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1. Recap of the last two talks

Let us make a quick recap of some of the notions and results we saw in the last two talks.
We start with the definition of a divisor, its degree, and its induced sheaf of meromorphic
functions.

Definition 1.1 (cf. [For81, Paragraphs 16.1-16.4]). Let X be a Riemann surface.

A divisor on X is a map D : X — Z so that for every compact subset K C X, there are
only finitely many points in K at which D takes a non-zero value.

The sheaf Op induced by D is defined as
OpU):={feMU) |VxeU:ord,(f) > —-D(x)}
for every open subset U C X, with restriction maps being the usual restrictions of functions.

When X is compact, for a divisor D on X, we define its degree as the number

deg(D) := > D(x).

zeX

When the degree of D is negative, the zeroth cohomology group with coefficients in Op is
trivial.

Lemma 1.2 (cf. [For81, Theorem 16.5]). Let X be a compact Riemann surface and let D
be a divisor on X with deg(D) < 0.
Then,
H°(X,0p) =0.
Now, let X be a compact Riemann surface, and let f € M(X). Then, recall that f induces
a divisor (f) on X defined as
(f): X > Z, x> ordy(f).

This is called a principal divisor. In a similar manner, a meromorphic 1-form on X also
induces a divisor on X.

Two divisors D, D’ on X are said to be equivalent if
DD =(f)

for some f € M(X). In this case, the map

Op—=Op, ¢ [y (L.1)
is a sheaf isomorphism.
Now, for two divisors D and D’ on X satisfying D < D’ in the pointwise sense, recall that
the inclusion map Op — Op: induces a map in cohomology which is surjective.
Lemma 1.3 (cf. [For81, Corollary 16.8]). Let X be a compact Riemann surface and let

D, D’ be two divisors on X with D < D’ in the pointwise sense.

Then, the inclusion map Op — Op: induces a surjective linear map

HY(X,0p) = H'(X,0p).

Next, we recall the statement of the Riemann-Roch theorem.
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Theorem 1.4 (Riemann-Roch, cf. [For81, Theorem 16.9]). Let X be a compact Riemann
surface of genus g > 0 and let D be a divisor on X.

Then, H*(X,Op) and H*(X,Op) are finite-dimensional and satisfy
dim¢ H(X, Op) — dime H(X,0p) =1 — g + deg(D).

We now move towards the statement of the Serre Duality Theorem. Let X be a compact
Riemann surface. Recall the short exact sequence of sheaves

05 Q804 02 0

which states that a type (1,0) form is holomorphic if and only if it is closed. The induced
long exact sequence in cohomology implies that

HY(X,Q) ~ &P (X)/d(EVO(X)).
Hence, we may define a linear map

1

Res: H'(X,Q) - C, [w]+ i /s

w7
where [w] € HY(X,Q) ~ £&@(X)/d(£"°(X)), and the above is well-defined by Stokes’s
theorem.

To state the Serre Duality Theorem, we recall the definition of the sheaf of 1-forms induced
by the divisor.

Definition 1.5 (cf. [For81, Paragraph 17.4]). Let X be a Riemann surface and let D be a
divisor on X.

We define the sheaf Qp by
Qp(U) :={we MOWU) | Yo eU :ord,(w) > —D(x)},

for every U C X open, and the restriction maps are the usual restrictions of 1-forms.

Remark 1.6 (cf. [For81, Paragraph 17.4]). Let a compact X be a Riemann surface and let
D be a divisor on X. Let w # 0 be a meromorphic 1-form on X, and denote by K the
divisor induced by w.

Then, the map
Optk = Qp, [+ fw (1.2)
is a sheaf isomorphism.

With the above notions, we can now state the Serre Duality Theorem.
Theorem 1.7 (Serre duality, cf. [For81, Theorem 17.9]). Let X be a compact Riemann

surface and let D be a divisor on X.
Then, the pairing
Q,DXOD%Q, (w,f)wa
induces a bilinear map
H(X,Q_p) x HY(X,0p) — H'(X,Q)
for which the map resulting from the composition
H(X,Q_p) x HY(X,0p) = H'(X,Q) % C

is non-degenerate.

The following is a direct corollary of the Serre Duality Theorem.
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Corollary 1.8 (cf. [For81, Paragraphs 17.9 and 17.11]). Let X be a compact Riemann
surface and let D be a divisor on X.

Then,

H°(X,Q_p)~ H'(X,0p)"
and

HY(X,0_p)~ HY(X,Qp)*.

Another corollary of the Riemann-Roch and the Serre Duality Theorems is the computation
of the degree of a canonical divisor in terms of the genus of a Riemann surface.

Proposition 1.9 (cf. [For81, Theorem 17.12]). Let X be a compact Riemann surface of
genus g > 0 and let w # 0 be a meromorphic 1-form on X. Denote by K the divisor induced
by w.

Then,
deg(w) := deg(K) = 2g — 2.
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2. Some simple applications of the Riemann-Roch and Serre Du-
ality theorems

In this section, we discuss some simple applications of the Riemann-Roch and the Serre
Duality Theorems.

We start with the computation of the first cohomology group with coefficients in the sheaf
of meromorphic functions induced by a divisor of “large” degree.

Theorem 2.1 (cf. [For81, Theorem 17.16]). Let X be a compact Riemann surface of genus
g >0 and let D be a divisor on X with deg(D) > 2g — 1.

Then,
H'(X,0p) =0.

Proof. Let w # 0 be a meromorphic 1-form on X, and denote by K the induced divisor.
By (1.2), the sheaves Q_p and Ok _p are isomorphic, hence
H°(X,Q_p)~ H*(X,0x_p).
By the Serre Duality Theorem (cf. Corollary 1.8) and by the above, we get
HY(X,0p)* ~ H*(X,Q_p)~ H*(X,0r_p).

Now, by assumption,

deg(D) > 2g — 1.
By Proposition 1.9,

deg(K) = 29 — 2,
and thus

deg(K — D) = deg(K) — deg(D) < 0.
Hence, by Lemma 1.2, we have
H°(X,0k_p) =0,

and so H'(X,Op) = 0. O

Corollary 2.2. Let X be a compact Riemann surface. Denote by M the sheaf of mero-
morphic functions on X.

Then,
HY(X,M) =0.

Proof. Since X is compact, it suffices to work only with finite covers in the Cech cohomology
group H'(X, M). Let & = (U;);cs be a finite open cover of X and let

(fij) € Z (4 M)
be a Cech 1-cocycle. Then, each fij is a meromorphic function on U; NU;, with f;; = —fj;.
Hence, the number of poles of the f;;’s are finite since the cover is finite.
Let D be a divisor on X so that deg(D) > 2g — 1 and so that

fij € Z'(4; Op).

By Theorem 2.1, (f;;)i; is cohomologous to zero in Z' (4, Op), and hence also in Z* (U, M).
Thus,

H' (4, M) =0,
and so as i was arbitrary, it follows that
HY(X, M) =0.
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Let us now see another application of these results, where we bound the dimension of
H°(X,Op) for a divisor D on a compact Riemann surface X in terms of deg(D) and the
genus of X.

Proposition 2.3 (cf. [For81, Exercise 17.4]). Let X be a compact Riemann surface of genus
g >0 and let D be a divisor on X.

Then, we have:
(1) dim¢ HY(X,0p) =0 if deg(D) < —1.
(2) 0 < dimc H°(X,0p) < 1+deg(D) if 0 < deg(D) <g— 1.
(3) 1 —g+deg(D) < dimc H°(X,0p) < g if g—1 < deg(D) <29 — 1.
(4) dimg HO(X,0p) = 1 — g+ deg(D) if deg(D) > 2g — 1.

Proof. Recall the Riemann-Roch theorem (cf. Theorem 1.4):
dime H(X,0p) =1 — g + deg(D) + dimc H* (X, Op). (2.1)

Firstly, if deg(D) < —1, then H°(X,Op) = 0 by Lemma 1.2.
Secondly, if deg(D) > 2g — 1, then H'(X,Op) = 0 by Theorem 2.1, so
dimec H(X,0p) =1 — g + deg(D)

by (2.1).
Thirdly, assume that 0 < deg(D) < g — 1. We show that

dime H(X,0p) < 1+ deg(D).
Without loss of generality, we may assume that H°(X,Op) # 0. Observe that we may
assume that D > 0 in the pointwise sense. Indeed, if this is not the case, then we may
replace D by D’ := D + (f) for some non-zero f € H°(X,Op) (and also, by construction,
D' > 0 in the pointwise sense) and study H°(X,Op-), which is isomorphic to H(X, Op)
by (1.1). By construction, D’ > 0 in the pointwise sense.
Now, by (2.1), it suffices to show that

dime¢ HY(X,0p) < g.
However, since D > 0, by Lemma 1.3, we have
dime H'(X, Op) < dime H' (X, 0p) = dime H (X, 0) = g,
where the last equality is the definition of the genus of X, hence dim¢ H'(X,0p) < g.
Lastly, assume that ¢ — 1 < deg(D) < 2g — 1. We show that
1 — g+ deg(D) < dim¢ H*(X,0p) < g.
By (2.1), we have
dim¢c H°(X,0p) =1 — g + deg(D) + dim¢c H' (X, Op) > 1 — g + deg(D).
To show the other inequality, let w # 0 be a meromorphic 1-form on X. Denote by K the
divisor induced by w. By Proposition 1.9, we have deg(K) = 2g — 2. By (1.2), we have a
sheaf isomorphism
_p~0Ok-p,
hence, by the Serre Duality Theorem (cf. Corollary 1.8), we obtain
HY(X,0p)* ~ H%(X,Q_p)~ H*(X,0r_p).

Since
deg(K — D) = deg(K) — deg(D) = 29 — 2 — deg(D),
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the assumptions on deg(D) imply that 0 < deg(K — D) < g — 1, so the second part of this
proposition implies that

dimec H*(X, Ok _p) < 1+ deg(K — D).
Hence, by (2.1), we obtain
dime H°(X,0p) =1 — g + deg(D) + dim¢ H' (X, Op)
=1- g +deg(D) + dimc H*(X,Ok_p)
<1—g+deg(D)+1+2g9—2—deg(D)
=g.



3. Embeddings into complex projective space

In this section, we show that every compact Riemann surface admits a holomorphic em-
bedding into some complex projective space.

Let us first define the complex projective space of arbitrary dimension.

Definition 3.1 (Complex projective space). Let n > 1 be an integer.

On C"t1\ {0}, we consider the relation ~ defined as
(20, y2n) ~ (20, 5 20) <= FIANEC\{0}: (20, ,2n) = N20s -+ 4 20),

for (20, ,zn), (20, < -+, 2h) € C" L. It is straightforward to check that ~ is an equivalence
relation on C"T1\ {0}.

We define the n-dimensional complex projective space as the quotient
CP" := (C"T1\ {0})/ ~,
and we endow this space with the quotient topology.
We denote the equivalence class of (20, -+ ,2,) € C"T1\ {0} in CP" as
[20 : -+ 1 2] € CP™.

For n € N, consider the cover of CP™ by the subsets

UjZ:{[Zoi"'ZZn]GCPn |Zj7é0}
for 0 < 5 < n. For such j, define the map
n 20 Zj—1 Zj+1 Zn
U, = C . ceeeizg]) = (2, 22 SEL L 2 3.1
@i U; = C" wj([z0 Zn)) <Zj % Zj) (3.1)

It is not difficult to check that each ¢; is a well-defined homeomorphism from U; to C”,
with inverse explicitly given by

(p;li(cn—)Uj, (x1,~-,xn)n—>[ac1:x2:--~:xj,1:1:xj:mj+1:~-~:$n].

Moreover, for 0 < j < k < n, we have

1 T Tj—1 Tjt1 Th—1 1 Tr4 Ty
(gojo@k )(xlf"axn):(a"'a 9 sty y T y Ty T
Lj Ty Lj Tj  Xj T Lj
for all (x1,--- ,x,) € C" with pk(z1,--- ,x,) € Uj, and hence CP™ has the structure of an

n-dimensional complex manifold.

Now, we can make precise the notion of “holomorphic embedding” of a Riemann surface in
a complex projective space.

Definition 3.2 (cf. [For81, Paragraph 17.20]). Let X be a compact Riemann surface, let
n €N, and let F : X — CP"™ be a map. Consider the cover of CP™ with coordinate charts
(Uj, @) as above, for 0 < j < n.
We say that F is holomorphic if for every 0 < j < n, the components of the map

pjoF: Fﬁl(Uj) —C"
are holomorphic.
We also say that F is a (holomorphic) embedding if F' is holomorphic, injective, and an
immersion, that is, for every 0 < j < n, denoting by

pjoF = (Fljv vFg)
with Fl,--- | F] . F~Y(U;) — C, we have that for every x € F~'(U;), there is some
0<i<mn so that _

(dFJ), 0.
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In the rest of this section, we will show that every compact Riemann surface admits a
holomorphic embedding into some complex projective space. The proof will be constructive,
i.e. we will explicitly construct a holomorphic embedding. To do this, we present the
following procedure of extending meromorphic functions into maps with codomain equal to
a higher-dimensional complex projective space.

Ezample 3.3 (Constructing maps into complex projective space, cf. [For81, Paragraph
17.21]). Let X be a Riemann surface and let fo,- - , f, € M(X) be non-zero meromorphic
functions. We define the map

F:=[fo: - :fa]: X - CP"
as follows: for every x € X, let (U, z) be a holomorphic chart centered at x, and let

k:= min ord,(f;).

0<j<n
Then, on U, we can write
fi(z) = 2"g;(2)
where each g; is holomorphic near x and at least one g; satisfies g;(z) # 0. Then, for z € U,
we set

F(z):=[go(2) : -+ : gn(z)] € CP".
It is easy to check that this way, F' is well-defined, independent of the coordinate chart and
that it is holomorphic.

Now, the proof that every compact Riemann surface X (holomorphically) embeds into some
complex projective space is simple to describe: we will consider a divisor D on X of large
enough degree, take a basis (fo,- -, fn) of H°(X,Op), and then the map

[fo:-:fa]: X = CP"
will be the desired holomorphic embedding.

To prove the above, we first need to consider the following notion for the sheaf induced by
a divisor.

Definition 3.4 (cf. [For81, Paragraph 17.18]). Let X be a Riemann surface and let D be
a divisor on X.

We say that Op is globally generated if for every x € X, there is some f € H*(X,0p) =
Op(X) so that

Opx=0;"f,

that is, for every germ s € Op 5 in the stalk of Op at x, there is some holomorphic map ¥
defined on a neighbourhood U of x so that

§= (d) : f|U)137
where (V¥ - flu)z is the germ of ¥ - flu in Op ;.
For a Riemann surface X and a divisor D on X, notice that Op is globally generated if
and only if for every x € X, there is some f € Op(X) with
ord,(f) = —D(x).
Proposition 3.5 (cf. [For81, Theorem 17.19]). Let X be a compact Riemann surface of
genus g > 0 and let D be a divisor on X with deg(D) > 2g.

Then, Op is globally generated.
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Proof. Let x € X and define the divisor

D':X =12, D(y) ::{ 3%71 ﬁzii
Observe that deg(D’) = deg(D) — 1, and thus
deg(D"),deg(D) > 2g — 1.
Thus, by Theorem 2.1, we have
HY(X,0p)=H'(X,0p) =0.
Hence, the Riemann-Roch theorem implies that
dim¢ H(X, Op) > dime H*(X, Op/),

so there is some f € Op(X) \ Op/(X) By definition of the sheaves Op and Op/, we
necessarily have

ord;(f) = —=D(z).
Hence, Op is globally generated. Il

With the above results, we can now prove that every compact Riemann surface (holomor-
phically) embeds into some complex projective space.

Theorem 3.6 (cf. [For81, Theorem 17.22]). Let X be a compact Riemann surface of genus
g > 0 and let D be a divisor on X with deg(D) > 2g + 1. Let fo,- -+, fn be a basis for
H°(X,0p) = Op(X).
Then, the map

[fo:r -t fn] : X - CP"
is a holomorphic embedding.

Proof. Denote by
Fo=[fo:: fal
We first show that F' is injective. Let x1, 22 € X be so that z1 # x2. We need to show that
F(x1) # F(x3). Define the divisor
D(x) if © # @9
D(z)—1 ifz=ua9
Observe that deg(D’) = deg(D) — 1 > 2g, hence, by Proposition 3.5, the sheaves Op and
Op are globally generated. Thus, there is some f € Op/(X) so that

D':X -7, D(x) ::{

ord, (f) = =D'(x1) = =D(z1). (3.2)
By definition of D’ and by assumption on f, we also have that
ordg, (f) = —D'(z2) = —D(z2) +1 (3.3)
hence f € Op(X). Thus, we may write
F=Y "Nt (3.4)
j=0

for some Ag,--- , A\, € C.

Let (U, 2z1) and (Us, 22) be holomorphic coordinates centered x; and o, respectively. For
¢ e {1,2}, put

k¢ := min ord,, f;
min ord,.f;

and observe that ky = —D(z) for ¢ € {1,2}. Then, on Uy, we may write
£i(ze) = 2590 (20),  F(20) = 2" ge(2e),
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for every 0 < j < n and every ¢ = {1,2}, where gy; and g, are holomorphic functions
defined on Uy,. By (3.4), it follows that for every ¢ € {1,2}, we have

> Ajges(xe) = gelxe).

3=0

Equations (3.2) and (3.3) imply that

g1(z1) # 0 and ga(z2) = 0. (3.5)
By definition of F' (cf. Example 3.3), we have

F(a1) = [gio(z1) : -+ gin(@1)] and F(z2) = [gao(22) : -+ : gon(32)],

and thus F(z1) # F(z2) because of (3.5). Hence, F is injective.
Secondly, we show that F' is an immersion. Let 2y € X. Define the divisor
D(x) if © # =
D(z)—1 ifz=ux
As in the proof of the first part of this theorem, the sheaf Op/ is globally generated by
Proposition 3.5, hence there is some f € H°(X,Op/) with ord,,(f) = —D(Xo) + 1. As
before, we also have f € H°(X,Op), and hence we may write

D':X -7, D (x) ::{

F=Y_Nf (3.6)
§=0
for some Ag, -+, A, € C. Then, we may choose holomorphic coordinates (U, z) centered at

2o so that, on U,
fi(2) = #g;(2) and f(2) = 2*g(2),
where
k= Orgnjign Ordxo(fj) = —D(x0)

and go, -+ , gn, g are holomorphic functions on U with (go(z0),- -, gn(x0)) # 0 and ¢ has
a zero of order one at zg. Let 0 </ < n be so that

ge(zo) #0.

Then, with ¢, defined as in (3.1), we compute, for z € U (after possibly shrinking U so
that g, # 0 on U),

oY) — (9) o ge1(2) gen(2) o ga(2)
(o0 F)(z) <gé(2)’ D ge(z) T oge(z) ’ge(z)>
Denote by
— 9
b= ge

for j € {0,1,--- ,£—1,£+1,--- ,n}. By (3.6), we have
> Nigi =9 — Mege,

j#
hence
S =2
iRt ge
Thus,
_ g
> Ai(dF)e, = (d < - A£>>
it ge @0
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However, since gy(z) # 0 and since g has a zero of order one at zg, it follows from the

Cllalll Iule tllat
g‘g 0

Aj(dF})(xo) # 0,

hence (dF})(z¢) # 0 and so F' is an immersion at xg. As zo was arbitrary, the proof is
completed. [l

hence there is some j # £ so that

Remark 3.7. Tt can be shown that every compact Riemann surface admits a holomorphic
embedding into CP3.

Ezample 3.8 (cf. [For81, Exercise 17.6]). Let I C C be a lattice and consider the complex
torus C/T". The 1-form dz on C is invariant under translations. Hence, dz descends to a
holomorphic 1-form on C/T" that has no zeroes and no poles, i.e. has degree equal to 0. By
Proposition 1.9, it follows that C/T" has genus equal to 1.

Consider the divisor

) )3 ifzx=04+T
D:C/T'— Z, D(x).—{o ifoA0+T (3.7)
By definition,
deg(D) =3 > 1,

hence H'(C/T',Op) = 0 by Theorem 2.1. Thus, by the Riemann-Roch Theorem (cf. The-
orem 1.4), we have

dime¢ H°(C/T, Op) = 3. (3.8)
Theorem 3.6 then implies that C/T" embeds holomorphically into CP2. The dimension of
this complex projective is also “minimal” in the sense that C/T" does not (holomorphically)
embed into CP! (for purely topological reasons).

Let us construct an explicit embedding of C/T" into CP2.

The Weierstrass @ function of T' is defined as

p:C\T = C, @F(Z)::Z%-l- Z ((le)Q—l>. (3.9)

w2
wel\{0}
Observe that for z € C\T and w € "\ {0}, we have
1 1 22w — w?

(z-—w)? w? Wwi(z—w)?

and the right-hand side is asymptotic to |z|/|w|® as |w| — oo. Hence, the series in (3.9)
converges absolutely and uniformly in a neighbourhood of every point z € C\T', and thus p
is a well-defined meromorphic function on C. The definition of ¢ and the above arguments
also imply that g has poles of order 2 at every point of T.

The derivative of p can be determined by differentiating the series (3.9) term-by-term, i.e.

Vze(C\F:p’(z):—2Zﬁ, (3.10)
wel

and thus ¢’ is a meromorphic function on C with poles of order 3 at every point of T

Notice also that, from (3.9) and (3.10), both p and ¢’ are invariant under translation of
the argument by an element of T, i.e. for every z € C\ T" and for all w € T, we have

p(z +w) = p(2) and @'(z +w) = ¢'(2).
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Thus, both p and ¢’ descend to meromorphic functions on C/T' (by abuse of notation, we
also denote these functions on C/T" by p and '), and 04T is their only pole, having order
2 and 3, respectively. In particular,

€, p’ S OD((C/F) = HO((C/F, OD),
where D is the divisor defined in (3.7).

We now claim that the functions 1, p, and ¢’ form a basis for H°(C/T', Op), where 1 is the
constant function equal to 1. Let us prove this claim. It suffices to show that the functions
1, p, and ' are C-linearly independent as functions on C/I". However, this is clear, as the
poles of these three functions have a different order, and thus the claim is proven.

Hence, by the above claim and by (3.8), the set {1, p, ¢’} is a basis for H°(C/T,Op), and
thus, by Theorem 3.6, the map

[1:p:¢]:C/T — CP?
is a holomorphic embedding.

We can say something more about this particular embedding of the complex torus C/T.

Define the quantities
1 1
g2 =60 > — g3=140 > —
wel\{0} wel\{0}
It is possible to show that p and g’ (as meromorphic functions on C) satisfy the algebraic
relation
(¢)? = 49" — gap — gs.
Hence, the embedding [1 : g : ] has image contained in the elliptic curve
{[X:Y:Z]eCP?® | Z°X =4Y? — g5V X? — g3X°},
and one can also show that, in fact, the image of the map this map is the whole elliptic
curve (as the map [1 : p : ] is a non-constant holomorphic map between compact Riemann

surfaces, it must be surjective, see [For81, Theorem 2.7]). Thus, the complex torus C/T is
an elliptic curve.
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