1.1. The closure of the derivative operator.

(a) Let $A_{1}=\frac{\mathrm{d}}{\mathrm{d} t}$ on $D\left(A_{1}\right)=\left\{f \in C^{1}([0,1]): f^{\prime}(0)=f(0)=0=f(1)=f^{\prime}(1)\right\} \subset$ $C^{0}([0,1])$. We claim that A_{1} is the closed extension of A, i.e. $D\left(A_{1}\right)=D(\bar{A})$.
First of all A_{1} is clearly closed: if $\left(f_{n}, f_{n}^{\prime}\right)_{n \in \mathbb{N}}$ is some sequence converging in $\Gamma_{A_{1}} \subset$ $C^{0}([0,1]) \times C^{0}[0,1]$ to some (f, g) we have that

$$
\begin{equation*}
\left\|f_{n}-f\right\|_{\infty} \rightarrow 0, \text { and }\left\|A_{1} f_{n}-g\right\|_{\infty}=\left\|f_{n}^{\prime}-g\right\|_{\infty} \rightarrow 0 \tag{1}
\end{equation*}
$$

where $\|f\|_{\infty}=\sup _{[0,1]}|f|$ is the sup norm on $C^{0}([0,1])$. From this we deduce that f_{n} is in fact a Cauchy sequence in $C^{1}([0,1])$ with respect to the C^{1} norm

$$
\|f\|_{C^{1}}=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty} .
$$

As $C^{1}[0,1]$ is Banach we conclude that f_{n} converges in $C^{1}[0,1]$ to f and that $f^{\prime}=g$. To finish the argument we remark that $f(0)=0=f(1)$, which follows trivially from the fact that uniform convergence implies pointwise convergence and that $f_{n}(0)=0=f_{n}(1)$ for all $n \in \mathbb{N}$. The same holds for the equality $f^{\prime}(0)=0=g^{\prime}(0)$.
Clearly we have $D(A) \subseteq D\left(A_{1}\right)$ and as A_{1} is a closed extension of A we also have $D(\bar{A}) \subseteq D\left(A_{1}\right)$. The reverse inclusion $D(\bar{A}) \supseteq D\left(A_{1}\right)$ follows from the fact that every function $f \in C^{1}([0,1])$ which vanishes on $\{0,1\}$ can be approximated in the C^{1} norm by smooth functions in $C_{c}^{\infty}((0,1))$ (again for these $f \in D\left(A_{1}\right)$ we have $f_{n} \in C_{c}^{\infty}((0,1))$ such that $\left\|f_{n}-f\right\|_{\infty} \rightarrow 0$ and $\left\|f_{n}^{\prime}-f^{\prime}\right\|_{\infty} \rightarrow 0$. Thus we have that $\Gamma_{A_{2}} \subseteq \overline{\Gamma_{A}}=\Gamma_{\bar{A}}$ hence \bar{A} must be a closed extension of A_{1} as well.
(b) We claim that $A_{2}=\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}$ on

$$
\begin{equation*}
D\left(A_{2}\right)=C^{2}([0,1]) \tag{2}
\end{equation*}
$$

is the closed extension of $D(A)$, i.e. $D(\bar{A})=D\left(A_{2}\right)$. First let $\left(f_{n}, f_{n}^{\prime \prime}\right)_{n \in \mathbb{N}}$ be a sequence in $\Gamma_{A_{2}} \subset C^{0}([0,1]) \times C^{0}[0,1]$ converging to some (f, g). We then have that

$$
\begin{equation*}
\left\|f_{n}-f\right\|_{\infty} \rightarrow 0, \text { and }\left\|A_{2} f_{n}-g\right\|_{\infty}=\left\|f_{n}^{\prime \prime}-g\right\|_{\infty} \rightarrow 0 \tag{3}
\end{equation*}
$$

We define the alternative norm on $C^{2}([0,1])$ as

$$
\begin{equation*}
\|f\|_{C^{2}, a}=\|f\|_{\infty}+\left\|f^{\prime \prime}\right\|_{\infty} . \tag{4}
\end{equation*}
$$

Certainly with respect to this norm the sequence f_{n} would be Cauchy. We show that this norm is in fact equivalent to the standard C^{2} norm hence making $\left(C^{2}([0,1]),\|\cdot\| \|_{C_{a}^{2}}\right)$ a Banach space. Clearly we have

$$
\begin{equation*}
\|f\|_{C^{2}, a} \leq\|f\|_{C^{2}}:=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}+\left\|f^{\prime \prime}\right\|_{\infty} . \tag{5}
\end{equation*}
$$

Thus we only look for a $c>0$ such that

$$
\begin{equation*}
\|f\|_{C^{2}} \leq c\|f\|_{C^{2}, a} \tag{6}
\end{equation*}
$$

For $1 \geq t \geq \frac{1}{2}$ we Taylor expand

$$
\begin{equation*}
f(0)=f(t)-t f^{\prime}(t)+\frac{t^{2}}{2} f^{\prime \prime}(\xi) \tag{7}
\end{equation*}
$$

for some $\xi \in\left[\frac{1}{2}, 1\right)$. We rearrange this to

$$
\begin{equation*}
\left|f^{\prime}(t)\right| \leq|t|^{-1}(|f(0)|+|f(t)|)+\frac{|t|}{2}\left|f^{\prime \prime}(\xi)\right| \leq 4 \sup _{[0,1]}|f|+\frac{1}{2} \sup _{[0,1]}\left|f^{\prime \prime}\right| \leq 4\|f\|_{C^{2}, a} . \tag{8}
\end{equation*}
$$

Similarly for $0 \leq t<\frac{1}{2}$, we write

$$
\begin{equation*}
f(1)=f(t)+(1-t) f^{\prime}(t)+\frac{(1-t)^{2}}{2} f^{\prime \prime}(\xi) \tag{9}
\end{equation*}
$$

for some $\xi \in[0,1 / 2)$. We rearrange this again to

$$
\begin{equation*}
f(1)=f(t)+(1-t) f^{\prime}(t)+\frac{(1-t)^{2}}{2} f^{\prime \prime}(\xi) \tag{10}
\end{equation*}
$$

from which we again deduce

$$
\begin{equation*}
\left|f^{\prime}(t)\right| \leq|t|^{-1}(|f(0)|+|f(t)|)+\frac{|t|}{2}\left|f^{\prime \prime}(\xi)\right| \leq 4 \sup _{[0,1]}|f|+\frac{1}{2} \sup _{[0,1]}\left|f^{\prime \prime}\right| \leq 4\|f\|_{C^{2}, a} \tag{11}
\end{equation*}
$$

Thus given that the norms are equivalent and $C^{2}[0,1]$ is Banach with respect to the standard C^{2} norm, we know indeed that the sequence f_{n} in (3) indeed converges in C^{2} norm to f. This shows us that A_{2} is closed and a closed extension of A. To show that $D\left(A_{2}\right) \subseteq D(\bar{A})$ we need to show that $\Gamma_{A_{2}} \subseteq \overline{\Gamma_{A}}=\Gamma_{\bar{A}}$. In this case this is equivalent to showing that any function in $C^{2}[0,1]$ can be approximated in C^{2} norm by functions in $C^{\infty}([0,1])$. This follows from an even stronger statement: the polynomials are dense in $C^{k}([0,1])$ for each $k \in \mathbb{N}_{0}$, which we will prove for completeness' sake. For $k=0$ this is the famous Stone-Weierstrass theorem. Assume the statement is true for $k=n-1$. Let $f \in C^{k}([0,1])$; then we can write

$$
f(t)=f(0)+\int_{0}^{t} f^{\prime}(x) d x
$$

Then as $f^{\prime} \in C^{k}([0,1])$ we know there exists a sequence of polynomials p_{n} such that $\left\|f^{\prime}-p_{n}\right\|_{C^{k-1}} \rightarrow 0$. Defining the polynomial $q_{n}(t):=f(0)+\int_{0}^{t} p_{n}^{\prime}(x) d x$ it is now easy to
see that $\left\|f-q_{n}\right\|_{C^{k}} \rightarrow 0$ as we are only left to check

$$
\begin{aligned}
\left\|f-q_{n}\right\|_{\infty} & =\sup _{t \in[0,1]}\left|\int_{0}^{t} f^{\prime}(x)-p_{n}(x) d x\right| \\
& \leq \sup _{t \in[0,1]} \int_{0}^{t}\left|f^{\prime}(x)-p_{n}(x)\right| d x \\
& \leq 1 \cdot \sup _{x \in[0,1]}\left|f^{\prime}(x)-p_{n}(x)\right| \\
& =\left\|f^{\prime}-p_{n}\right\|_{\infty} \rightarrow 0 .
\end{aligned}
$$

(c) To check whether the operator is closable we want use lemma L.2. That is, we consider a sequence of functions $u_{n} \in D(A):=C^{1}([0,1])$ such that $\left\|u_{n}\right\|_{L^{2}} \rightarrow 0$ and aim to show that then also $\left\|A u_{n}\right\|_{L^{2}} \rightarrow 0$. Let us set $v_{n}:=\frac{\mathrm{d}}{\mathrm{d} t} u_{n}$ and suppose $v \in L^{2}([0,1])$ is a limit of the v_{n}, i.e. $\left\|v-v_{n}\right\|_{L^{2}} \rightarrow 0$. We will show $v=0$. Using Hölder's inequality, we have for arbitrary $\phi \in C_{c}^{\infty}((0,1))$ that

$$
\begin{equation*}
\left|\int_{0}^{1} v_{n}(t) \phi(t) d t\right|=\left|-\int_{0}^{1} u_{n}(t) \phi^{\prime}(t) d t\right| \leq\left\|u_{n}\right\|_{L^{2}}\|\phi\|_{L^{2}} \rightarrow 0 \text { as } n \rightarrow \infty \tag{12}
\end{equation*}
$$

where we used integration by parts in the second step. On the other hand we know (e.g. by continuity of the L^{2}-scalar product) that

$$
\begin{equation*}
\int_{0}^{1} v(t) \phi(t) d t=\lim _{n \rightarrow \infty} \int_{0}^{1} v_{n}(t) \phi(t) d t \tag{13}
\end{equation*}
$$

and since $\phi \in C_{c}^{\infty}((0,1))$ was arbitrary we conclude that $v=0$ by theorem T.2.

1.2. An operator that is not closable

We remark first that this exercise is a slightly more general stated version of the example $E .4$ iii) stated in the lectures (where $\left.f \equiv 1 \in L^{\infty}(\mathbb{R}) \backslash L^{2}([0,1])\right)$. Let us prove this special case first before moving on to the general case. We want to use lemma $L .2$ again. We want to show that there exists a sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ such that $\lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{L^{2}}=0$ but $\lim _{n \rightarrow \infty}\left|A u_{n}\right| \neq 0$. Let us define

$$
\begin{equation*}
u_{n}=\frac{1}{n} \mathbf{1}_{[0, n]} \tag{14}
\end{equation*}
$$

Clearly we have

$$
\begin{equation*}
\left\|u_{n}\right\|_{L^{2}}=\frac{\sqrt{n}}{n} \rightarrow 0 \text { as } n \rightarrow \infty \tag{15}
\end{equation*}
$$

however on the other hand we have

$$
\begin{equation*}
\left|A u_{n}\right|=\left|\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} \frac{1}{n} \mathbf{1}_{[0, n]}(x) d x\right|=\frac{n}{n}=1 . \tag{16}
\end{equation*}
$$

so $A u_{n}$ does not converge to 0 in \mathbb{C}.
Inspired this example we now prove the more general statement in the exercise. Let $f \in L^{\infty}(\mathbb{R}) \backslash L^{2}(\mathbb{R})$. We then know that

$$
\begin{equation*}
\int_{-\infty}^{\infty}|f|^{2} d x=\infty \tag{17}
\end{equation*}
$$

Hence for each n there must exist an $x_{n} \in \mathbb{R}$ such that

$$
\begin{equation*}
\int_{-x_{n}}^{x_{n}}|f|^{2} d x=n . \tag{18}
\end{equation*}
$$

We then modify our previous set of u_{n} and define

$$
\begin{equation*}
u_{n}=\frac{1}{n} f \mathbf{1}_{\left[-x_{n}, x_{n}\right]} . \tag{19}
\end{equation*}
$$

We see again that

$$
\begin{aligned}
\left\|u_{n}\right\|_{L^{2}} & =\left(\frac{1}{n^{2}} \int_{-\infty}^{\infty}|f|^{2} \mathbf{1}_{\left[-x_{n}, x_{n}\right]} d x\right)^{\frac{1}{2}} \\
& =\frac{1}{n}\left(\int_{-x_{n}}^{x_{n}}|f|^{2} d x\right)^{\frac{1}{2}} \\
& =\frac{\sqrt{n}}{n} \rightarrow 0 \text { as } n \rightarrow \infty,
\end{aligned}
$$

but that

$$
\begin{aligned}
\left|A u_{n}\right| & =\frac{1}{n} \int_{-\infty}^{\infty}|f|^{2} \mathbf{1}_{\left[-x_{n}, x_{n}\right]} d x \\
& =\frac{1}{n} \int_{-x_{n}}^{x_{n}}|f|^{2} d x \\
& =\frac{n}{n}=1
\end{aligned}
$$

which does not converge to 0 in \mathbb{C}.

1.3. Closed Sum

Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $D(A)$. Then by the triangle inequality and the assumption we have

$$
\begin{aligned}
\left\|A\left(x_{n}-x_{m}\right)\right\|_{Y}-\left\|(A+B)\left(x_{n}-x_{m}\right)\right\|_{Y} & \leq\left\|B\left(x_{n}-x_{m}\right)\right\|_{Y} \\
& \leq a\left\|A\left(x_{n}-x_{m}\right)\right\|_{Y}+b\left\|x_{n}-x_{m}\right\|_{X},
\end{aligned}
$$

which implies the estimate given in the hint:

$$
\begin{equation*}
(1-a)\left\|A\left(x_{n}-x_{m}\right)\right\|_{Y} \leq\left\|(A+B)\left(x_{n}-x_{m}\right)\right\|_{Y}+b\left\|x_{n}-x_{m}\right\|_{X} . \tag{20}
\end{equation*}
$$

Assume that $x_{n} \rightarrow x$ in X and $(A+B) x_{n} \rightarrow y$ in Y. The claim is $(A+B) x=y$. Since $a<1$ the estimate in (20) implies that $\left(A x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in $\left(Y,\|\cdot\|_{Y}\right)$ and therefore converges to some \tilde{y}. Since the graph of A is closed by assumption, we have $x \in D_{A}$ with $A x=\tilde{y}$. Therefore, we may conclude

$$
\begin{equation*}
\left\|B\left(x-x_{n}\right)\right\|_{Y} \leq a\left\|A\left(x-x_{n}\right)\right\|_{Y}+b\left\|x-x_{n}\right\| \xrightarrow{n \rightarrow \infty} 0, \tag{21}
\end{equation*}
$$

which implies $B x_{n} \rightarrow B x$ in Y and thus

$$
\begin{equation*}
y=\lim _{n \rightarrow \infty}(A+B) x_{n}=\lim _{n \rightarrow \infty} A x_{n}+\lim _{n \rightarrow \infty} B x_{n}=A x+B x=(A+B) x \tag{22}
\end{equation*}
$$

1.4. Closable Inverse

Since the closure \bar{A} is assumed to be injective, A is injective and therefore has inverse $A^{-1}: W_{A} \rightarrow D_{A}$, where $W_{A}:=A\left(D_{A}\right)$ denotes the range of A. Defining

$$
\begin{aligned}
\chi: X \times Y & \rightarrow Y \times X \\
(x, y) & \mapsto(y, x),
\end{aligned}
$$

we observe that the graph $\Gamma_{A^{-1}}$ of A^{-1} is given by

$$
\begin{equation*}
\Gamma_{A^{-1}}:=\left\{(y, x) \in Y \times X: y \in W_{A}, x=A^{-1} y\right\}=\chi\left(\Gamma_{A}\right) \tag{23}
\end{equation*}
$$

Since χ is an isomorphism of normed spaces, we have

$$
\begin{equation*}
\overline{\Gamma_{A^{-1}}}=\overline{\chi\left(\Gamma_{A}\right)}=\chi\left(\Gamma_{\bar{A}}\right)=\Gamma_{(\bar{A})^{-1}} . \tag{24}
\end{equation*}
$$

Since this proves that $\overline{\Gamma_{A^{-1}}}$ is the graph of the linear operator $(\bar{A})^{-1}$ (which is well-defined, since \bar{A} is injective). Therefore, A^{-1} is closeable as claimed and

$$
\begin{equation*}
\Gamma_{\overline{A^{-1}}}=\overline{\Gamma_{A^{-1}}}=\Gamma_{(\bar{A})^{-1}} \Longrightarrow \overline{A^{-1}}=(\bar{A})^{-1 .} \tag{25}
\end{equation*}
$$

