Functional Analysis II
 Problem Set 7

7.1. A $W^{1, p}$ function that is not in L^{∞}

Let $n \geq 2$ and define $u(x)=\log \left(\log \left(1+\frac{1}{|x|}\right)\right)$. Show that $u \in W^{1, p}\left(B_{1}(0)\right)$.

7.2. Absolute value of $u \in W^{1, p}$

Let $u \in W^{1, p}\left(\mathbb{R}^{n}\right)$, for $1 \leq p \leq \infty$. Prove that $|u| \in W^{1, p}\left(\mathbb{R}^{n}\right)$.
Hint Define

$$
\begin{equation*}
f_{\epsilon}(x):=\left(x^{2}+\epsilon^{2}\right)^{1 / 2}-\epsilon, \tag{1}
\end{equation*}
$$

and use the chain rule (see problem set 6) to show that $f_{\epsilon} \circ u \in W^{1, p}\left(\mathbb{R}^{n}\right)$ for all $\epsilon>0$. Show that $f_{\epsilon} \circ u$ is a Cauchy sequence in $W^{1, p}\left(\mathbb{R}^{n}\right)$ and deduce that $|u| \in W^{1, p}\left(\mathbb{R}^{n}\right)$, after proving that $f_{\epsilon} \circ u \rightarrow u$ in $L^{p}\left(\mathbb{R}^{n}\right)$ as $\epsilon \rightarrow 0$.

7.3. Trace-zero functions in $W^{1, p}$

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain of class C^{1}, and $1 \leq p \leq \infty$.
(a) Show that if $u \in W_{0}^{1, p}(\Omega)$, then $\left.u\right|_{\partial \Omega}=0$.
(b) Suppose $u \in W^{1, p}(\Omega)$ has $\left.u\right|_{\partial \Omega}=0$. Show that $u \in W_{0}^{1, p}(\Omega)$ by following these steps: i) Using a partition of unity and local coordinate charts, show that it suffice to prove the following statement: if $u \in W^{1, p}\left(\mathbb{R}_{+}^{n}\right)$ has compact support in $\overline{\mathbb{R}_{+}^{n}}=\left\{\left(x^{\prime}, x_{n}\right): x_{n} \geq 0\right\} \subset$ \mathbb{R}^{n} and $\left.u\right|_{\mathbb{R}^{n-1} \times\{0\}}=0$, then $u \in W_{0}^{1, p}\left(\mathbb{R}_{+}^{n}\right)$.
ii) By approximating u as in part (a) by a sequence of C^{1} functions $u_{k} \in C^{1}\left(\overline{\mathbb{R}_{+}^{n}}\right)$ and using the fundamental theorem of calculus, show that

$$
\begin{equation*}
\int_{\mathbb{R}^{n-1}}\left|u\left(x^{\prime}, x_{n}\right)\right|^{p} d x^{\prime} \leq C x_{n}^{p-1} \int_{0}^{x_{n}} \int_{\mathbb{R}^{n}}|D u|^{p} d x^{\prime} d t . \tag{2}
\end{equation*}
$$

iii) Let $\eta \in \mathcal{C}^{\infty}([0, \infty))$ be equal to 1 on $[0,1]$ and equal to 0 on $[2, \infty)$. Define $u_{m}\left(x^{\prime}, x_{n}\right):=$ $\left(1-\eta\left(m x_{n}\right)\right) u\left(x^{\prime}, x_{n}\right)$. Show that $u_{m} \rightarrow u$ in $W^{1, p}\left(\mathbb{R}_{+}^{n}\right)$ as $m \rightarrow \infty$.
iv) Show that $u \in W_{0}^{1, p}\left(\mathbb{R}_{+}^{n}\right)$.

7.4. Simple Hölder spaces

Let $\Omega \subseteq \mathbb{R}^{n}$ be open and let $\alpha \in(0,1)$. Show that $C^{0, \alpha}(\bar{\Omega})$ is a Banach space.

7.5. Extra: Properties of the characteristic function

Consider $W^{1, p}\left(\mathbb{R}^{n}\right)$ for $n \geq 1$. Let $\mathbf{1}_{B_{1}(0)}$ be the characteristic function of the unit ball, i.e.

$$
\mathbf{1}_{B_{1}(0)}(x):= \begin{cases}1 & \text { if }|x|<1 \tag{3}\\ 0 & \text { if }|x| \geq 1 .\end{cases}
$$

(a) Clearly, $\mathbf{1}_{B_{1}(0)} \in W^{1, p}\left(B_{1}(0)\right)$. Show that $\mathbf{1}_{B_{1}(0)}$ cannot be approximated in $W^{1, p}\left(B_{1}(0)\right)$ with functions $\left\{u_{k}\right\}_{k \in \mathbb{N}}$ in $C_{c}^{\infty}\left(B_{1}(0)\right)$. This proves that $W_{0}^{1, p}\left(B_{1}(0)\right) \neq W^{1, p}\left(B_{1}(0)\right)$.
(b) Prove that $\mathbf{1}_{B_{1}(0)}$ does not admit a weak derivative in $W^{1, p}\left(\mathbb{R}^{n}\right)$.

Hint. For $n=1$ we know from the lecture that $\frac{\mathrm{d} \mathbf{1}_{B_{1}(0)}}{d x}=-\delta(x-1)+\delta(x+1)$. For $n \geq 2$ use Stokes' theorem. ${ }^{1}$

[^0]
[^0]: ${ }^{1}$ As an extra challenge one could even prove the above statements for an arbitrary bounded open set $\Omega \subseteq \mathbb{R}^{n}$ with C^{∞} boundary.

