1.1. The closure of the derivative operator.

Define $\mathcal{C}_c^{\infty}((0,1)) = \{ u \in \mathcal{C}^{\infty}((0,1)) \colon \operatorname{supp} u \subset (0,1) \text{ is compact} \}$, where the support of u is the set $\operatorname{supp}(u) = \{ t \in (0,1) \colon u(t) \neq 0 \}$.

(a) Let $A = \frac{\mathrm{d}}{\mathrm{d}t} : D(A) := \mathcal{C}_c^{\infty}((0,1)) \subset \mathcal{C}^0([0,1]) \to \mathcal{C}^0([0,1])$. What is the closure of A? That is, find $D(\bar{A})$.

(b) Let $A = \frac{d^2}{dt^2}$: $D(A) := \mathcal{C}^{\infty}([0,1]) \subset \mathcal{C}^0([0,1]) \to \mathcal{C}^0([0,1])$. In this case, find again the closure $D(\overline{A})$.

(c) Let $X = Y = L^2([0,1])$, and define $A = \frac{d}{dt} : D(A) := \mathcal{C}^1([0,1]) \subset X \to Y$. Show that A is closable.

1.2. An operator that is *not* closable.

Let $X = L^2(\mathbb{R}), Y = \mathbb{R}$. Let $f \in L^{\infty}(\mathbb{R}) \setminus L^2(\mathbb{R})$. Set

$$A: D(A) = \{ u \in L^2(\mathbb{R}) : \text{ supp } u \text{ is compact} \} \ni u \mapsto \langle u, f \rangle = \int_{-\infty}^{\infty} u(t) \overline{f(t)} \, \mathrm{d}t.$$

Show that A is not closable.

1.3. Closed sum.

Let $(X, || \cdot ||_X)$ and $(Y, || \cdot ||_Y)$ be Banach spaces and let

$$A: D(A) \subset X \to Y$$
 and $B: D(B) \subset X \to Y$

be linear operators with $D(A) \subset D(B)$. Assume that there exist constants $0 \le a < 1$ and $b \ge 0$ such that for all $x \in D(A)$ we have the inequality

$$||Bx||_{Y} \le a||Ax||_{Y} + b||x||_{X}.$$
(1)

Show that if A has closed graph then $(A + B) : D(A) \to Y$ has closed graph.

Hint. Given a sequence $(x_n)_{n \in \mathbb{N}} \in D(A)$, prove the estimate

$$(1-a)||A(x_n - x_m)|| \le ||(A+B)(x_n - x_m)|| + b||x_n - x_m||$$
(2)

1.4. Closable inverse.

Let $(X, || \cdot ||_X)$ and $(Y, || \cdot ||_Y)$ be Banach spaces. Let $A : D_A \subset X \to Y$ be a closable linear operator. Assume that its closure $\overline{A} : D(\overline{A}) \to Y$ is injective. Show that the inverse operator $A^{-1} : \operatorname{ran}(A) \subset Y \to D(A) \subset X$ is closable and that its closure $\overline{A^{-1}}$ is the operator $\overline{A}^{-1} : \operatorname{ran}(\overline{A}) \to D(\overline{A})$.

assignment: 27 February 2023 last update: 14 June 2023

due: 6 March 2023

Hint: Consider the image of the graph of A under the map

$$\begin{split} \chi : X \times Y \to Y \times X \\ (x,y) \mapsto (y,x). \end{split}$$