Functional Analysis II
 Problem Set 4

4.1. Explicit form of a unitary transformation and a self-adjoint operator

(a) Let $A=i \frac{\mathrm{~d}}{\mathrm{~d} t}$ with domain $D(A)=H_{0}^{1}([0,1])=\left\{u \in H^{1}([0,1]): u(0)=u(1)\right\}$. Recall that A is self-adjoint. Let $u \in L^{2}([0,1])$. Write down an explicit formula for $\left(e^{i t A} u\right)(x)$.
(b) Do the same for the self-adjoint operator $A_{\alpha}=i \frac{\mathrm{~d}}{\mathrm{~d} t}$ with domain $D\left(A_{\alpha}\right)=X_{\alpha}:=$ $\left\{u \in H^{1}([0,1]): u(0)=e^{i \alpha} u(1)\right\}$. Hint. Given your intuition from the first part, try to guess the result, and then prove that it is correct.

4.2. Cauchy's formula for the spectrum of self-adjoint operators

Let H be a complex separable Hilbert space. Let $A \in L(H)$ be self-adjoint. Let $U \subset \mathbb{C}$ be an open neighborhood of $\sigma(A)$, and suppose $f: U \rightarrow \mathbb{C}$ is holomorphic. Let $\gamma \subset U$ be a piecewise smooth curve winding once around $\sigma(A)$ counterclockwise. (For example, if $\sigma(A) \subset[a, b]$, then for small $\epsilon>0$ we can take γ to be the concatenation of $[a-\epsilon, b+\epsilon]-i \epsilon$, $(b+\epsilon)+i[-\epsilon, \epsilon],[a-\epsilon, b+\epsilon]+i \epsilon$, and $(a-\epsilon)+i[-\epsilon, \epsilon]$.) Show that

$$
f(A)=\frac{1}{2 \pi i} \oint_{\gamma} f(z)(z-A)^{-1} \mathrm{~d} z
$$

4.3. Analicity of the resolvent mapping

Let H be a complex separable Hilbert space. Let $A: D(A) \subset H \rightarrow H$ be densely defined and closed. Write $R_{z}=(z-A)^{-1}$ for the resolvent of A when $z \in \rho(A)$
(a) Show that for $z, w \in \rho(A)$, we have

$$
R_{z}-R_{w}=(w-z) R_{z} R_{w} .
$$

(b) Show that the resolvent set $\rho(A)$ is open.
(c) Show that $\rho(A) \ni z \mapsto R_{z}(A)=(z-A)^{-1} \in L(H)$ is an analytic operator-valued function.

4.4. Heat equation and the exponential map

Let H be a complex separable Hilbert space. Let $A: D(A) \subset H \rightarrow H$ be self-adjoint and bounded from below (spectrum), i.e. $\sigma(A) \subset[C, \infty)$ for some $C>-\infty$. Let $u_{0} \in D(A)$ and define $u(t):=e^{-t A} u_{0}$ for $t \geq 0$. Prove the following statements:
(a) $\|u\|_{H} \leq e^{-t C}\left\|u_{0}\right\|_{H}$ for $t \geq 0$.

Functional Analysis II

Problem Set 4

ETH Zürich Spring 2023
(b) $u \in \mathcal{C}^{1}([0, \infty) ; H) \cap \mathcal{C}^{0}([0, \infty) ; D(A))$, where we equip $D(A)$ with the graph norm $\|u\|_{D(A)}^{2}:=\|u\|_{H}^{2}+\|A u\|_{H}^{2}$ (so it is a Hilbert space).
(c) u satisfies the heat equation

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}(t)=-A u(t), \quad t \geq 0 \\
u(t)=u_{0}
\end{array}\right.
$$

