5.1. The p-energy functional.

Let $\emptyset \neq \subset \mathbb{R}^{n}$ be open, bounded and regular, $2 \leq p<\infty$ and $g \in C^{2}(\partial \Omega)$. Consider $E_{p}: W^{1, p}(\bar{\Omega}) \rightarrow \mathbb{R}$ as

$$
E_{p}(u):=\int_{\Omega}|\nabla u|^{p} d x, \quad \text { and } \mathfrak{U}:=\left\{u \in C^{2}(\bar{\Omega}) \mid u_{\partial \Omega}=g\right\}
$$

(a) Determine whether there is at most one function $u \in \mathfrak{U}$ satisfying

$$
E_{p}(u)=\inf _{v \in \mathfrak{U}} E_{p}(v) .
$$

(b) Derive the partial equation satisfied by the minimisers of u of E_{p} as in (a).
(c) Prove that for every $u \in C^{2}(\bar{\Omega})$ with $\left.u\right|_{\partial \Omega}$ the inequality

$$
\int_{\Omega}|\nabla u|^{p} d x \leq C_{p, n}\left(\int_{\Omega}|u|^{p} d x\right)^{1 / 2}\left(\int_{\Omega}\left|D^{2} u\right|^{p} d x\right)^{1 / 2}
$$

5.2. Weak derivate in $L^{p}(\Omega)$.
(a) Let $\Omega \subset \mathbb{R}^{n}$ be open, $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}_{0}^{n}$ be a multi-index and $|\alpha|=\sum_{k=1}^{n} \alpha_{k}$. Let $u \in L_{l o c}^{1}(\Omega)$. Given $1<p \leq \infty$, let $1 \leq q<\infty$ such that $\frac{1}{p}+\frac{1}{q}=1$. Prove that $D^{\alpha} u$ exists as a weak derivative in $L^{p}(\Omega)$ if and only if there exists a $C>0$ such that

$$
\begin{equation*}
\left|\int_{\Omega} u D^{\alpha} \phi d x\right| \leq C| | \phi \|_{L^{q}(\Omega)} \text { for all } \phi \in C_{c}^{\infty}(\Omega) \tag{1}
\end{equation*}
$$

(b) The assumption $p \neq 1$ in (a) is necessary: prove that $u=\chi_{] 0,1[} \in L^{1}(\mathbb{R})$ satisfies

$$
\begin{equation*}
\left|\int_{\Omega} u \phi^{\prime} d x\right| \leq C\|\phi\|_{L^{\infty}(\mathbb{R})}, \tag{2}
\end{equation*}
$$

with some $C>0$ but $u \notin W^{1,1}(\mathbb{R})$, i.e. u does not have a weak derivative in $L^{1}(\mathbb{R})$.

5.3. Weak derivative of a conic function.

Let $\Omega:=B_{1}(0) \subset \mathbb{R}^{2}$ and consider the function $u(x, y)=1-\sqrt{x^{2}+y^{2}}$ (whose graph is a reversed ice-cream cone).
(a) Determine the values $p \in[1, \infty]$ for which exist, in $L^{p}(\Omega)$, the weak partial derivatives $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$.
(b) For such values of p compute, as a function p, the value of $\|\nabla u\|_{L^{p}(\Omega)}$.

5.4. A closedness property.

Let $I:=] a, b\left[\right.$ for $-\infty \leq a<b \leq \infty$. Let $u \in L^{p}(I)$ and let $\left(u_{k}\right)_{k \in \mathbb{N}}$ be a bounded sequence in $W^{1, p}(I)$ with $\left\|u-u_{k}\right\|_{L^{p}(I)} \rightarrow 0$ as $k \rightarrow \infty$.
(a) If $1<p \leq \infty$, prove that $u \in W^{1, p}(I)$.
(b) Is the assumption $p \neq 1$ in part (a) necessary?

