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1. Recap of the last two talks

Let us make a quick recap of some of the notions and results we saw in the last two talks.

We start with the definition of a divisor, its degree, and its induced sheaf of meromorphic
functions.

Definition 1.1 (cf. [For81, Paragraphs 16.1-16.4]). Let X be a Riemann surface.

A divisor on X is a map D : X → Z so that for every compact subset K ⊂ X, there are
only finitely many points in K at which D takes a non-zero value.

The sheaf OD induced by D is defined as

OD(U) := {f ∈ M(U) | ∀x ∈ U : ordx(f) ≥ −D(x)}

for every open subset U ⊂ X, with restriction maps being the usual restrictions of functions.

When X is compact, for a divisor D on X, we define its degree as the number

deg(D) :=
∑
x∈X

D(x).

When the degree of D is negative, the zeroth cohomology group with coefficients in OD is
trivial.

Lemma 1.2 (cf. [For81, Theorem 16.5]). Let X be a compact Riemann surface and let D
be a divisor on X with deg(D) < 0.

Then,

H0(X,OD) = 0.

Now, let X be a compact Riemann surface, and let f ∈ M(X). Then, recall that f induces
a divisor (f) on X defined as

(f) : X → Z, x 7→ ordx(f).

This is called a principal divisor. In a similar manner, a meromorphic 1-form on X also
induces a divisor on X.

Two divisors D,D′ on X are said to be equivalent if

D −D′ = (f)

for some f ∈ M(X). In this case, the map

OD → OD′ , ψ 7→ fψ (1.1)

is a sheaf isomorphism.

Now, for two divisors D and D′ on X satisfying D ≤ D′ in the pointwise sense, recall that
the inclusion map OD ↪→ OD′ induces a map in cohomology which is surjective.

Lemma 1.3 (cf. [For81, Corollary 16.8]). Let X be a compact Riemann surface and let
D,D′ be two divisors on X with D ≤ D′ in the pointwise sense.

Then, the inclusion map OD ↪→ OD′ induces a surjective linear map

H1(X,OD) → H1(X,OD′).

Next, we recall the statement of the Riemann-Roch theorem.
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Theorem 1.4 (Riemann-Roch, cf. [For81, Theorem 16.9]). Let X be a compact Riemann
surface of genus g ≥ 0 and let D be a divisor on X.

Then, H0(X,OD) and H1(X,OD) are finite-dimensional and satisfy

dimCH
0(X,OD)− dimCH

1(X,OD) = 1− g + deg(D).

We now move towards the statement of the Serre Duality Theorem. Let X be a compact
Riemann surface. Recall the short exact sequence of sheaves

0 → Ω ↪→ E 1,0 d→ E (2) → 0

which states that a type (1, 0) form is holomorphic if and only if it is closed. The induced
long exact sequence in cohomology implies that

H1(X,Ω) ≃ E (2)(X)/d(E 1,0(X)).

Hence, we may define a linear map

Res : H1(X,Ω) → C, [ω] 7→ 1

2πi

∫
X

ω,

where [ω] ∈ H1(X,Ω) ≃ E (2)(X)/d(E 1,0(X)), and the above is well-defined by Stokes’s
theorem.

To state the Serre Duality Theorem, we recall the definition of the sheaf of 1-forms induced
by the divisor.

Definition 1.5 (cf. [For81, Paragraph 17.4]). Let X be a Riemann surface and let D be a
divisor on X.

We define the sheaf ΩD by

ΩD(U) := {ω ∈ M(1)(U) | ∀x ∈ U : ordx(ω) ≥ −D(x)},
for every U ⊂ X open, and the restriction maps are the usual restrictions of 1-forms.

Remark 1.6 (cf. [For81, Paragraph 17.4]). Let a compact X be a Riemann surface and let
D be a divisor on X. Let ω ̸= 0 be a meromorphic 1-form on X, and denote by K the
divisor induced by ω.

Then, the map
OD+K → ΩD, f 7→ fω (1.2)

is a sheaf isomorphism.

With the above notions, we can now state the Serre Duality Theorem.

Theorem 1.7 (Serre duality, cf. [For81, Theorem 17.9]). Let X be a compact Riemann
surface and let D be a divisor on X.

Then, the pairing
Ω−D ×OD → Ω, (ω, f) 7→ fω

induces a bilinear map

H0(X,Ω−D)×H1(X,OD) → H1(X,Ω)

for which the map resulting from the composition

H0(X,Ω−D)×H1(X,OD) → H1(X,Ω)
Res→ C

is non-degenerate.

The following is a direct corollary of the Serre Duality Theorem.
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Corollary 1.8 (cf. [For81, Paragraphs 17.9 and 17.11]). Let X be a compact Riemann
surface and let D be a divisor on X.

Then,
H0(X,Ω−D) ≃ H1(X,OD)∗

and
H0(X,O−D) ≃ H1(X,ΩD)∗.

Another corollary of the Riemann-Roch and the Serre Duality Theorems is the computation
of the degree of a canonical divisor in terms of the genus of a Riemann surface.

Proposition 1.9 (cf. [For81, Theorem 17.12]). Let X be a compact Riemann surface of
genus g ≥ 0 and let ω ̸= 0 be a meromorphic 1-form on X. Denote by K the divisor induced
by ω.

Then,
deg(ω) := deg(K) = 2g − 2.
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2. Some simple applications of the Riemann-Roch and Serre Du-

ality theorems

In this section, we discuss some simple applications of the Riemann-Roch and the Serre
Duality Theorems.

We start with the computation of the first cohomology group with coefficients in the sheaf
of meromorphic functions induced by a divisor of “large” degree.

Theorem 2.1 (cf. [For81, Theorem 17.16]). Let X be a compact Riemann surface of genus
g ≥ 0 and let D be a divisor on X with deg(D) ≥ 2g − 1.

Then,
H1(X,OD) = 0.

Proof. Let ω ̸= 0 be a meromorphic 1-form on X, and denote by K the induced divisor.
By (1.2), the sheaves Ω−D and OK−D are isomorphic, hence

H0(X,Ω−D) ≃ H0(X,OK−D).

By the Serre Duality Theorem (cf. Corollary 1.8) and by the above, we get

H1(X,OD)∗ ≃ H0(X,Ω−D) ≃ H0(X,OK−D).

Now, by assumption,
deg(D) ≥ 2g − 1.

By Proposition 1.9,
deg(K) = 2g − 2,

and thus
deg(K −D) = deg(K)− deg(D) < 0.

Hence, by Lemma 1.2, we have
H0(X,OK−D) = 0,

and so H1(X,OD) = 0. □

Corollary 2.2. Let X be a compact Riemann surface. Denote by M the sheaf of mero-
morphic functions on X.

Then,
H1(X,M) = 0.

Proof. SinceX is compact, it suffices to work only with finite covers in the Čech cohomology
group H1(X,M). Let U = (Ui)i∈I be a finite open cover of X and let

(fij) ∈ Z1(U;M)

be a Čech 1-cocycle. Then, each fij is a meromorphic function on Ui ∩Uj , with fij = −fji.
Hence, the number of poles of the fij ’s are finite since the cover is finite.

Let D be a divisor on X so that deg(D) ≥ 2g − 1 and so that

fij ∈ Z1(U;OD).

By Theorem 2.1, (fij)i,j is cohomologous to zero in Z1(U,OD), and hence also in Z1(U,M).
Thus,

H1(U,M) = 0,

and so as U was arbitrary, it follows that

H1(X,M) = 0.

□
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Let us now see another application of these results, where we bound the dimension of
H0(X,OD) for a divisor D on a compact Riemann surface X in terms of deg(D) and the
genus of X.

Proposition 2.3 (cf. [For81, Exercise 17.4]). Let X be a compact Riemann surface of genus
g ≥ 0 and let D be a divisor on X.

Then, we have:

(1) dimCH
0(X,OD) = 0 if deg(D) ≤ −1.

(2) 0 ≤ dimCH
0(X,OD) ≤ 1 + deg(D) if 0 ≤ deg(D) ≤ g − 1.

(3) 1− g + deg(D) ≤ dimCH
0(X,OD) ≤ g if g − 1 ≤ deg(D) ≤ 2g − 1.

(4) dimCH
0(X,OD) = 1− g + deg(D) if deg(D) ≥ 2g − 1.

Proof. Recall the Riemann-Roch theorem (cf. Theorem 1.4):

dimCH
0(X,OD) = 1− g + deg(D) + dimCH

1(X,OD). (2.1)

Firstly, if deg(D) ≤ −1, then H0(X,OD) = 0 by Lemma 1.2.

Secondly, if deg(D) ≥ 2g − 1, then H1(X,OD) = 0 by Theorem 2.1, so

dimCH
0(X,OD) = 1− g + deg(D)

by (2.1).

Thirdly, assume that 0 ≤ deg(D) ≤ g − 1. We show that

dimCH
0(X,OD) ≤ 1 + deg(D).

Without loss of generality, we may assume that H0(X,OD) ̸= 0. Observe that we may
assume that D ≥ 0 in the pointwise sense. Indeed, if this is not the case, then we may
replace D by D′ := D + (f) for some non-zero f ∈ H0(X,OD) (and also, by construction,
D′ ≥ 0 in the pointwise sense) and study H0(X,OD′), which is isomorphic to H0(X,OD)
by (1.1). By construction, D′ ≥ 0 in the pointwise sense.

Now, by (2.1), it suffices to show that

dimCH
1(X,OD) ≤ g.

However, since D ≥ 0, by Lemma 1.3, we have

dimCH
1(X,OD) ≤ dimCH

1(X,O0) = dimC H
1(X,O) = g,

where the last equality is the definition of the genus of X, hence dimCH
1(X,OD) ≤ g.

Lastly, assume that g − 1 ≤ deg(D) ≤ 2g − 1. We show that

1− g + deg(D) ≤ dimCH
0(X,OD) ≤ g.

By (2.1), we have

dimCH
0(X,OD) = 1− g + deg(D) + dimCH

1(X,OD) ≥ 1− g + deg(D).

To show the other inequality, let ω ̸= 0 be a meromorphic 1-form on X. Denote by K the
divisor induced by ω. By Proposition 1.9, we have deg(K) = 2g − 2. By (1.2), we have a
sheaf isomorphism

Ω−D ≃ OK−D,

hence, by the Serre Duality Theorem (cf. Corollary 1.8), we obtain

H1(X,OD)∗ ≃ H0(X,Ω−D) ≃ H0(X,OK−D).

Since
deg(K −D) = deg(K)− deg(D) = 2g − 2− deg(D),
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the assumptions on deg(D) imply that 0 ≤ deg(K −D) ≤ g − 1, so the second part of this
proposition implies that

dimCH
0(X,OK−D) ≤ 1 + deg(K −D).

Hence, by (2.1), we obtain

dimCH
0(X,OD) = 1− g + deg(D) + dimCH

1(X,OD)

= 1− g + deg(D) + dimCH
0(X,OK−D)

≤ 1− g + deg(D) + 1 + 2g − 2− deg(D)

= g.

□
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3. Embeddings into complex projective space

In this section, we show that every compact Riemann surface admits a holomorphic em-
bedding into some complex projective space.

Let us first define the complex projective space of arbitrary dimension.

Definition 3.1 (Complex projective space). Let n ≥ 1 be an integer.

On Cn+1 \ {0}, we consider the relation ∼ defined as

(z0, · · · , zn) ∼ (z′0, · · · , z′n) ⇐⇒ ∃λ ∈ C \ {0} : (z0, · · · , zn) = λ(z′0, · · · , z′n),
for (z0, · · · , zn), (z0,′ · · · , z′n) ∈ Cn+1. It is straightforward to check that ∼ is an equivalence
relation on Cn+1 \ {0}.

We define the n-dimensional complex projective space as the quotient

CPn := (Cn+1 \ {0})/ ∼,
and we endow this space with the quotient topology.

We denote the equivalence class of (z0, · · · , zn) ∈ Cn+1 \ {0} in CPn as

[z0 : · · · : zn] ∈ CPn.

For n ∈ N, consider the cover of CPn by the subsets

Uj := {[z0 : · · · : zn] ∈ CPn | zj ̸= 0}
for 0 ≤ j ≤ n. For such j, define the map

φj : Uj → Cn, φj([z0 : · · · : zn]) :=
(
z0
zj
, · · · , zj−1

zj
,
zj+1

zj
, · · · , zn

zj

)
. (3.1)

It is not difficult to check that each φj is a well-defined homeomorphism from Uj to Cn,
with inverse explicitly given by

φ−1
j : Cn → Uj , (x1, · · · , xn) 7→ [x1 : x2 : · · · : xj−1 : 1 : xj : xj+1 : · · · : xn].

Moreover, for 0 ≤ j < k ≤ n, we have

(φj ◦ φ−1
k )(x1, · · · , xn) =

(
x1
xj
, · · · , xj−1

xj
,
xj+1

xj
, · · · , xk−1

xj
,
1

xj
,
xk+1

xj
, · · · , xn

xj

)
for all (x1, · · · , xn) ∈ Cn with φk(x1, · · · , xn) ∈ Uj , and hence CPn has the structure of an
n-dimensional complex manifold.

Now, we can make precise the notion of “holomorphic embedding” of a Riemann surface in
a complex projective space.

Definition 3.2 (cf. [For81, Paragraph 17.20]). Let X be a compact Riemann surface, let
n ∈ N, and let F : X → CPn be a map. Consider the cover of CPn with coordinate charts
(Uj , φj) as above, for 0 ≤ j ≤ n.

We say that F is holomorphic if for every 0 ≤ j ≤ n, the components of the map

φj ◦ F : F−1(Uj) → Cn

are holomorphic.

We also say that F is a (holomorphic) embedding if F is holomorphic, injective, and an
immersion, that is, for every 0 ≤ j ≤ n, denoting by

φj ◦ F = (F j
1 , · · · , F j

n)

with F j
1 , · · · , F j

n : F−1(Uj) → C, we have that for every x ∈ F−1(Uj), there is some
0 ≤ i ≤ n so that

(dF j
i )x ̸= 0.
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In the rest of this section, we will show that every compact Riemann surface admits a
holomorphic embedding into some complex projective space. The proof will be constructive,
i.e. we will explicitly construct a holomorphic embedding. To do this, we present the
following procedure of extending meromorphic functions into maps with codomain equal to
a higher-dimensional complex projective space.

Example 3.3 (Constructing maps into complex projective space, cf. [For81, Paragraph
17.21]). Let X be a Riemann surface and let f0, · · · , fn ∈ M(X) be non-zero meromorphic
functions. We define the map

F := [f0 : · · · : fn] : X → CPn

as follows: for every x ∈ X, let (U, z) be a holomorphic chart centered at x, and let

k := min
0≤j≤n

ordx(fj).

Then, on U , we can write

fj(z) = zkgj(z)

where each gj is holomorphic near x and at least one gj satisfies gj(x) ̸= 0. Then, for z ∈ U ,
we set

F (z) := [g0(z) : · · · : gn(z)] ∈ CPn.

It is easy to check that this way, F is well-defined, independent of the coordinate chart and
that it is holomorphic.

Now, the proof that every compact Riemann surface X (holomorphically) embeds into some
complex projective space is simple to describe: we will consider a divisor D on X of large
enough degree, take a basis (f0, · · · , fn) of H0(X,OD), and then the map

[f0 : · · · : fn] : X → CPn

will be the desired holomorphic embedding.

To prove the above, we first need to consider the following notion for the sheaf induced by
a divisor.

Definition 3.4 (cf. [For81, Paragraph 17.18]). Let X be a Riemann surface and let D be
a divisor on X.

We say that OD is globally generated if for every x ∈ X, there is some f ∈ H0(X,OD) =
OD(X) so that

OD,X = Ox · f,
that is, for every germ s ∈ OD,x in the stalk of OD at x, there is some holomorphic map ψ
defined on a neighbourhood U of x so that

s = (ψ · f |U )x,

where (ψ · f |U )x is the germ of ψ · f |U in OD,x.

For a Riemann surface X and a divisor D on X, notice that OD is globally generated if
and only if for every x ∈ X, there is some f ∈ OD(X) with

ordx(f) = −D(x).

Proposition 3.5 (cf. [For81, Theorem 17.19]). Let X be a compact Riemann surface of
genus g ≥ 0 and let D be a divisor on X with deg(D) ≥ 2g.

Then, OD is globally generated.
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Proof. Let x ∈ X and define the divisor

D′ : X → Z, D′(y) :=

{
D(y) if y ̸= x
D(x)− 1 if y = x

Observe that deg(D′) = deg(D)− 1, and thus

deg(D′),deg(D) ≥ 2g − 1.

Thus, by Theorem 2.1, we have

H1(X,OD) = H1(X,OD′) = 0.

Hence, the Riemann-Roch theorem implies that

dimCH
0(X,OD) > dimCH

0(X,OD′),

so there is some f ∈ OD(X) \ OD′(X) By definition of the sheaves OD and OD′ , we
necessarily have

ordx(f) = −D(x).

Hence, OD is globally generated. □

With the above results, we can now prove that every compact Riemann surface (holomor-
phically) embeds into some complex projective space.

Theorem 3.6 (cf. [For81, Theorem 17.22]). Let X be a compact Riemann surface of genus
g ≥ 0 and let D be a divisor on X with deg(D) ≥ 2g + 1. Let f0, · · · , fn be a basis for
H0(X,OD) = OD(X).

Then, the map
[f0 : · · · : fn] : X → CPn

is a holomorphic embedding.

Proof. Denote by
F := [f0 : · · · : fn].

We first show that F is injective. Let x1, x2 ∈ X be so that x1 ̸= x2. We need to show that
F (x1) ̸= F (x2). Define the divisor

D′ : X → Z, D′(x) :=

{
D(x) if x ̸= x2
D(x)− 1 if x = x2

Observe that deg(D′) = deg(D) − 1 ≥ 2g, hence, by Proposition 3.5, the sheaves OD and
OD′ are globally generated. Thus, there is some f ∈ OD′(X) so that

ordx1
(f) = −D′(x1) = −D(x1). (3.2)

By definition of D′ and by assumption on f , we also have that

ordx2
(f) ≥ −D′(x2) = −D(x2) + 1 (3.3)

hence f ∈ OD(X). Thus, we may write

f =

n∑
j=0

λjfj (3.4)

for some λ0, · · · , λn ∈ C.

Let (U1, z1) and (U2, z2) be holomorphic coordinates centered x1 and x2, respectively. For
ℓ ∈ {1, 2}, put

kℓ := min
0≤j≤n

ordxℓ
fj ,

and observe that kℓ = −D(xℓ) for ℓ ∈ {1, 2}. Then, on Uℓ, we may write

fj(zℓ) = zkℓ

ℓ gℓj(zℓ), f(zℓ) = zkℓ

ℓ gℓ(zℓ),
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for every 0 ≤ j ≤ n and every ℓ = {1, 2}, where gℓj and gℓ are holomorphic functions
defined on Uℓ. By (3.4), it follows that for every ℓ ∈ {1, 2}, we have

n∑
j=0

λjgℓj(xℓ) = gℓ(xℓ).

Equations (3.2) and (3.3) imply that

g1(x1) ̸= 0 and g2(x2) = 0. (3.5)

By definition of F (cf. Example 3.3), we have

F (x1) = [g10(x1) : · · · : g1n(x1)] and F (x2) = [g20(x2) : · · · : g2n(x2)],
and thus F (x1) ̸= F (x2) because of (3.5). Hence, F is injective.

Secondly, we show that F is an immersion. Let x0 ∈ X. Define the divisor

D′ : X → Z, D′(x) :=

{
D(x) if x ̸= x0
D(x)− 1 if x = x0

As in the proof of the first part of this theorem, the sheaf OD′ is globally generated by
Proposition 3.5, hence there is some f ∈ H0(X,OD′) with ordx0

(f) = −D(X0) + 1. As
before, we also have f ∈ H0(X,OD), and hence we may write

f =

n∑
j=0

λjfj (3.6)

for some λ0, · · · , λn ∈ C. Then, we may choose holomorphic coordinates (U, z) centered at
x0 so that, on U ,

fj(z) = zkgj(z) and f(z) = zkg(z),

where

k := min
0≤j≤n

ordx0
(fj) = −D(x0)

and g0, · · · , gn, g are holomorphic functions on U with (g0(x0), · · · , gn(x0)) ̸= 0 and g has
a zero of order one at x0. Let 0 ≤ ℓ ≤ n be so that

gℓ(x0) ̸= 0.

Then, with φℓ defined as in (3.1), we compute, for z ∈ U (after possibly shrinking U so
that gℓ ̸= 0 on U),

(φ0 ◦ F )(z) =
(
g0(z)

gℓ(z)
, · · · , gℓ−1(z)

gℓ(z)
,
gℓ+1(z)

gℓ(z)
, · · · , gn(z)

gℓ(z)

)
Denote by

Fj :=
gj
gℓ

for j ∈ {0, 1, · · · , ℓ− 1, ℓ+ 1, · · · , n}. By (3.6), we have∑
j ̸=ℓ

λjgj = g − λℓgℓ,

hence ∑
j ̸=ℓ

λjFj =
g

gℓ
− λℓ.

Thus, ∑
j ̸=ℓ

λj(dFj)x0
=

(
d

(
g

gℓ
− λℓ

))
x0

=

(
d

(
g

gℓ

))
x0

.
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However, since gℓ(x0) ̸= 0 and since g has a zero of order one at x0, it follows from the
chain rule that (

d

(
g

gℓ

))
x0

̸= 0,

hence there is some j ̸= ℓ so that

λj(dFj)(x0) ̸= 0,

hence (dFj)(x0) ̸= 0 and so F is an immersion at x0. As x0 was arbitrary, the proof is
completed. □

Remark 3.7. It can be shown that every compact Riemann surface admits a holomorphic
embedding into CP3.

Example 3.8 (cf. [For81, Exercise 17.6]). Let Γ ⊂ C be a lattice and consider the complex
torus C/Γ. The 1-form dz on C is invariant under translations. Hence, dz descends to a
holomorphic 1-form on C/Γ that has no zeroes and no poles, i.e. has degree equal to 0. By
Proposition 1.9, it follows that C/Γ has genus equal to 1.

Consider the divisor

D : C/Γ → Z, D(x) :=

{
3 if x = 0 + Γ
0 if x ̸= 0 + Γ

(3.7)

By definition,

deg(D) = 3 > 1,

hence H1(C/Γ,OD) = 0 by Theorem 2.1. Thus, by the Riemann-Roch Theorem (cf. The-
orem 1.4), we have

dimCH
0(C/Γ,OD) = 3. (3.8)

Theorem 3.6 then implies that C/Γ embeds holomorphically into CP2. The dimension of
this complex projective is also “minimal” in the sense that C/Γ does not (holomorphically)
embed into CP1 (for purely topological reasons).

Let us construct an explicit embedding of C/Γ into CP2.

The Weierstrass ℘ function of Γ is defined as

℘ : C \ Γ → C, ℘Γ(z) :=
1

z2
+

∑
ω∈Γ\{0}

(
1

(z − ω)2
− 1

ω2

)
. (3.9)

Observe that for z ∈ C \ Γ and ω ∈ Γ \ {0}, we have

1

(z − ω)2
− 1

ω2
=

2zω − ω2

ω2(z − ω)2
,

and the right-hand side is asymptotic to |z|/|ω|3 as |ω| → ∞. Hence, the series in (3.9)
converges absolutely and uniformly in a neighbourhood of every point z ∈ C\Γ, and thus ℘
is a well-defined meromorphic function on C. The definition of ℘ and the above arguments
also imply that ℘ has poles of order 2 at every point of Γ.

The derivative of ℘ can be determined by differentiating the series (3.9) term-by-term, i.e.

∀z ∈ C \ Γ : ℘′(z) = −2
∑
ω∈Γ

1

(z − ω)3
, (3.10)

and thus ℘′ is a meromorphic function on C with poles of order 3 at every point of Γ.

Notice also that, from (3.9) and (3.10), both ℘ and ℘′ are invariant under translation of
the argument by an element of Γ, i.e. for every z ∈ C \ Γ and for all ω ∈ Γ, we have

℘(z + ω) = ℘(z) and ℘′(z + ω) = ℘′(z).
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Thus, both ℘ and ℘′ descend to meromorphic functions on C/Γ (by abuse of notation, we
also denote these functions on C/Γ by ℘ and ℘′), and 0+Γ is their only pole, having order
2 and 3, respectively. In particular,

℘, ℘′ ∈ OD(C/Γ) = H0(C/Γ,OD),

where D is the divisor defined in (3.7).

We now claim that the functions 1, ℘, and ℘′ form a basis for H0(C/Γ,OD), where 1 is the
constant function equal to 1. Let us prove this claim. It suffices to show that the functions
1, ℘, and ℘′ are C-linearly independent as functions on C/Γ. However, this is clear, as the
poles of these three functions have a different order, and thus the claim is proven.

Hence, by the above claim and by (3.8), the set {1, ℘, ℘′} is a basis for H0(C/Γ,OD), and
thus, by Theorem 3.6, the map

[1 : ℘ : ℘′] : C/Γ → CP2

is a holomorphic embedding.

We can say something more about this particular embedding of the complex torus C/Γ.
Define the quantities

g2 := 60
∑

ω∈Γ\{0}

1

ω4
, g3 := 140

∑
ω∈Γ\{0}

1

ω6
.

It is possible to show that ℘ and ℘′ (as meromorphic functions on C) satisfy the algebraic
relation

(℘′)2 = 4℘3 − g2℘− g3.

Hence, the embedding [1 : ℘ : ℘′] has image contained in the elliptic curve{
[X : Y : Z] ∈ CP2 | Z2X = 4Y 3 − g2Y X

2 − g3X
3
}
,

and one can also show that, in fact, the image of the map this map is the whole elliptic
curve (as the map [1 : ℘ : ℘′] is a non-constant holomorphic map between compact Riemann
surfaces, it must be surjective, see [For81, Theorem 2.7]). Thus, the complex torus C/Γ is
an elliptic curve.
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