9.1. Another density statement

(a) Let $1 \leq p < n$. Show that there exists a sequence $(\psi_k)_{k \in \mathbb{N}} \subset \mathcal{C}^{\infty}_c(\mathbb{R}^n)$ with $0 \leq \psi_k \leq 1$ so that for all $k, \psi_k(x) = 1$ for x in a neighborhood of 0, but $\psi_k \to 0$ almost everywhere and $\nabla \psi_k \to 0$ in L^p .

Hint. Try $\psi_k(x) = \psi(kx)$ for a suitable fixed function $\psi \in \mathcal{C}^{\infty}_c(\mathbb{R}^n)$.

(b) Prove the statement of part (i) also for p = n.

(c) Let $u \in W^{1,q}(\mathbb{R}^n)$ where $1 \leq q \leq n$. Show that there exists a sequence $(u_k)_{k \in \mathbb{N}} \subset W^{1,q}(\mathbb{R}^n)$ converging to u so that for all k, the function u_k equals 0 in an open neighborhood of 0.

(d) Conclude from part (iii) that $\mathcal{C}_c^{\infty}(\mathbb{R}^n \setminus \{0\})$ is dense in $W^{1,q}(\mathbb{R}^n)$, and therefore $W_0^{1,q}(\mathbb{R}^n) = W^{1,q}(\mathbb{R})$.

9.2. Weak solutions to the Dirichlet problem are continuous

Let $\Omega \subset \mathbb{R}^n$ be a smooth bounded domain.

(a) Let $g \in \mathcal{C}^{\infty}(\partial\Omega)$. Let $V := \{u \in H^1(\Omega) : u|_{\partial\Omega} = g\}$, and set $E(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx$ for $u \in V$. Show that E(u) has a unique minimizer $u_0 \in V$, and prove that u_0 is a weak solution of $-\Delta u_0 = 0$, $u_0|_{\partial\Omega} = g$.

(b) Continuing part (a), suppose that $|g| \leq c$ on $\partial\Omega$. Show that $|u_0(x)| \leq c$ for all $x \in \Omega$ as follows: set

$$F(s) := \begin{cases} -c, & s < -c, \\ s, & -c \le s \le c, \\ c, & s > c. \end{cases}$$

Show that $F \circ u_0 \in V$ and $E(F \circ u_0) \leq E(u_0)$. Use the uniqueness claim of part (a) to conclude, and deduce that

$$\|u\|_{L^{\infty}(\Omega)} \le \|u|_{\partial\Omega}\|_{L^{\infty}(\partial\Omega)}$$

whenever $u \in H^1(\Omega)$ satisfies $-\Delta u = 0$.

(c) Suppose now that $u \in H^1(\Omega)$ solves $-\Delta u = 0$ and $g := u|_{\partial\Omega} \in \mathcal{C}^0(\partial\Omega)$. Show that $u \in \mathcal{C}^0(\overline{\Omega})$. Proceed as follows. Let $g_k \in \mathcal{C}^\infty(\overline{\Omega})$ be a sequence with $g_k|_{\partial\Omega} \to g$ in $\mathcal{C}^0(\partial\Omega)$ (that is, in sup norm), and let $v_k \in H^1_0(\Omega)$ be the unique weak solution of $-\Delta v_k = f_k$ where $f_k := \Delta g_k$. Show that $u_k := v_k + g_k \in \mathcal{C}^\infty(\overline{\Omega})$ satisfies $-\Delta u_k = 0$ and $u_k|_{\partial\Omega} = g_k|_{\partial\Omega}$. Conclude that $u_k - u \to 0$ in $L^\infty(\Omega)$, and use this to finish the proof.

9.3. Weak solutions to the biharmonic equation.

Let $\Omega \subset \mathbb{R}^n$ be open and bounded with smooth boundary.

(a) Prove that

$$\langle u, v \rangle := \int_{\Omega} \Delta u \Delta v dx \tag{1}$$

defines a scalar product on $H^2(\Omega) \cap H^1_0(\Omega)$ which is equivalent of the standard scalar product $(\cdot, \cdot)_{H^2(\omega)}$.

- (b) Show that $(H^2(\Omega) \cap H^1_0(\Omega), \langle \cdot, \cdot \rangle)$ is a Hilbert space.
- (c) Prove that given $f \in L^2(\Omega)$ there exists a unique $u \in H^2(\Omega) \cap H^1_0(\Omega)$ satisfying

$$\int_{\Omega} \Delta u \Delta v dx = \int_{\Omega} f v dx \text{ for all } v \in H^2(\Omega) \cap H^1_0(\Omega).$$
(2)

In fact, show that $u \in \Xi := \{ u \in H^4(\Omega) \cap H^1_0(\Omega) \mid \Delta u \in H^1_0(\Omega) \}$

9.4. Weak solution to a semilinear equation.

Let $u \in H^1(\mathbb{R}^n)$ be a weak solution to

$$-\Delta u + c(u) = f \text{ in } \mathbb{R}^n, \tag{3}$$

where $f \in L^2(\mathbb{R}^n)$ and $c : \mathbb{R} \to \mathbb{R}$ smooth, with C(0) = 0 and $c' \ge 0$. Assume as well that u has compact support, and prove that $u \in H^2(\Omega)$.

9.5. RECAP 1: Fundamental solution to Poisson's equation on \mathbb{R}^n

The last two exercises on this sheet are intended as a recap for deriving the fundamental solution to the Dirichlet problem on a unit ball. In this first problem, we will consider a solution to Poisson's equation on \mathbb{R}^n for $n \ge 0$, given by

$$-\Delta u = f \quad \text{on} \quad \mathbb{R}^n \tag{4}$$

for $f \in C_c^0(\mathbb{R}^n)$ and $u \in C^2(\mathbb{R}^n)$. Note that when $f \equiv 0$ equation (4) is referred to as the Laplace equation.

(a) (Radial solution to the Laplace equation on $\mathbb{R}^n \setminus \{0\}$.) First we will attempt to find a solution to

$$\Delta u = 0 \text{ on } \mathbb{R}^n \setminus \{0\}.$$
⁽⁵⁾

As Δ is spherically symmetric, it seems reasonable to first attempt to find a spherically symmetric solution to Laplace's equation. Argue by transforming to spherical coordinates that a spherically symmetric solution

$$u(r,\theta_1,..,\theta_{n-1}) = v(r) \tag{6}$$

assignment: 2 May 2023 last update: 14 June 2023

due: 15 May 2023

2/5

to the *radial equation* is given by

$$\begin{cases} v(r) = b \log(r) + c & \text{ for } (n = 2) \\ v(r) = \frac{b}{r^{n-2}} + c & \text{ for } (n \ge 3), \end{cases}$$
(7)

where b, c are constants.

(b) (Fundamental solution to Laplace's equation on \mathbb{R}^n .) Inspired by the previous exercise let us set

$$\Phi(x) := \begin{cases} -\frac{1}{2\pi} \log(|x|) & \text{for } (n=2) \\ \frac{1}{n(n-2)\alpha(n)} \frac{1}{|x|^{n-2}} & \text{for } (n \ge 3) \end{cases},$$
(8)

where $\alpha(n)$ is the volume of the unit ball in \mathbb{R}^n and $|x| = \sqrt{|x_1|^2 + \ldots + |x_n|^2}$. Furthermore, given $f \in C_c^0(\mathbb{R}^n)$, define

$$u(x) := \Phi * f(x) = \begin{cases} -\frac{1}{2\pi} \int_{\mathbb{R}^2} \log(|x-y|) f(y) dy & \text{for} \quad (n=2) \\ = \frac{1}{n(n-2)\alpha(n)} \int_{\mathbb{R}^n} \frac{f(y)}{|x-y|^{n-2}} dy & \text{for} \quad (n \ge 3). \end{cases}$$
(9)

Show that $u(x) := \Phi * f(x)$ solves (4) and that $u \in C^2(\mathbb{R}^n)$, whenever $f \in C_c^2(\mathbb{R}^n)^{-1}$ *Hint.* Note that Φ is not summable near 0. Make careful estimates on a ball of radius ϵ and its complement on \mathbb{R}^n .

Remark. The solution Φ in equation (8) is referred to as the fundamental solution to the Laplace equation, in the sense that it solves $-\Delta \Phi = \delta_0$ in the distirubtional sense, i.e. we formally compute

$$-\Delta u(x) = \int_{\mathbb{R}^n} -\Delta_x \Phi(x-y) f(y) dy = \langle \delta_x, f \rangle = f(x).$$
(10)

9.6. RECAP 2: Fundamental solution to Poisson's equation on the unit ball.

In this exercise we continue with solving Poisson equation on bounded domains, specifically the unit ball.

(a) Let $\Omega \subsetneq \mathbb{R}^n$ be a bounded domain with smooth boundary. Consider the Poisson equation

$$-\Delta u = f \quad \text{on} \quad \Omega \tag{11}$$

$$u = g \quad \text{on} \quad \partial\Omega, \tag{12}$$

¹The assumptions on f in this exercise are actually too strong and regularity on f can in fact be weakened to still allow $u \in C^2(\mathbb{R}^n)$.

where $u \in C^2(\Omega)$, $f \in C^0(\Omega)$ and $g \in C^0(\partial \Omega)$. Prove using Green's formula

$$u(x) = \int_{\partial\Omega} \Phi(y-x) \frac{\partial u}{\partial \nu}(y) - u(y) \frac{\partial \Phi}{\partial \nu} dS(y) - \int_{\Omega} \Phi(y-x) \Delta u(y) dy,$$
(13)

where $\frac{\partial}{\partial \nu}$ is the directional derivative in the direction of the outward pointing unit normal at $\partial \Omega$.

Hint. For $x \in \Omega$ choose $\epsilon > 0$ such that $B(x, \epsilon) \subset \Omega$. Make careful estimates on $B(x, \epsilon)$ $V_{\epsilon} := \Omega \setminus B(x, \epsilon)$. Integration by parts may prove to be useful. Recall that Green's formula is given by

$$\int_{\Omega} u\Delta v - v\Delta u dx = \int_{\partial\Omega} u \frac{\partial v}{\partial \nu} - v \frac{\partial u}{\partial \nu} dx,$$
(14)

for $u, v \in C^2(\overline{\Omega})$.

(b) (Representation formula using Green's functions.) For fixed $x \in \Omega$ we now introduce the corrector function ϕ^x as the solution to the boundary problem

$$\begin{cases} \Delta \phi^x = 0 & \text{on } \Omega \\ \phi^x(y) = \Phi(y - x) & \text{on } \partial \Omega. \end{cases}$$
(15)

We define the *Green's function* for the region Ω as

$$G(x,y) := \Phi(y-x) - \phi^x(y) \text{ for } x \neq y \in \Omega.$$
(16)

Prove that if $u \in C^2(\overline{\Omega})$ solves (20) then

$$u(x) = -\int_{\partial\Omega} g(y) \frac{\partial G}{\partial\nu}(x, y) dS(y) + \int_{\Omega} f(y) G(x, y) dy \text{ for } x \in \Omega,$$
(17)

where $\frac{\partial G}{\partial \nu} := D_y G(x, y) \cdot \nu(y).$

(c) Let $\Omega = B(0, 1)$. Given our representation formula from (b) and our explicit knowledge of Φ from exercise 5, solving Poisson's equation on the unit ball only comes down to finding the corrector function $\phi^x = \phi^x(y)$ that solves

$$\begin{cases} \Delta \phi^x = 0 & \text{on } B(0,1) \\ \phi^x = \Phi(y-x) & \text{on } \partial B(0,1). \end{cases}$$
(18)

We proceed with this by inverting the singularity for Φ at 0 from $x \in B(0,1)$ to $\tilde{x} \in \mathbb{R}^n \setminus B(0,1)$. More specifically define the inversion $\tilde{x} = \frac{x}{||x||^2}$. Prove that ϕ^x solving (18) is given by

$$\phi^{x}(y) = \Phi(|x|(y - \tilde{x})).$$
(19)

assignment: 2 May 2023 last update: 14 June 2023

due: 15 May 2023

D-MATH	Eurotional Analysis II	ETU 7. inich
Prof. P. Hintz	Problem Set 9	
Assistant: P. Peters		Spring 2023

(d) (*Poisson's integration kernel*). Putting all of the questions (a)-(c) together, we can now give an explicit formula for the Laplace equation (i.e. when $f \equiv 0$) on the unit ball, i.e. we a solution to

$$-\Delta u = 0 \quad \text{on } \Omega \tag{20}$$

$$u = g \quad \text{on } \partial\Omega, \tag{21}$$

where $u \in C^2(\Omega)$, and $g \in C^0(\partial\Omega)$. Calculate $\frac{\partial G}{\partial \nu}$ on $\partial B(0,1)$, and conclude by putting questions (a)-(c) together, that u is given by

$$u(x) = \int_{\partial B(0,1)} K(x,y)g(y)dS(y),$$
(22)

where *Poisson's kernel* is given by

$$K(x,y) = \frac{1 - |x|^2}{n\alpha(n)} \frac{1}{|x - y|^n}.$$
(23)

With this formula, prove that $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$.² Can you give the formula for K(x, y) for a ball of arbitrary radius r > 0?

²In fact it turns out that u is smooth, another consequence of elliptic regularity!