5.1. The *p*-energy functional.

Let $\emptyset \neq \subset \mathbb{R}^n$ be open, bounded and regular, $2 \leq p < \infty$ and $g \in C^2(\partial\Omega)$. Consider $E_p: W^{1,p}(\overline{\Omega}) \to \mathbb{R}$ as

$$E_p(u) := \int_{\Omega} |\nabla u|^p dx$$
, and $\mathfrak{U} := \{ u \in C^2(\overline{\Omega}) \mid u_{\partial\Omega} = g \}$

(a) Determine whether there is at most one function $u \in \mathfrak{U}$ satisfying

$$E_p(u) = \inf_{v \in \mathfrak{U}} E_p(v).$$

- (b) Derive the partial equation satisfied by the minimisers of u of E_p as in (a).
- (c) Prove that for every $u \in C^2(\overline{\Omega})$ with $u|_{\partial\Omega}$ the inequality

$$\int_{\Omega} |\nabla u|^p dx \le C_{p,n} \left(\int_{\Omega} |u|^p dx \right)^{1/2} \left(\int_{\Omega} |D^2 u|^p dx \right)^{1/2}$$

5.2. Weak derivate in $L^p(\Omega)$.

(a) Let $\Omega \subset \mathbb{R}^n$ be open, $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{N}_0^n$ be a multi-index and $|\alpha| = \sum_{k=1}^n \alpha_k$. Let $u \in L^1_{loc}(\Omega)$. Given $1 , let <math>1 \le q < \infty$ such that $\frac{1}{p} + \frac{1}{q} = 1$. Prove that $D^{\alpha}u$ exists as a weak derivative in $L^p(\Omega)$ if and only if there exists a C > 0 such that

$$\left| \int_{\Omega} u D^{\alpha} \phi dx \right| \le C ||\phi||_{L^{q}(\Omega)} \text{ for all } \phi \in C^{\infty}_{c}(\Omega).$$
(1)

(b) The assumption $p \neq 1$ in (a) is necessary: prove that $u = \chi_{[0,1]} \in L^1(\mathbb{R})$ satisfies

$$\left| \int_{\Omega} u\phi' dx \right| \le C ||\phi||_{L^{\infty}(\mathbb{R})},\tag{2}$$

with some C > 0 but $u \notin W^{1,1}(\mathbb{R})$, i.e. u does not have a weak derivative in $L^1(\mathbb{R})$.

5.3. Weak derivative of a conic function.

Let $\Omega := B_1(0) \subset \mathbb{R}^2$ and consider the function $u(x, y) = 1 - \sqrt{x^2 + y^2}$ (whose graph is a reversed ice-cream cone).

(a) Determine the values $p \in [1, \infty]$ for which exist, in $L^p(\Omega)$, the weak partial derivatives $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$.

(b) For such values of p compute, as a function p, the value of $||\nabla u||_{L^p(\Omega)}$.

assignment: 27 March 2023 last update: 14 June 2023

due: 3 April 2023

1/2

5.4. A closedness property.

Let I :=]a, b[for $-\infty \le a < b \le \infty$. Let $u \in L^p(I)$ and let $(u_k)_{k \in \mathbb{N}}$ be a bounded sequence in $W^{1,p}(I)$ with $||u - u_k||_{L^p(I)} \to 0$ as $k \to \infty$.

- (a) If $1 , prove that <math>u \in W^{1,p}(I)$.
- (b) Is the assumption $p \neq 1$ in part (a) necessary?