4.1. Explicit form of a unitary transformation and a self-adjoint operator

(a) Let $A = i \frac{d}{dt}$ with domain $D(A) = H_0^1([0,1]) = \{u \in H^1([0,1]) : u(0) = u(1)\}$. Recall that A is self-adjoint. Let $u \in L^2([0,1])$. Write down an explicit formula for $(e^{itA}u)(x)$.

(b) Do the same for the self-adjoint operator $A_{\alpha} = i \frac{d}{dt}$ with domain $D(A_{\alpha}) = X_{\alpha} := \{u \in H^1([0,1]): u(0) = e^{i\alpha}u(1)\}$. *Hint.* Given your intuition from the first part, try to guess the result, and then prove that it is correct.

4.2. Cauchy's formula for the spectrum of self-adjoint operators

Let H be a complex separable Hilbert space. Let $A \in L(H)$ be self-adjoint. Let $U \subset \mathbb{C}$ be an open neighborhood of $\sigma(A)$, and suppose $f: U \to \mathbb{C}$ is holomorphic. Let $\gamma \subset U$ be a piecewise smooth curve winding once around $\sigma(A)$ counterclockwise. (For example, if $\sigma(A) \subset [a, b]$, then for small $\epsilon > 0$ we can take γ to be the concatenation of $[a - \epsilon, b + \epsilon] - i\epsilon$, $(b + \epsilon) + i[-\epsilon, \epsilon]$, $[a - \epsilon, b + \epsilon] + i\epsilon$, and $(a - \epsilon) + i[-\epsilon, \epsilon]$.) Show that

$$f(A) = \frac{1}{2\pi i} \oint_{\gamma} f(z)(z - A)^{-1} \, \mathrm{d}z.$$

4.3. Analicity of the resolvent mapping

Let H be a complex separable Hilbert space. Let $A: D(A) \subset H \to H$ be densely defined and closed. Write $R_z = (z - A)^{-1}$ for the resolvent of A when $z \in \rho(A)$

(a) Show that for $z, w \in \rho(A)$, we have

$$R_z - R_w = (w - z)R_z R_w.$$

(b) Show that the resolvent set $\rho(A)$ is open.

(c) Show that $\rho(A) \ni z \mapsto R_z(A) = (z - A)^{-1} \in L(H)$ is an analytic operator-valued function.

4.4. Heat equation and the exponential map

Let *H* be a complex separable Hilbert space. Let *A*: $D(A) \subset H \to H$ be self-adjoint and bounded from below (spectrum), i.e. $\sigma(A) \subset [C, \infty)$ for some $C > -\infty$. Let $u_0 \in D(A)$ and define $u(t) := e^{-tA}u_0$ for $t \ge 0$. Prove the following statements:

(a) $||u||_H \le e^{-tC} ||u_0||_H$ for $t \ge 0$.

assignment: 20 March 2023 last update: 30 July 2023

due: 27 March 2023

(b) $u \in \mathcal{C}^1([0,\infty); H) \cap \mathcal{C}^0([0,\infty); D(A))$, where we equip D(A) with the graph norm $||u||_{D(A)}^2 := ||u||_H^2 + ||Au||_H^2$ (so it is a Hilbert space).

(c) *u* satisfies the *heat equation*

$$\begin{cases} \frac{\partial u}{\partial t}(t) = -Au(t), & t \ge 0, \\ u(t) = u_0. \end{cases}$$