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The main reference of this work is the book “Lectures on Riemann Surfaces” by Otto

Forster.

1 Preliminaries

In this section we prove that for any compact Riemann surface X the cohomology group

H1(X,O) is a finite dimensional complex vector space. Its dimension is called the genus

of X. One of the consequences of the finiteness theorem is the existence of non-constant

meromorphic functions on every compact Riemann surface.

We start by recalling what is the first cohomology group H1(X,O).

Definition 1.1. Suppose X is a topological space and F is a sheaf of abelian groups on

X. Also suppose that an open covering of X is given i.e. a family U = (Ui)i∈I of open

subsets of X such that
⋃
i∈I Ui = X. For q = 0, 1, 2, . . . define the q-th cochain group

of F , with respect to U , as

Cq(U ,F ) := ×
(i0,...,iq)∈Iq+1

F (Ui0 ∩ · · · ∩ Uiq).

The elements of Cq(U ,F ) are called q-cochains. Thus a q-cochain is a family

(fi0...iq)i0......,iq∈Iq+1 such that fi0...iq ∈ F (Ui0 ∩ · · · ∩ Uiq)

for all (i0, . . . , iq) ∈ Iq+1. The addition of two cochains is defined component-wise.

Definition 1.2. Define the coboundary operators as the group homomorphisms

δ : C0(U ,F )→ C1(U ,F ),

(fi)i∈I 7→ (fj − fi)i,j∈I ⊂ F (Ui ∩ Uj)

δ : C1(U ,F )→ C2(U ,F ),

(fij)i,j∈I 7→ (fjk − fik + fij)i,j,k∈I ⊂ F (Ui ∩ Uj ∩ Uk)

and define

Z1(U ,F ) := Ker(C1(U ,F )
δ→ C2(U ,F )),

B1(U ,F ) := Im(C0(U ,F )
δ→ C1(U ,F )).

The elements of Z1(U ,F ) are called 1-cocycles and the elements of B1(U ,F ) are called

1-coboundaries. In particular every coboundary is a cocycle.

Definition 1.3. The quotient group

H1(U ,F ) := Z1(U ,F )/B1(U ,F )

is called the 1st cohomology group with coefficients in F with respect to the covering

U . Its elements are called cohomology classes and two cocycles which belong to the

same cohomology class are called cohomologous.
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Theorem 1.1. Suppose X is a Riemann surface and E is the sheaf of differentiable

functions on X. Then H1(X,E ) = 0.

Theorem 1.2 (Leray). Suppose F is a sheaf of abelian groups on the topological space

X and U = (Ui)i∈I is an open covering of X such that H1(Ui,F ) = 0 for every i ∈ I.

Then

H1(X,F ) ∼= H1(U ,F ).

Theorem 1.3. Suppose X := {z ∈ C : |z| < R}, 0 < R ≤ ∞ and g ∈ E (X). Then there

exists f ∈ E (X) such that
∂f

∂z̄
= g.

Theorem 1.4. Suppose X := {z ∈ C : |z| < R}, 0 < R ≤ ∞. Then H1(X,O) = 0.

Theorem 1.5. For the Riemann sphere H1(P1,O) = 0.

Finally, recall a theorem we will need later.

Definition 1.4. A topological vector space E is called a Fréchet space if the following

hold:

(i) The topology of E is Hausdorff and can be defined by a countable family of semi-

norms;

(ii) E is complete i.e. every Cauchy sequence in E is convergent.

Theorem 1.6 (Banach). Suppose E and F are Fréchet spaces and f : E → F is a

continuous linear surjective mapping. Then f is open.

Corollary. Suppose E and F are Banach spaces and f : E → F is a continuous linear

surjective mapping. Then there exists a constant C > 0 such that for every y ∈ F there

is an x ∈ E with

f(x) = y and ‖x‖ ≤ C‖y‖.

2 The L2-Norm for Holomorphic Functions

Suppose D ⊂ C is an open set. Given a holomorphic function f ∈ O(D) define its

L2-norm by

‖f‖L2(D) :=

(∫∫
D
|f(x+ iy)|2 dxdy

)1/2

.

Then ‖f‖L2(D) ∈ R+ ∪ {∞}. If ‖f‖L2(D) < ∞, then f is called square integrable. We

denote by L2(D,O) the vector space of all square integrable holomorphic functions on D.

If

Vol(D) :=

∫∫
D

dxdy <∞
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then for every bounded function f ∈ O(D) one has

‖f‖L2(D) ≤
√

Vol(D)‖f‖D

where ‖f‖D := sup{|f(z)| : z ∈ D} denotes the supremum norm.

For f, g ∈ L2(D,O) one can define an inner product 〈f, g〉 ∈ C by

〈f, g〉 :=

∫∫
D
fḡ dxdy.

The integral exists because for every z ∈ D:∣∣∣f(z)g(z)
∣∣∣ ≤ 1

2

(
|f(z)|2 + |g(z)|2

)
.

With this inner product L2(D,O) is a unitary vector space and in particular has a well-

defined notion of orthogonality. Now suppose B := B(a, r) := {z ∈ C : |z − a| < r} is the

disk with center a and radius r > 0. Then the monomials (ψn)n∈N given by

ψn(z) := (z − a)n

form an orthogonal system in L2(B,O) and one can easily check, using polar coordinates,

that

‖ψn‖L2(B) =

√
πrn+1

√
n+ 1

for every n ∈ N.

If f ∈ L2(B,O) and

f(z) =

∞∑
n=0

cn(z − a)n

is the Taylor series of f about a, it follows from Pythagoras that

‖f‖2L2(B) =

∞∑
n=0

πr2n+2

n+ 1
|cn|2 . (∗)

Theorem 2.1. Suppose D ⊂ C is open, r > 0 and

Dr := {z ∈ C : B(z, r) ⊂ D}

is the set of points in D whose distance from the boundary is greater than or equal to r.

Then for every f ∈ L2(D,O) one has

‖f‖Dr ≤
1√
πr
‖f‖L2(D).

Proof. Suppose a ∈ Dr and f(z) =
∑
cn(z − a)n is the Taylor series of f about a. Using

(∗) one gets

|f(a)| = |c0| ≤
1√
πr
‖f‖L2(B(a,r)) ≤

1√
πr
‖f‖L2(D).

Since ‖f‖Dr = sup {|f(a)| : a ∈ Dr}, the result follows.
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In particular, it follows from Theorem (2.1) that if (fn)n∈N is a Cauchy sequence in

L2(D,O), then the sequence converges uniformly on every compact subset of D. Thus the

limit function is holomorphic. Hence L2(D,O) is complete and thus is a Hilbert space.

The following lemma may be viewed as a certain generalization of Schwarz’ Lemma.

Lemma 2.1. Suppose D′ b D are open subsets of C. Then given any ε > 0, there exists

a closed vector subspace A ⊂ L2(D,O) of finite codimension such that for every f ∈ A:

‖f‖L2(D′) ≤ ε‖f‖L2(D).

Proof. Since D′ is compact and lies in D, there exist r > 0 and finitely many points

a1, . . . , ak ∈ D with the following properties:

(i) B (aj , r) ⊂ D for j = 1, . . . , k;

(ii) D′ ⊂
⋃k
j=1B (aj , r/2).

Choose n so large that 2−n−1k ≤ ε. Let A be the set of all functions f ∈ L2(D,O)

which vanish at every point aj at least to order n. Then A is a closed vector subspace of

L2(D,O) of codimension ≤ kn. Let f ∈ A. Then f has a Taylor series about aj

f(z) =
∞∑
ν=n

cν(z − aj)ν .

For every 0 < ρ ≤ r one has

‖f‖2L2(B(aj ,ρ)) =

∞∑
ν=n

πρ2n+2

ν + 1
|cν |2 ,

from which it follows that

‖f‖L2(B(aj ,r/2)) ≤ 2−n−1‖f‖L2(B(aj ,r)).

Using (i) and (ii) one has

‖f‖L2(B(aj ,r))
≤ ‖f‖L2(D)

and

‖f‖L2(D′) ≤
k∑
j=1

‖f‖L2(B(aj ,r/2)).

Thus

‖f‖L2(D′) ≤ k · 2−n−1‖f‖L2(D) ≤ ε‖f‖L2(D).
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3 Square Integrable Cochains

Suppose X is a Riemann surface. Choose a finite family (U∗i , zi) , i = 1, . . . , n, of charts

on X such that every zi(U
∗
i ) ⊂ C is a disk (note however that we are not assuming

that U∗ := (U∗i )1≤i≤n is a covering of X). Suppose Ui ⊂ U∗i are open subsets and set

U := (Ui)1≤i≤n. We introduce L2-norms on the cochain groups C0(U ,O) and C1(U ,O),

defined on the space

|U| := U1 ∪ · · · ∪ Un,

in the following way:

(i) For η = (fi)
n
i=1 ∈ C0(U ,O) let

‖η‖2L2(U) :=
n∑
i=1

‖fi‖2L2(Ui)
;

(ii) For ξ = (fij)
n
i,j=1 ∈ C

1(U ,O) let

‖ξ‖2L2(U) :=

n∑
i,j=1

‖fij‖2L2(Ui∩Uj) .

Here the norms of fi and fij are calculated with respect to the chart (U∗i , zi) i.e.

‖fi‖L2(Ui)
:=
∥∥fi ◦ z−1

i

∥∥
L2(zi(Ui))

,

‖fij‖L2(Ui∩Uj)
:=
∥∥fij ◦ z−1

i

∥∥
L2(zi(Ui∩Uj))

.

The set of q-cochains having finite norm is a vector subspace Cq
L2(U ,O) ⊂ Cq(U ,O), q =

0, 1, and these subspaces are Hilbert spaces. The cocycles in C1
L2(U ,O) form a closed

vector subspace which we denote by Z1
L2(U ,O).

Remark (1). If Vi b Ui, i = 1, . . . , n, are relatively compact open subsets which compose

the family V := (Vi)1≤i≤n, then, to simplify the notation, we will write V � U . For any

cochain ξ ∈ Cq(U ,O) one has ‖ξ‖L2(V) < ∞. It then follows directly from Lemma (2.1)

that given any ε > 0, there exists a closed vector subspace A ⊂ Z1
L2(U ,O) of finite

codimension such that for every ξ ∈ A:

‖ξ‖L2(V) ≤ ε‖ξ‖L2(U).

Lemma 3.1. Suppose X is a Riemann surface and U∗ is a finite family of charts on X

as before. Further suppose that one has W � V � U � U∗ i.e. fixed shrinkings of U∗

are given. Then there exists a constant C > 0 such that for every cocycle ξ ∈ Z1
L2(V,O)

there exist elements ζ ∈ Z1
L2(U ,O) and η ∈ C0

L2(W,O) with

ζ = ξ + δ(η) on W (i)

and

max
{
‖ζ‖L2(U), ‖η‖L2(W)

}
≤ C‖ξ‖L2(V). (ii)
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Proof. (i) Suppose ξ = (fij) ∈ Z1
L2(V,O) is given. Forgetting for the moment the re-

striction on the norms, we first construct ζ ∈ Z1
L2(U ,O) and η ∈ C0

L2(W,O) such that

ζ = ξ + δ(η) on W. By Theorem (1.1) there exists a cochain (gi) ∈ C0(V,E ) such that

fij = gj − gi on Vi ∩ Vj .

Since
∂fij
∂z̄ dz = 0, one has ∂gi

∂z̄ dz =
∂gj
∂z̄ dz on Vi ∩ Vj , and thus there exists a differential

form ω ∈ E 0,1(|V|) with ω|Vi = ∂gi
∂z̄ dz. Since |W| b |V|, there exists a function ψ ∈ E (X)

with

Supp(ψ) ⊂ |V| and ψ||W| = 1.

Hence ψω can be considered as an element of E (|U∗|). By Theorem (1.3) there exist

functions hi ∈ E (U∗i ) such that

∂hi
∂z̄

dz = ψω on U∗i .

Because ∂hi
∂z̄ dz =

∂hj
∂z̄ dz on U∗i ∩ U∗j , it follows that

Fij := hj − hi ∈ O(U∗i ∩ U∗j ).

Set ζ := (Fij)|U . Since U � U∗, one has ζ ∈ Z1
L2(U ,O). On Wi one has

∂hi
∂z̄

dz = ψω = ω =
∂gi
∂z̄

dz,

thus hi − gi is holomorphic on Wi. Since hi − gi is also bounded on Wi, one has

η := (hi − gi)|W ∈ C0
L2(W,O).

Now Fij − fij = (hj − gj)− (hi − gi) on Wi ∩Wj and thus

ζ − ξ = δ(η) on W.

(ii) In order to get the desired estimate on the norms, we consider the Hilbert space

H := Z1
L2(U ,O)× Z1

L2(V,O)× C0
L2(W,O)

with the norm

‖(ζ, ξ, η)‖H :=
(
‖ζ‖2L2(U) + ‖ξ‖2L2(V) + ‖η‖2L2(W)

)1/2
.

Let L ⊂ H be the subspace

L := {(ζ, ξ, η) ∈ H : ζ = ξ + δ(η) on W}.

Since L is closed in H, it is also a Hilbert space. From (i) the continuous linear mapping

π : L→ Z1
L2(V,O),

(ζ, ξ, η) 7→ ξ

is surjective. By the Theorem of Banach (1.6) the mapping π is open. Thus there exists

a constant C > 0 such that for every ξ ∈ Z1
L2(V,O) there exists x = (ζ, ξ, η) ∈ L with

π(x) = ξ and ‖x‖H ≤ C‖ξ‖L2(V). This constant then satisfies the desired conditions.
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4 A Finiteness Theorem

Lemma 4.1. Under the same assumptions as in Lemma (3.1), there exists a finite di-

mensional vector subspace S ⊂ Z1(U ,O) such that for every ξ ∈ Z1(U ,O) there exist

elements σ ∈ S and η ∈ C0(W,O) such that

σ = ξ + δ(η) on W.

Remark. The lemma says that the natural restriction mapping

H1(U ,O)→ H1(W,O)

has a finite dimensional image. To see this, rewrite the mapping by the definition of the

1st cohomology group i.e.

Z1(U ,O)/B1(U ,O)→ Z1(W,O)/B1(W,O)

and note that δ(η) ∈ B1(W,O) by definition of B1(W,O) and, since the relation above

holds on W, we have that the restriction has finite dimensional image since S is finite

dimensional.

Proof. Suppose C is the constant in Lemma (3.1) and set ε := 1/2C. By Remark (1)

there exists a finite codimensional closed vector subspace A ⊂ Z1
L2(U ,O) such that for

every ξ ∈ A:

‖ξ‖L2(V) ≤ ε‖ξ‖L2(U).

Let S be the orthogonal complement of A in Z1
L2(U ,O) i.e. A ⊕ S = Z1

L2(U ,O). Now

suppose ξ ∈ Z1(U ,O) is arbitrary. Because V � U ,

M := ‖ξ‖L2(V) <∞.

By Lemma (3.1) there exist ζ0 ∈ Z1
L2

(U ,O) and η0 ∈ C0
L2(W,O) such that

ζ0 = ξ + δ(η0) on W

and ‖ζ0‖L2(U) ≤ CM, ‖η0‖L2(W) ≤ CM . Suppose that for ξ0 ∈ A, σ0 ∈ S,

ζ0 = ξ0 + σ0

is the orthogonal decomposition of ζ0. We now construct, by induction, elements

ζν ∈ Z1
L2

(U ,O), ην ∈ C0
L2(W,O), ξν ∈ A, σν ∈ S

with the following properties:

(i) ζν = ξν−1 + δ(ην) on W;
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(ii) ζν = ξν + σν ;

(iii) ‖ζν‖L2(U) ≤ 2−νCM, ‖ην‖L2(W) ≤ 2−νCM .

Consider the induction step from ν to ν + 1. Since ζν = ξν + σν is an orthogonal

decomposition, one has

‖ξν‖L2(U) ≤ ‖ζν‖L2(U) ≤ 2−νCM.

Thus, by Remark (1),

‖ξν‖L2(V) ≤ ε ‖ξν‖L2(U) ≤ 2−νεCM ≤ 2−ν−1M.

By Lemma (3.1) there exist elements ζν+1 ∈ Z1
L2(U ,O) and ην+1 ∈ C0

L2(W,O) such that

ζν+1 = ξν + δ(ην+1) on W

and

max
{
‖ζν+1‖L2(U) , ‖ην+1‖L2(W)

}
≤ 2−ν−1CM.

Now one has an orthogonal decomposition ζν+1 = ξν+1 + σν+1, where ξν+1 ∈ A and

σν+1 ∈ S, and thus the induction step is complete.

From the equation ζ0 = ξ + δ(η0), together with equations (i) and (ii) up to ν = k,

one gets

ξk +
k∑
ν=0

σν = ξ + δ

(
k∑
ν=0

ην

)
on W. (∗∗)

From (ii) and (iii) it follows that

max
{
‖ξν‖L2(U) , ‖σν‖L2(U) , ‖ην‖L2(W)

}
≤ 2−νCM.

Hence limk→∞ ξk = 0 and the series

σ :=
∞∑
ν=0

σν ∈ S

η :=

∞∑
ν=0

ην ∈ C0
L2(W,O)

converge. Finally from (∗∗) one gets σ = ξ + δ(η) on W.

Suppose X is a topological space, Y ⊂ X is open and F is a sheaf of abelian groups

on X. For every open covering U = (Ui)i∈I of X, U ∩ Y := (Ui ∩ Y )i∈I is an open

covering of Y and the natural restriction mapping Z1(U ,F ) → Z1(U ∩ Y,F ) induces a

homomorphism

H1(U ,F )→ H1(U ∩ Y,F ).

These homomorphisms for all U give rise to a restriction homomorphism

H1(X,F )→ H1(Y,F ).
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Theorem 4.1. Suppose X is a Riemann surface and Y1 b Y2 ⊂ X are open subsets.

Then the restriction homomorphism

H1 (Y2,O)→ H1 (Y1,O)

has a finite dimensional image.

Proof. There exists a finite family of charts (U∗i , zi)
n
i=1 on X and relatively compact open

subsets Wi b Vi b Ui b U∗i with the following properties:

(i) Y1 ⊂
n⋃
i=1

Wi =: Y ′ b Y ′′ :=
n⋃
i=1

Ui ⊂ Y2;

(ii) all zi(U
∗
i ), zi(Ui) and zi(Wi) are disks in C.

Let U := (Ui)
n
i=1 , W := (Wi)

n
i=1. By Lemma (4.1) the restriction mapping

H1(U ,O)→ H1(W,O)

has a finite dimensional image. By Theorem (1.4) we have

H1(Ui,O) = H1(Wi,O) = 0.

Thus, by Leray’s Theorem (1.2),

H1(U ,O) = H1
(
Y ′′,O

)
and H1(W,O) = H1(Y ′,O).

The restriction mapping H1(Y2,O)→ H1(Y1,O) can be factored as follows:

H1(Y2,O)→ H1(Y ′′,O)→ H1(Y ′,O)→ H1(Y1,O)

and hence the proof of the theorem is complete.

5 Applications

Corollary. Suppose X is a compact Riemann surface. Then

dimH1(X,O) <∞.

Proof. Since X is compact, one can choose Y1 = Y2 = X in the previous theorem.

Definition 5.1. Suppose X is a compact Riemann surface. Then

g := dimH1(X,O)

is called the genus of X.

By Theorem (1.5) the Riemann sphere P1 has genus zero and by the previous Corollary

every compact Riemann surface has finite genus.
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Theorem 5.1. Suppose X is a Riemann surface and Y b X is a relatively compact open

subset. Then for every point a ∈ Y there exists a meromorphic function f ∈M (Y ) which

has a pole at a and is holomorphic on Y \ {a}.

Proof. By Theorem (4.1)

k := dim Im(H1(X,O)→ H1(Y,O)) <∞.

Suppose (U1, z) is a coordinate neighborhood of a with z(a) = 0. Set U2 := X \ {a}.
Then U = (U1, U2) is an open covering of X. The functions z−j are holomorphic on

U1 ∩ U2 = U1 \ {a} and represent cocycles

ζj ∈ Z1(U ,O), j = 1, . . . , k + 1.

Since dim Im(H1(U ,O)→ H1(U ∩ Y,O)) < k + 1, the cocycles

ζj |Y ∈ Z1(U ∩ Y, C), j = 1, . . . , k + 1,

are linearly dependent modulo the coboundaries. Thus there exist complex numbers

c1, . . . , ck+1, not all zero, and a cochain η = (f1, f2) ∈ C0(U ∩ Y,O) such that

c1ζ1 + · · ·+ ck+1ζk+1 = δ(η) with respect to U ∩ Y

i.e.
k+1∑
j=1

cjz
−j = f2 − f1 on U1 ∩ U2 ∩ Y .

Hence there is a function f ∈M (Y ), which coincides with

f1 +
k+1∑
j=1

cjz
−j

on U1 ∩Y and which is equal to f2 on U2 ∩Y = Y \ {a}. This is the desired function.

Corollary. Suppose X is a compact Riemann surface and a1, . . . , an are distinct points

on X. Then for any given complex numbers c1, . . . , cn ∈ C, there exists a meromorphic

function f ∈M (X) such that f(ai) = ci for i = 1, . . . , n.

Proof. For every pair i 6= j, by applying Theorem (5.1) in the case Y = X, one gets a

function fij ∈M (X) which has a pole at ai but is holomorphic at aj . Choose a constant

λij ∈ C∗ such that fij(ak) 6= fij(aj)− λij for every k = 1, . . . , n. Then the function

gij :=
fij − fij (aj)

fij − fij (aj) + λij
∈M (X)

is holomorphic at the points ak, 1 ≤ k ≤ n, and satisfies gij(ai) = 1 and gij(aj) = 0. Now

the functions

hi :=

n∏
j=1
j 6=i

gij , i = 1, . . . , n,
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satisfy hi(aj) = δij and thus

f :=
n∑
i=1

cihi

solves the problem.

We now note a few consequences of the finiteness theorem for noncompact Riemann

surfaces.

Corollary. Suppose Y is a relatively compact open subset of a noncompact Riemann

surface X. Then there exists a holomorphic function f : Y → C which is not constant on

any connected component of Y .

Proof. Choose a domain Y1 such that Y b Y1 b X and a point a ∈ Y1 \ Y . (Since X is

non-compact and connected, Y1 \ Y is not empty.) Now apply Theorem (5.1) to Y1 and

the point a.

Theorem 5.2. Suppose X is a non-compact Riemann surface and Y b Y ′ ⊂ X are open

subsets. Then

Im(H1(Y ′,O)→ H1(Y,O)) = 0.

Proof. By Theorem (4.1) we already know that

L := Im(H1(Y ′,O)→ H1(Y,O))

is a finite dimensional vector space. Choose cohomology classes ξ1, . . . , ξn ∈ H1(Y ′,O)

such that their restrictions to Y span the vector space L. According to the previous

corollary we may choose a function f ∈ O(Y ′) which is not constant on any connected

component of Y ′. Since H1(Y ′,O) is in a natural way a module over O(Y ′), the products

fξν ∈ H1(Y ′,O) are defined for every ν = 1, . . . , n. By the choice of the ξν there exist

constants cνµ ∈ C such that

fξν =

n∑
µ=1

cνµξµ on Y for ν = 1, . . . , n. (?)

Set

F := det (fδνµ − cνµ)1≤ν, µ≤n .

Then F is a holomorphic function on Y ′ which is not identically zero on any connected

component of Y ′. From (?) it follows that

Fξν |Y = 0 for ν = 1, . . . , n (??)

An arbitrary cohomology class ζ ∈ H1(Y ′,O) can be represented by a cocycle (fij) ∈
Z1(U ,O), where U = (Ui)i∈I is an open covering of Y ′ such that each zero of F is

contained in at most one Ui. Thus for i 6= j one has F |Ui∩Uj ∈ O∗(Ui ∩ Uj). Hence

there exists a cocycle (gij) ∈ Z1(U ,O) such that fij = Fgij . Let ξ ∈ H1(Y ′,O) be the

cohomology class of (gij). Then ζ = Fξ. Hence from (??) one gets ζ|Y = Fξ|Y = 0.
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Corollary. Suppose X is a non-compact Riemann surface and Y b Y ′ ⊂ X are open

subsets. Then for every differential form ω ∈ E 0,1(Y ′) there exists a function f ∈ E (Y )

such that
∂f

∂z̄
dz = ω|Y .

Proof. By Theorem (1.3) the problem has a solution locally i.e. there exist an open

covering U = (Ui)i∈I of Y ′ and functions fi ∈ E (Ui) such that

∂fi
∂z̄

dz = ω|Ui .

The differences fi−fj are holomorphic on Ui∩Uj and thus define a cocycle in Z1(U ,O). By

Theorem (5.2) this cocycle is cohomologous to zero on Y and thus there exist holomorphic

functions gi ∈ O(Ui ∩ Y ) such that

fi − fj = gi − gj on Ui ∩ Uj ∩ Y .

Hence there exists a function f ∈ E (Y ) such that for all i ∈ I:

f = fi − gi on Ui ∩ Y.

But then the function f satisfies the equation

∂f

∂z̄
dz = ω|Y .

13


	Preliminaries
	The L2-Norm for Holomorphic Functions
	Square Integrable Cochains
	A Finiteness Theorem
	Applications

