1}$ degree 2 map
(reason: take $f=8$ to be the Weenotroses fat)

$$
g(C)=2 \Rightarrow \exists F: C \rightarrow \mathbb{P}^{\prime} \text { degree } 2 \operatorname{mop}
$$

(reason use cor)
the prong of the dies mot apply to $g(C)=1$ bes bon don't hare Welenotrass pis on C.

