
d-math
Prof. P. Hintz
Assistant: P. Peters

Functional Analysis II
Solution to Problem Set 1

ETH Zürich
Spring 2023

1.1. The closure of the derivative operator.

(a) Let A1 = d
dt

on D(A1) = {f ∈ C1([0, 1]) : f ′(0) = f(0) = 0 = f(1) = f ′(1)} ⊂
C0([0, 1]). We claim that A1 is the closed extension of A, i.e. D(A1) = D(A).
First of all A1 is clearly closed: if (fn, f ′

n)n∈N is some sequence converging in ΓA1 ⊂
C0([0, 1]) × C0[0, 1] to some (f, g) we have that

||fn − f ||∞ → 0, and ||A1fn − g||∞ = ||f ′
n − g||∞ → 0, (1)

where ||f ||∞ = sup[0,1] |f | is the sup norm on C0([0, 1]). From this we deduce that fn is
in fact a Cauchy sequence in C1([0, 1]) with respect to the C1 norm

||f ||C1 = ||f ||∞ + ||f ′||∞.

As C1[0, 1] is Banach we conclude that fn converges in C1[0, 1] to f and that f ′ = g. To
finish the argument we remark that f(0) = 0 = f(1), which follows trivially from the
fact that uniform convergence implies pointwise convergence and that fn(0) = 0 = fn(1)
for all n ∈ N. The same holds for the equality f ′(0) = 0 = g′(0).
Clearly we have D(A) ⊆ D(A1) and as A1 is a closed extension of A we also have
D(A) ⊆ D(A1). The reverse inclusion D(A) ⊇ D(A1) follows from the fact that every
function f ∈ C1([0, 1]) which vanishes on {0, 1} can be approximated in the C1 norm by
smooth functions in C∞

c ((0, 1)) (again for these f ∈ D(A1) we have fn ∈ C∞
c ((0, 1)) such

that ||fn − f ||∞ → 0 and ||f ′
n − f ′||∞ → 0. Thus we have that ΓA2 ⊆ ΓA = ΓA hence A

must be a closed extension of A1 as well.

(b) We claim that A2 = d2

dt2 on

D(A2) = C2([0, 1]) (2)

is the closed extension of D(A), i.e. D(A) = D(A2). First let (fn, f ′′
n)n∈N be a sequence

in ΓA2 ⊂ C0([0, 1]) × C0[0, 1] converging to some (f, g). We then have that

||fn − f ||∞ → 0, and ||A2fn − g||∞ = ||f ′′
n − g||∞ → 0. (3)

We define the alternative norm on C2([0, 1]) as

||f ||C2,a = ||f ||∞ + ||f ′′||∞. (4)

Certainly with respect to this norm the sequence fn would be Cauchy. We show that
this norm is in fact equivalent to the standard C2 norm hence making (C2([0, 1]), || · ||C2

a
)

a Banach space. Clearly we have

||f ||C2,a ≤ ||f ||C2 := ||f ||∞ + ||f ′||∞ + ||f ′′||∞. (5)
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Thus we only look for a c > 0 such that

||f ||C2 ≤ c||f ||C2,a. (6)

For 1 ≥ t ≥ 1
2 we Taylor expand

f(0) = f(t) − tf ′(t) + t2

2 f ′′(ξ) (7)

for some ξ ∈ [1
2 , 1). We rearrange this to

|f ′(t)| ≤ |t|−1(|f(0)| + |f(t)|) + |t|
2 |f ′′(ξ)| ≤ 4 sup

[0,1]
|f | + 1

2 sup
[0,1]

|f ′′| ≤ 4||f ||C2,a. (8)

Similarly for 0 ≤ t < 1
2 , we write

f(1) = f(t) + (1 − t)f ′(t) + (1 − t)2

2 f ′′(ξ), (9)

for some ξ ∈ [0, 1/2). We rearrange this again to

f(1) = f(t) + (1 − t)f ′(t) + (1 − t)2

2 f ′′(ξ), (10)

from which we again deduce

|f ′(t)| ≤ |t|−1(|f(0)| + |f(t)|) + |t|
2 |f ′′(ξ)| ≤ 4 sup

[0,1]
|f | + 1

2 sup
[0,1]

|f ′′| ≤ 4||f ||C2,a. (11)

Thus given that the norms are equivalent and C2[0, 1] is Banach with respect to the
standard C2 norm, we know indeed that the sequence fn in (3) indeed converges in C2

norm to f . This shows us that A2 is closed and a closed extension of A. To show that
D(A2) ⊆ D(A) we need to show that ΓA2 ⊆ ΓA = ΓA. In this case this is equivalent to
showing that any function in C2[0, 1] can be approximated in C2 norm by functions in
C∞([0, 1]). This follows from an even stronger statement: the polynomials are dense in
Ck([0, 1]) for each k ∈ N0, which we will prove for completeness’ sake. For k = 0 this is
the famous Stone-Weierstrass theorem. Assume the statement is true for k = n − 1. Let
f ∈ Ck([0, 1]); then we can write

f(t) = f(0) +
∫ t

0
f ′(x)dx.

Then as f ′ ∈ Ck([0, 1]) we know there exists a sequence of polynomials pn such that
||f ′ − pn||Ck−1 → 0. Defining the polynomial qn(t) := f(0) +

∫ t
0 p′

n(x)dx it is now easy to
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see that ||f − qn||Ck → 0 as we are only left to check

||f − qn||∞ = sup
t∈[0,1]

|
∫ t

0
f ′(x) − pn(x)dx|

≤ sup
t∈[0,1]

∫ t

0
|f ′(x) − pn(x)|dx

≤ 1 · sup
x∈[0,1]

|f ′(x) − pn(x)|

= ||f ′ − pn||∞ → 0.

(c) To check whether the operator is closable we want use lemma L.2. That is, we
consider a sequence of functions un ∈ D(A) := C1([0, 1]) such that ||un||L2 → 0 and aim
to show that then also ||Aun||L2 → 0. Let us set vn := d

dt
un and suppose v ∈ L2([0, 1]) is

a limit of the vn, i.e. ||v − vn||L2 → 0. We will show v = 0. Using Hölder’s inequality, we
have for arbitrary ϕ ∈ C∞

c ((0, 1)) that∣∣∣∣∫ 1

0
vn(t)ϕ(t)dt

∣∣∣∣ =
∣∣∣∣− ∫ 1

0
un(t)ϕ′(t)dt

∣∣∣∣ ≤ ||un||L2||ϕ||L2 → 0 as n → ∞, (12)

where we used integration by parts in the second step. On the other hand we know (e.g.
by continuity of the L2-scalar product) that∫ 1

0
v(t)ϕ(t)dt = lim

n→∞

∫ 1

0
vn(t)ϕ(t)dt. (13)

and since ϕ ∈ C∞
c ((0, 1)) was arbitrary we conclude that v = 0 by theorem T.2.

1.2. An operator that is not closable

We remark first that this exercise is a slightly more general stated version of the example
E.4 iii) stated in the lectures (where f ≡ 1 ∈ L∞(R) \ L2([0, 1])). Let us prove this
special case first before moving on to the general case. We want to use lemma L.2 again.
We want to show that there exists a sequence (un)n∈N such that limn→∞ ||un||L2 = 0 but
limn→∞ |Aun| ≠ 0. Let us define

un = 1
n

1[0,n] (14)

Clearly we have

||un||L2 =
√

n

n
→ 0 as n → ∞, (15)

however on the other hand we have

|Aun| =
∣∣∣∣ lim
n→∞

∫ ∞

−∞

1
n

1[0,n](x)dx

∣∣∣∣ = n

n
= 1. (16)
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so Aun does not converge to 0 in C.
Inspired this example we now prove the more general statement in the exercise. Let
f ∈ L∞(R) \ L2(R). We then know that∫ ∞

−∞
|f |2dx = ∞. (17)

Hence for each n there must exist an xn ∈ R such that∫ xn

−xn

|f |2dx = n. (18)

We then modify our previous set of un and define

un = 1
n

f1[−xn,xn]. (19)

We see again that

||un||L2 =
( 1

n2

∫ ∞

−∞
|f |21[−xn,xn]dx

) 1
2

= 1
n

(∫ xn

−xn

|f |2dx
) 1

2

=
√

n

n
→ 0 as n → ∞,

but that

|Aun| = 1
n

∫ ∞

−∞
|f |21[−xn,xn]dx

= 1
n

∫ xn

−xn

|f |2dx

= n

n
= 1

which does not converge to 0 in C.

1.3. Closed Sum

Let (xn)n∈N be a sequence in D(A). Then by the triangle inequality and the assumption
we have

||A(xn − xm)||Y − ||(A + B)(xn − xm)||Y ≤ ||B(xn − xm)||Y
≤ a||A(xn − xm)||Y + b||xn − xm||X ,
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which implies the estimate given in the hint:

(1 − a)||A(xn − xm)||Y ≤ ||(A + B)(xn − xm)||Y + b||xn − xm||X . (20)

Assume that xn → x in X and (A + B)xn → y in Y . The claim is (A + B)x = y. Since
a < 1 the estimate in (20) implies that (Axn)n∈N is a Cauchy sequence in (Y, || · ||Y ) and
therefore converges to some ỹ. Since the graph of A is closed by assumption, we have
x ∈ DA with Ax = ỹ. Therefore, we may conclude

||B(x − xn)||Y ≤ a||A(x − xn)||Y + b||x − xn|| n→∞−−−→ 0, (21)

which implies Bxn → Bx in Y and thus

y = lim
n→∞

(A + B)xn = lim
n→∞

Axn + lim
n→∞

Bxn = Ax + Bx = (A + B)x. (22)

1.4. Closable Inverse

Since the closure Ā is assumed to be injective, A is injective and therefore has inverse
A−1 : WA → DA, where WA := A(DA) denotes the range of A. Defining

χ : X × Y → Y × X

(x, y) 7→ (y, x),

we observe that the graph ΓA−1 of A−1 is given by

ΓA−1 :=
{
(y, x) ∈ Y × X : y ∈ WA, x = A−1y

}
= χ(ΓA). (23)

Since χ is an isomorphism of normed spaces, we have

ΓA−1 = χ(ΓA) = χ(ΓĀ) = Γ(A)−1 . (24)

Since this proves that ΓA−1 is the graph of the linear operator (Ā)−1 (which is well-defined,
since A is injective). Therefore, A−1 is closeable as claimed and

Γ
A−1 = ΓA−1 = Γ(Ā)−1 =⇒ A−1 = (Ā)−1. (25)
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