Functional Analysis II
 Problem Set 9

9.1. Another density statement

(a) Let $1 \leq p<n$. Show that there exists a sequence $\left(\psi_{k}\right)_{k \in \mathbb{N}} \subset \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ with $0 \leq \psi_{k} \leq 1$ so that for all $k, \psi_{k}(x)=1$ for x in a neighborhood of 0 , but $\psi_{k} \rightarrow 0$ almost everywhere and $\nabla \psi_{k} \rightarrow 0$ in L^{p}.
Hint. Try $\psi_{k}(x)=\psi(k x)$ for a suitable fixed function $\psi \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{n}\right)$.
(b) Prove the statement of part (i) also for $p=n$.
(c) Let $u \in W^{1, q}\left(\mathbb{R}^{n}\right)$ where $1 \leq q \leq n$. Show that there exists a sequence $\left(u_{k}\right)_{k \in \mathbb{N}} \subset$ $W^{1, q}\left(\mathbb{R}^{n}\right)$ converging to u so that for all k, the function u_{k} equals 0 in an open neighborhood of 0 .
(d) Conclude from part (iii) that $\mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ is dense in $W^{1, q}\left(\mathbb{R}^{n}\right)$, and therefore $W_{0}^{1, q}\left(\mathbb{R}^{n}\right)=W^{1, q}(\mathbb{R})$.

9.2. Weak solutions to the Dirichlet problem are continuous

Let $\Omega \subset \mathbb{R}^{n}$ be a smooth bounded domain.
(a) Let $g \in \mathcal{C}^{\infty}(\partial \Omega)$. Let $V:=\left\{u \in H^{1}(\Omega):\left.u\right|_{\partial \Omega}=g\right\}$, and set $E(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} \mathrm{~d} x$ for $u \in V$. Show that $E(u)$ has a unique minimizer $u_{0} \in V$, and prove that u_{0} is a weak solution of $-\Delta u_{0}=0,\left.u_{0}\right|_{\partial \Omega}=g$.
(b) Continuing part (a), suppose that $|g| \leq c$ on $\partial \Omega$. Show that $\left|u_{0}(x)\right| \leq c$ for all $x \in \Omega$ as follows: set

$$
F(s):= \begin{cases}-c, & s<-c \\ s, & -c \leq s \leq c \\ c, & s>c\end{cases}
$$

Show that $F \circ u_{0} \in V$ and $E\left(F \circ u_{0}\right) \leq E\left(u_{0}\right)$. Use the uniqueness claim of part (a) to conclude, and deduce that

$$
\|u\|_{L^{\infty}(\Omega)} \leq\left\|\left.u\right|_{\partial \Omega}\right\|_{L^{\infty}(\partial \Omega)}
$$

whenever $u \in H^{1}(\Omega)$ satisfies $-\Delta u=0$.
(c) Suppose now that $u \in H^{1}(\Omega)$ solves $-\Delta u=0$ and $g:=\left.u\right|_{\partial \Omega} \in \mathcal{C}^{0}(\partial \Omega)$. Show that $u \in \mathcal{C}^{0}(\bar{\Omega})$. Proceed as follows. Let $g_{k} \in \mathcal{C}^{\infty}(\bar{\Omega})$ be a sequence with $\left.g_{k}\right|_{\partial \Omega} \rightarrow g$ in $\mathcal{C}^{0}(\partial \Omega)$ (that is, in sup norm), and let $v_{k} \in H_{0}^{1}(\Omega)$ be the unique weak solution of $-\Delta v_{k}=f_{k}$ where $f_{k}:=\Delta g_{k}$. Show that $u_{k}:=v_{k}+g_{k} \in \mathcal{C}^{\infty}(\bar{\Omega})$ satisfies $-\Delta u_{k}=0$ and $\left.u_{k}\right|_{\partial \Omega}=\left.g_{k}\right|_{\partial \Omega}$. Conclude that $u_{k}-u \rightarrow 0$ in $L^{\infty}(\Omega)$, and use this to finish the proof.

9.3. Weak solutions to the biharmonic equation.

Let $\Omega \subset \mathbb{R}^{n}$ be open and bounded with smooth boundary.

Functional Analysis II
 Problem Set 9

(a) Prove that

$$
\begin{equation*}
\langle u, v\rangle:=\int_{\Omega} \Delta u \Delta v d x \tag{1}
\end{equation*}
$$

defines a scalar product on $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ which is equivalent ot the standard scalar product $(\cdot, \cdot)_{H^{2}(\omega)}$.
(b) Show that $\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega),\langle\cdot, \cdot\rangle\right)$ is a Hilbert space.
(c) Prove that given $f \in L^{2}(\Omega)$ there exists a unique $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ satisfying

$$
\begin{equation*}
\int_{\Omega} \Delta u \Delta v d x=\int_{\Omega} f v d x \text { for all } v \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \tag{2}
\end{equation*}
$$

In fact, show that $u \in \Xi:=\left\{u \in H^{4}(\Omega) \cap H_{0}^{1}(\Omega) \mid \Delta u \in H_{0}^{1}(\Omega)\right\}$

9.4. Weak solution to a semilinear equation.

Let $u \in H^{1}\left(\mathbb{R}^{n}\right)$ be a weak solution to

$$
\begin{equation*}
-\Delta u+c(u)=f \text { in } \mathbb{R}^{n}, \tag{3}
\end{equation*}
$$

where $f \in L^{2}\left(\mathbb{R}^{n}\right)$ and $c: \mathbb{R} \rightarrow \mathbb{R}$ smooth, with $C(0)=0$ and $c^{\prime} \geq 0$. Assume as well that u has compact support, and prove that $u \in H^{2}(\Omega)$.

9.5. RECAP 1: Fundamental solution to Poisson's equation on \mathbb{R}^{n}

The last two exercises on this sheet are intended as a recap for deriving the fundamental solution to the Dirichlet problem on a unit ball. In this first problem, we will consider a solution to Poisson's equation on \mathbb{R}^{n} for $n \geq 0$, given by

$$
\begin{equation*}
-\Delta u=f \text { on } \mathbb{R}^{n} \tag{4}
\end{equation*}
$$

for $f \in C_{c}^{0}\left(\mathbb{R}^{n}\right)$ and $u \in C^{2}\left(\mathbb{R}^{n}\right)$. Note that when $f \equiv 0$ equation (4) is referred to as the Laplace equation.
(a) (Radial solution to the Laplace equation on $\mathbb{R}^{n} \backslash\{0\}$.) First we will attempt to find a solution to

$$
\begin{equation*}
\Delta u=0 \text { on } \mathbb{R}^{n} \backslash\{0\} . \tag{5}
\end{equation*}
$$

As Δ is spherically symmetric, it seems reasonable to first attempt to find a spherically symmetric solution to Laplace's equation. Argue by transforming to spherical coordinates that a spherically symmetric solution

$$
\begin{equation*}
u\left(r, \theta_{1}, . ., \theta_{n-1}\right)=v(r) \tag{6}
\end{equation*}
$$

assignment: 2 May 2023
last update: 14 June 2023

Functional Analysis II
 Problem Set 9

to the radial equation is given by

$$
\begin{cases}v(r)=b \log (r)+c & \text { for } \quad(n=2) \tag{7}\\ v(r)=\frac{b}{r^{n-2}}+c & \text { for } \quad(n \geq 3)\end{cases}
$$

where b, c are constants.
(b) (Fundamental solution to Laplace's equation on \mathbb{R}^{n}.) Inspired by the previous exercise let us set

$$
\Phi(x):=\left\{\begin{array}{ll}
-\frac{1}{2 \pi} \log (|x|) & \text { for } \quad(n=2) \tag{8}\\
\frac{1}{n(n-2) \alpha(n)} \frac{1}{|x|^{n-2}} & \text { for } \quad(n \geq 3)
\end{array},\right.
$$

where $\alpha(n)$ is the volume of the unit ball in \mathbb{R}^{n} and $|x|=\sqrt{\left|x_{1}\right|^{2}+\ldots+\left|x_{n}\right|^{2}}$. Furthermore, given $f \in C_{c}^{0}\left(\mathbb{R}^{n}\right)$, define

$$
u(x):=\Phi * f(x)= \begin{cases}-\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \log (|x-y|) f(y) d y \text { for } & (n=2) \tag{9}\\ =\frac{1}{n(n-2) \alpha(n)} \int_{\mathbb{R}^{n}} \frac{f(y)}{|x-y|^{n-2}} d y \text { for } & (n \geq 3)\end{cases}
$$

Show that $u(x):=\Phi * f(x)$ solves (4) and that $u \in C^{2}\left(\mathbb{R}^{n}\right)$, whenever $f \in C_{c}^{2}\left(\mathbb{R}^{n}\right)^{1}$
Hint. Note that Φ is not summable near 0 . Make careful estimates on a ball of radius ϵ and its complement on \mathbb{R}^{n}.

Remark. The solution Φ in equation (8) is referred to as the fundamental solution to the Laplace equation, in the sense that it solves $-\Delta \Phi=\delta_{0}$ in the distirubtional sense, i.e. we formally compute

$$
\begin{equation*}
-\Delta u(x)=\int_{\mathbb{R}^{n}}-\Delta_{x} \Phi(x-y) f(y) d y=\left\langle\delta_{x}, f\right\rangle=f(x) \tag{10}
\end{equation*}
$$

9.6. RECAP 2: Fundamental solution to Poisson's equation on the unit ball.

In this exercise we continue with solving Poisson equation on bounded domains, specifically the unit ball.
(a) Let $\Omega \subsetneq \mathbb{R}^{n}$ be a bounded domain with smooth boundary. Consider the Poisson equation

$$
\begin{align*}
-\Delta u & =f \quad \text { on } \Omega \tag{11}\\
u & =g \quad \text { on } \quad \partial \Omega, \tag{12}
\end{align*}
$$

[^0]where $u \in C^{2}(\Omega), f \in C^{0}(\Omega)$ and $g \in C^{0}(\partial \Omega)$. Prove using Green's formula
\[

$$
\begin{equation*}
u(x)=\int_{\partial \Omega} \Phi(y-x) \frac{\partial u}{\partial \nu}(y)-u(y) \frac{\partial \Phi}{\partial \nu} d S(y)-\int_{\Omega} \Phi(y-x) \Delta u(y) d y \tag{13}
\end{equation*}
$$

\]

where $\frac{\partial}{\partial \nu}$ is the directional derivative in the direction of the outward pointing unit normal at $\partial \Omega$.
Hint. For $x \in \Omega$ choose $\epsilon>0$ such that $B(x, \epsilon) \subset \Omega$. Make careful estimates on $B(x, \epsilon)$ $V_{\epsilon}:=\Omega \backslash B(x, \epsilon)$. Integration by parts may prove to be useful. Recall that Green's formula is given by

$$
\begin{equation*}
\int_{\Omega} u \Delta v-v \Delta u d x=\int_{\partial \Omega} u \frac{\partial v}{\partial \nu}-v \frac{\partial u}{\partial \nu} d x \tag{14}
\end{equation*}
$$

for $u, v \in C^{2}(\bar{\Omega})$.
(b) (Representation formula using Green's functions.) For fixed $x \in \Omega$ we now introduce the corrector function ϕ^{x} as the solution to the boundary problem

$$
\begin{cases}\Delta \phi^{x}=0 & \text { on } \Omega \tag{15}\\ \phi^{x}(y)=\Phi(y-x) & \text { on } \partial \Omega\end{cases}
$$

We define the Green's function for the region Ω as

$$
\begin{equation*}
G(x, y):=\Phi(y-x)-\phi^{x}(y) \text { for } x \neq y \in \Omega \text {. } \tag{16}
\end{equation*}
$$

Prove that if $u \in C^{2}(\bar{\Omega})$ solves (20) then

$$
\begin{equation*}
u(x)=-\int_{\partial \Omega} g(y) \frac{\partial G}{\partial \nu}(x, y) d S(y)+\int_{\Omega} f(y) G(x, y) d y \text { for } x \in \Omega \tag{17}
\end{equation*}
$$

where $\frac{\partial G}{\partial \nu}:=D_{y} G(x, y) \cdot \nu(y)$.
(c) Let $\Omega=B(0,1)$. Given our representation formula from (b) and our explicit knowledge of Φ from exercise 5, solving Poisson's equation on the unit ball only comes down to finding the corrector function $\phi^{x}=\phi^{x}(y)$ that solves

$$
\begin{cases}\Delta \phi^{x}=0 & \text { on } B(0,1) \tag{18}\\ \phi^{x}=\Phi(y-x) & \text { on } \partial B(0,1) .\end{cases}
$$

We proceed with this by inverting the singularity for Φ at 0 from $x \in B(0,1)$ to $\tilde{x} \in \mathbb{R}^{n} \backslash B(0,1)$. More specifically define the inversion $\tilde{x}=\frac{x}{\|x\|^{2}}$. Prove that ϕ^{x} solving (18) is given by

$$
\begin{equation*}
\phi^{x}(y)=\Phi(|x|(y-\tilde{x})) . \tag{19}
\end{equation*}
$$

(d) (Poisson's integration kernel). Putting all of the questions (a)-(c) together, we can now give an explicit formula for the Laplace equation (i.e. when $f \equiv 0$) on the unit ball, i.e. we a solution to

$$
\begin{align*}
-\Delta u & =0 \quad \text { on } \Omega \tag{20}\\
u & =g \text { on } \partial \Omega, \tag{21}
\end{align*}
$$

where $u \in C^{2}(\Omega)$, and $g \in C^{0}(\partial \Omega)$. Calculate $\frac{\partial G}{\partial \nu}$ on $\partial B(0,1)$, and conclude by putting questions (a)-(c) together, that u is given by

$$
\begin{equation*}
u(x)=\int_{\partial B(0,1)} K(x, y) g(y) d S(y) \tag{22}
\end{equation*}
$$

where Poisson's kernel is given by

$$
\begin{equation*}
K(x, y)=\frac{1-|x|^{2}}{n \alpha(n)} \frac{1}{|x-y|^{n}} . \tag{23}
\end{equation*}
$$

With this formula, prove that $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega}) .{ }^{2}$ Can you give the formula for $K(x, y)$ for a ball of arbitrary radius $r>0$?

[^1]
[^0]: ${ }^{1}$ The assumptions on f in this exercise are actually too strong and regularity on f can in fact be weakened to still allow $u \in C^{2}\left(\mathbb{R}^{n}\right)$.

[^1]: ${ }^{2}$ In fact it turns out that u is smooth, another consequence of elliptic regularity!

