Functional Analysis II
 Problem Set 11

11.1. A product of functions in $H_{0}^{1}(\Omega)$

Let $\Omega=\left(0, L_{1}\right) \times\left(0, L_{2}\right) \times \cdots \times\left(0, L_{n}\right)$ where $L_{1}, \ldots, L_{n}>0$. Let $k_{1}, \ldots, k_{n} \in \mathbb{N}$. Show that the function

$$
u\left(x_{1}, \ldots, x_{n}\right)=\prod_{j=1}^{n} \sin \left(\frac{\pi k_{j} x_{j}}{L_{j}}\right)
$$

lies in $H_{0}^{1}(\Omega)$.

11.2. Decay rate of eigenfunction expansion of $-\Delta$ on $H_{0}^{1}(\Omega)$.

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded \mathcal{C}^{∞} domain, and let $0<\lambda_{1} \leq \lambda_{2} \leq \cdots \rightarrow \infty$ denote the eigenvalues of $-\Delta$ with Dirichlet boundary conditions, and denote by $\left\{u_{k}\right\}_{k \in \mathbb{N}} \subset H_{0}^{1}(\Omega)$ the corresponding complete orthonormal basis of eigenfunctions. The goal of this exercise is to relate the norms of $H^{s}(\Omega)$ to the decay rate of the coefficients in expansions of functions on Ω into the basis $\left\{u_{k}\right\}$. Let $u \in L^{2}(\Omega)$, and write $u=\sum_{k=1}^{\infty} c_{k} u_{k}$ where $\left(c_{k}\right)_{k \in \mathbb{N}} \in \ell^{2}(\mathbb{N})$.
(a) Let $s=2 q$ where $q \in \mathbb{N}$. Show that $u \in H^{2 q}(\Omega) \cap H_{0}^{1}(\Omega)$ if and only if $\sum_{k=1}^{\infty}\left|c_{k}\right|^{2} \lambda_{k}^{2 q}<$ ∞.
(Hint.) Do this first for $q=1$.
(b) Show that for $s=2 q$, there exists a constant $C=C(q)$ so that for all $u \in$ $H^{2 q}(\Omega) \cap H_{0}^{1}(\Omega)$ we have

$$
C^{-1}\|u\|_{H^{2 q}(\Omega)} \leq \sum_{k=1}^{\infty}\left|c_{k}\right|^{2} \lambda_{k}^{2 q} \leq C\|u\|_{H^{2 q}(\Omega)} .
$$

(c) Let $q \in \mathbb{N}$ be such that $2 q>n / 2$. Show the following pointwise bound for the k-th eigenfunction:

$$
\left\|u_{k}\right\|_{L^{\infty}(\Omega)} \leq C \lambda_{k}^{q} .
$$

where C depends only on Ω.

11.3. Asymptotics for the eigenvalues of $-\Delta$

Let $0<\lambda_{1} \leq \lambda_{2} \leq \cdots \rightarrow \infty$ denote the Dirichlet eigenvalues of $-\Delta$ on a smoothly bounded domain $\Omega \Subset \mathbb{R}^{n}$. Show the asymptotic formula

$$
\lambda_{k} \sim 4 \pi^{2}\left(\mathcal{L}^{n}\left(B_{1}(0)\right) \mathcal{L}^{n}(\Omega)\right)^{2 / n} k^{2 / n}
$$

for the n-th eigenvalue. That is, show that the ratio of the left and the right hand side tends to 1 as $k \rightarrow \infty$.

Functional Analysis II
 Problem Set 11

ETH Zürich
Spring 2023
11.4. Supremum bounds for eigenfunctions on compact sets. Let $\Omega \subset \mathbb{R}^{n}$ be open and bounded and $v \in H_{0}^{1}(\Omega) \cap C^{\infty}(\Omega)$ be an eigenfunction of the Laplace operator with $\lambda>0$. The goal of this exercise is to prove that for any compact $K \subset \Omega$ we have that

$$
\begin{equation*}
\|v\|_{K, \Omega}:=\sup _{x \in K}|v(x)| \leq C(K, \Omega)|\lambda|^{\frac{n}{4}+\frac{1}{2}}\|v\|_{L^{2}(\Omega)} \tag{1}
\end{equation*}
$$

where $C(K, \Omega)>0$ only depend on the sets K and Ω in \mathbb{R}^{n}.
(a) Let $\Omega^{\prime \prime} \Subset \Omega^{\prime} \Subset \Omega$. Let $\chi, \tilde{\chi} \in \mathcal{C}_{c}^{\infty}(\Omega)$ with $\chi \equiv 1$ on $\Omega^{\prime \prime}, \operatorname{supp} \chi \subset \Omega^{\prime}$ and $\tilde{\chi} \equiv 1$ on $\operatorname{supp}(\chi)$. Show that there exists a constant C, depending only on $\chi, \tilde{\chi}$, so that for $u \in H^{2}(\Omega)$ solving $-\Delta u=f \in H^{k}(\Omega)$, we have

$$
\|\chi u\|_{H^{k+2}(\Omega)} \leq C\left(\|\tilde{\chi} f\|_{H^{k}(\Omega)}+\|\tilde{\chi} u\|_{L^{2}(\Omega)}\right)
$$

(b) Let v be as above. Prove that for any $\chi \in C_{c}^{\infty}(\Omega)$ there exists a $C_{2}(k, \chi)>0$ such that

$$
\begin{equation*}
\|\chi v\|_{H^{k}(\Omega)} \leq C_{2}(k, \chi)|\lambda|^{\frac{k}{2}}\|v\|_{L^{2}(\Omega)} . \tag{2}
\end{equation*}
$$

(Hint.) Consider $|\lambda|>1$.
(c) Prove equation (1).
(Hint.) You might find it useful to shortly state and prove the following Sobolev embedding for the compact set $K \subset \mathbb{R}^{n}$ and open $\Omega \subset \mathbb{R}^{n}$: for $k>\frac{n}{2}$, and $u \in C^{0}(\Omega) \cap H^{k}(\Omega)$ there exists a $C_{3}(k)>0$ such that

$$
\sup _{x \in K}|u(x)| \leq C_{3}(k)\|u\|_{H^{k}(\Omega)} .
$$

11.5. The heat equation.

Let $\Omega \subset \mathbb{R}^{d}$ be a an open and bounded set with smooth boundary. Let $u_{0} \in L^{2}(\Omega)$ be a given initial heat distribution. We would like to analyze the heat equation

$$
\begin{equation*}
\partial_{t} u(x, t)=\Delta_{x} u(x, t) . \tag{3}
\end{equation*}
$$

with boundary conditions

$$
\left\{\begin{array}{l}
u(x, t)=0 \text { for all } x \in \partial \Omega \text { and } t>0 \tag{4}\\
u(x, 0)=u_{0}(x) \text { for all } x \in \Omega .
\end{array}\right.
$$

Here u is a function of $x \in \Omega$ and $t \in \mathbb{R}_{+}$.
(a) Use the principle of superposition or otherwise to argue that one should attempt to solve the heat equation (3) with boundary values (4) using the Ansatz

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} a_{n} f_{n}(x) e^{\lambda_{n} t} \tag{5}
\end{equation*}
$$

where here the $f_{n} \in C^{\infty}(\Omega) \cap H_{0}^{1}(\Omega)$ are the eigenfunctions of the Laplace operator on Ω with eigenvalues λ_{n} that form an orthonormal basis of $L^{2}(\Omega)$. Furthermore, the coefficients a_{n} are chosen such that $u_{0}(x)=\sum_{n=1}^{\infty} a_{n} f_{n}(x)$.
(b) In the following we want to make the Ansatz more precise. Let u be as in (5), show that

$$
\begin{equation*}
\lim _{t \searrow 0}\left\|u(\cdot, t)-u_{0}\right\|_{L^{2}(\Omega)}=0 \tag{6}
\end{equation*}
$$

and that $u(\cdot, t) \in H_{0}^{1}(\Omega)$ for any $t>0$. In this sense the boundary conditions (4) are satisfied a.e.
(Hint.) For the latter statement you can use Weyl's law and the fact (prove this!) that $H_{0}^{1}(\Omega) \ni g(x)=\sum_{n=1}^{\infty} a_{n} f_{n}(x)$ if and only

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|a_{n}\right|^{2}\left|\lambda_{n}\right|<\infty . \tag{7}
\end{equation*}
$$

(c) Let $K \subset \Omega$ be compact. Use exercise 3 and 4 to show that the series in (5) converges uniformily on K for fixed $t>0$. Deduce that $u(\cdot, t)$ is conitnuous on Ω and that

$$
\begin{equation*}
\lim _{t \searrow 0} \sup _{x \in K}|u(x, t)|=0 . \tag{8}
\end{equation*}
$$

(d) State an estimate for the derivatives of f_{n} that you expect to hold in analogy to exercise 4 equation (1). Use it to prove that $u \in C^{\infty}\left(\Omega \times \mathbb{R}_{>0}\right)$.

