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10.1. Sufficient conditions for a solutions to an elliptic PDE.

1.) Let us note that first case is implied by the second case, so we immediately move
over to that one.

2.) Let us formulate the elliptic PDE in the weak sense. For u ∈ H1
0 (Ω) to solve

Lu(x) = −
n∑

i,j=1
∂i(gij(x)∂ju(x)) +

n∑
i=1

bi(x)∂iu(x) + c(x)u(x) = f(x)u(x) (1)

weakly for f ∈ L2(Ω̄) is equivalent to requiring that
n∑

i,j=1

∫
Ω

gij∂iu(x)∂jv(x) + bi(x)v(x)∂iu(x) + c(x)u(x)v(x) dx =
∫

Ω
f(x)v(x) dx, (2)

for v ∈ H1
0 (Ω). Let us define the bilinear map ⟨·, ·⟩ : H1

0 (Ω) × H1
0 (Ω) → C by

⟨u, v⟩Λ =
n∑

i,j=1

∫
Ω

gij∂iu(x)∂jv(x)+bi(x)v(x)∂iu(x)+bi(x)u(x)∂iv(x)+c(x)u(x)v(x)dx,

(3)
the aim is to prove that ⟨u, u⟩Λ defines a norm on H1

0 (Ω) and then argue by Riesz
that ⟨u, v⟩Λ =

∫
f̃v(x)dx where

f̃(x) := f(x) − ∂ib
i(x)u(x) − bi(x)∂iu(x).

Note that we need to solve for f̃ instead of f as we needed to add the term
bi(x)u(x)∂iv(x) on both sides of (3) and integrate by parts on the right side to get
an equivalent formulation to (2). We claim that the associated energy functional
given by

E(u) :=
n∑

i,j=1

∫
Ω

gij∂iu(x)∂ju(x) + 2bi(x)u(x)∂iu(x) + c(x)u(x)2 dx (4)

is positive definite provided we choose ||b||L∞ < ϵ is small enough. Indeed, we can
estimate as follows

E(u) = ⟨u, u⟩Λ =
n∑

i,j=1

∫
Ω

gij∂iu(x)∂ju(x) + 2bi(x)u(x)∂iu(x) + c(x)u(x)2 dx

≥ λ||∇u||2L2 +
∫

Ω
cu2 dx︸ ︷︷ ︸
≥0

−2||b||L∞

∫
Ω

u∂iu dx

≥ λ||∇u||2L2 − 2||b||L∞(||u||L2 ||∇u||L2)
≥ C(λ − 2||b||L∞)||u||H1

0
,

last update: 30 July 2023 1 1/12



d-math
Prof. P. Hintz
Assistant: P. Peters

Functional Analysis II
Solution to Problem Set 10

ETH Zürich
Spring 2023

where we use as in previous exercises that the ||∇u||L2 and stand ||u||H1
0

norms
are equivalent. We see that for ||b||L∞ < λ we have that E(u) is positive definite.
Moreover the fact that ⟨u, u⟩ ≥ 0 for all u ∈ H1

0 (Ω) implies that it defines a norm
on H1

0 (Ω) as well. In fact we claim that it equivalent to the H1
0 -norm. To this end

let us compute

E(u) = ⟨u, u⟩Λ =
n∑

i,j=1

∫
Ω

gij∂iu(x)∂ju(x) + 2bi(x)u(x)∂iu(x) + c(x)u(x)2 dx

≤ ||gij||L∞||D2u||L2 + 2||bi||L∞ ||u||L2||∇u||L2 + ||c||L∞||u||2L2

≤ C(||gij||L∞ + 2||bi||L∞ + ||c||L∞)||u||H1
0

where we used that gij, bi, c are simply attain a maximum on Ω̄ as they are smooth.
With the above considerations we conclude that there are a C1, C2 ≥ 0 such that

C1||u||2H1
0

≤ ⟨u, u⟩Λ ≤ C2||u||2H1
0
.

so ||u||Λ =
√

⟨u, u⟩Λ defines a norm equivalent to the || · ||H1
0

norm on H1
0 (Ω).

Most importantly (H1
0 (Ω), || · ||Λ) is a Hilbert space. Let us define the functional

ℓf̃ : H1
0 (Ω) → C via

ℓf̃ (v) =
∫

Ω
f̃(x)v(x) dx. (5)

Then by Riesz there exists a unique u ∈ H1
0 (Ω) such that

⟨u, v⟩Λ = ℓf̃ (v).

However, this is exactly the weak formulation (2).

3.) Following the hint we see that
n∑

i,j=1
−1

γ
∂i(gijγ∂ju) = −

n∑
i,j=1

∂i(gij∂ju) −
n∑

i,j=1
gij(x)∂jγ(x)

γ(x)︸ ︷︷ ︸
=bi(x)

. (6)

Therefore we see that that we can rewrite

−
n∑

i,j=1
∂i(gij(x)∂ju(x)) +

n∑
i=1

bi(x)∂iu(x) =
n∑

i,j=1
−1

γ
∂i(gijγ∂ju)

Now as γ > 0 we also know that minΩ γ > 0. Therefore when we absorb γ into gij

by defining
g̃ij = γgij,
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we see that the ellipticity condition is still fullfilled, i.e.
n∑

i,j=1
g̃ijξiξj ≥ λ′

for some λ′ > 0. Playing the same game as before we now want to weakly solve the
equation ∫

Ω
g̃ij∂iu ∂jv dx =

∫
Ω

fγ u v dx. (7)

We can then again define an equivalent norm on H1
0 (Ω) by setting

⟨u, v⟩Λ′ =
∫

Ω
g̃ij∂iu ∂jv dx

which then again yields the existence for a weak solution with Riesz due to the
ellipticity condition on g̃ij

10.2. Energy functional for non-linear Poisson equation with cubic term.

(a) Let us break up this functional in its relevant parts. We know of course that

u 7→
∫

Ω
|∇u|2 dx

is continuous in the H1
0 norm as ||∇u||2L2 is equivalent to the standard norm on H1

0 (Ω).
Apart from that the functional

u 7→
∫

Ω
fu dx

is linear, can be majorized by ||u||L2 norm by Cauchy-Schwartz, which in turn is a priori
majorized by ||u||H1

0
. For the remaining term F : H1

0 (Ω) → R given by

F (u) =
∫

Ω
u4 dx,

Obviously we "recognize" that this quantity would be equal to ||u||4L4 if u were to lie in
L4(Ω) as well which is not a priori clear. This is where the Sobolev embedding comes
into play. 1 We know that for n = 3 and p = 2 H1

0 (Ω) embeds compactly into Lq(Ω)
where for q we must have

q <
np

n − p
= 3 · 2

3 − 2 = 6,

1The Sobolev embeddings are always your first line of attack to tackle cubic and higher order terms in
non-linear functionals.
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where we emphasize that an embedding for q = 6 is still possible but is no longer compact.
For q = 4 it is all fine however, so let

ι : H1
0 (Ω) ↪→ L4(Ω) (8)

be the compact embedding and F̃ : L4(Ω) → R be given by

F̃ (u) = ||u||4L4 .

Clearly F̃ is continuous with respect to the norm of L4(Ω). We then conclude that
F = F̃ ◦ ι : H1

0 (Ω) ↪→ L4(Ω) → R is continuous as a composition of continuous functions.

(b) Coercivity follows very easily: note the following

E(u) =
∫

Ω

1
2 ||∇u||2 + 1

4u4︸︷︷︸
≥0

−fu dx

≥ 1
2 ||u||2H1

0
− ||f ||L2||u||L2

≥ 1
2 ||u||2H1

0
− C||f ||L2||u||H1

0

=
(1

2 ||u||H1
0

− C||f ||L2

)
||u||H1

0
→ ∞ as ||u||H1

0
→ ∞.

For weakly lower semi-continuity we break the functional up again in its relevant parts.
Let uk ⇀ u in H1

0 (Ω). Note that from chapter 4 in FA I we know that then

||u||H1
0

≤ lim inf
n→∞

||uk||H1
0

Therefore it is immediate that∫
Ω

|∇u|2 dx ≤ lim inf
k→∞

∫
Ω

|∇uk|2 dx.

For the quadratic term we note that the embedding ι : H1
0 (Ω) → L4(Ω) allows us to

write any bounded functional ℓ ∈ L4(Ω)∗ as a bounded functional ℓ̃ := ℓ ◦ ι ∈ H1
0 (Ω)∗ as

ℓ(v) ≤ C||v||L4 ≤ CC ′||v||H1
0 (Ω). (9)

Thus if uk → u in H1
0 (Ω) (meaning ℓ̃(uk) → ℓ̃(u)) we must also have ℓ(uk) → ℓ(u) in L4

by continuity of ι. We conclude uk ⇀ u in L4(Ω) as well, whence∫
Ω

u4 dx ≤ lim inf
k→∞

∫
Ω

u4
k dx.
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The existence of a unique minimizer is now given by the variational principle (see chapter
7, FA I) as H1

0 (Ω) is Hilbert thus reflexive, and moreover a priori weakly sequentially
closed in itself. As a recap, we do this case explicitly. We will prove along the following
lines: as E is coercive, then there is some ball B ⊆ H1

0 (Ω) such that

inf
u∈H1

0 (Ω)
E(u) = inf

u∈B
E(u).

That the infimum is not −∞ follows from the fact that

E(u) ≥
∫

Ω
fu dx ≤ −||u||H1

0
||f ||H1

0

which is bounded from below for u ∈ B ⊂ H1
0 (Ω). Thus the infimum

E− := inf
u∈H1

0 (Ω)
E(u) (10)

exists. To show that it is attained (i.e. there exists a u ∈ H1
0 (Ω) such that E(u) = E−,

let (uk)k∈N ⊂ B be the sequence such that

lim
k→∞

E(uk) = inf
B

E(u) = E−. (11)

Then by Banach-Alaoglu, as uk is bounded, and H1
0 (Ω) is reflexive, there exists a weakly

convergent subsequence ukj
such that ukj

⇀ u in H1
0 (Ω). Then by w.s.l.s.c. we have

E(u) ≤ lim inf
j→∞

E(ukj
) = E−.

But as E− is the infimum attained on H1
0 (Ω), we must have E(u) = E−.

(c) Let us assume that v ∈ H1
0 (Ω) is another minimizer, and consider w = 1

2(u + v).
We analyze the functional again on its relevant components. First of all let us set
I : H1

0 (Ω) → R as
I(ϕ) =

∫
Ω

1
2 |∇ϕ|2 − fu dx, for ϕ ∈ H1

0 (Ω)

and J : H1
0 (Ω) → R as

J(ϕ) = 1
4

∫
Ω

ϕ4 dx, for ϕ ∈ H1
0 (Ω)

so that E(ϕ) = I(ϕ) + J(ϕ). Let us consider I first. Note that for w = u + v we have

I[w] =
∫

Ω

1
2

∣∣∣∣∇u + ∇v

2

∣∣∣∣2 − f ·
(

u + v

2

)
dx

=
∫

Ω

1
8(|∇u|2 + 2∇u · ∇v + |∇v|2) − f ·

(
u + v

2

)
dx.
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Now we note that
2∇u · ∇v = |∇u|2 + |∇v|2 − |∇u − ∇v|2.

Thus we get

I[w] =
∫

Ω

1
8(2|∇u|2 + 2|∇v|2 − |∇u − ∇v|2) − f ·

(
u + v

2

)
dx

<
1
2

∫
Ω

1
2(2|∇u|2 + 2|∇v|2 − |∇u − ∇v|2) − f ·

(
u + v

2

)
dx

= 1
2

∫
Ω

1
2(|∇u|2 − fu) dx + 1

2

∫
Ω

1
2(|∇v|2 − fv) dx

= 1
2I[u] + 1

2I[v]

where the strict inequality holds as we assumed u ̸= v. Now for the J term, we note that
the function x 7→ x4 is a convex function. So in particular, we have that

(1
2x + 1

2y)4 ≤ 1
2x4 + 1

2y4. (12)

From this it immedaitely follows that

J [u + v

2 ] = 1
4

∫
Ω

(
u + v

2

)4
dx

≤ 1
4

∫
Ω

1
2u4 + 1

2v4 dx

≤ 1
2J [u] + 1

2J [v].

We conclude that
E
[
u + v

2

]
<

1
2E[u] + 1

2E[v] (13)

which is a contradiction to the fact that u, v ∈ H1
0 (Ω) were assumed to be minimizers of

E.

(d) The weak formulation of the PDE is given by∫
Ω

∇u · ∇v + u3v dx =
∫

Ω
fv dx

for v ∈ H1
0 (Ω). Now if u is the minimizer of E let us us set vary for ϕ ∈ H1

0 (Ω) and ϵ > 0
small we have that

0 ≤ E(u + ϵϕ) − E(u) = ϵ
∫

Ω
∇u · ∇ϕ + u3ϕ − fϕ dx + O(ϵ2),
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where we collect only the terms first order in ϵ. As we are free to choose ϕ ∈ H1
0 (Ω)

arbitrarily, this inequality can only hold if and only if for all ϵ > 0 we have∫
Ω

∇u · ∇ϕ + u3ϕ − fϕ dx = 0.

for all ϕ ∈ H1
0 (Ω), i.e. if u solves

∇u + u3 = f

weakly.

(e) From the way the question is formulated it is clear that we have to apply some
bootstrap argument. As mentioned earlier, at the boundary case q = 6 we still have the
Sobolev embedding

H1
0 (Ω) ↪→ L6(Ω). (14)

Thus if u ∈ H1
0 (Ω) we know that u ∈ L6(Ω) and therefore that u3 ∈ L2(Ω). Thus if

u ∈ H1
0 (Ω) solves

−∆u + u3 = f

weakly we also know that u solves
−∆u = g

where g ∈ L2(Ω) is defined as g = f − u3. From elliptic regularity we then see that
u ∈ H2(Ω). Using the Sobolev embedding again for q = 6 we see that we also have

H2(Ω) ↪→ W 1,6(Ω). (15)

but then that means that if u ∈ H2(Ω) and thus u ∈ W 1,6(Ω) then again u3 ∈ W 1,2(Ω) =
H1(Ω). Therefore g := f − u3 ∈ H1(Ω) which then implies in turn that u ∈ H3(Ω) by
higher regularity. Continuing on we see that

u ∈
∞⋂

k=0
Hk(Ω) = C∞(Ω).

10.3. Rellich compactness for general domains.

(a) Let us define this operator first by density. Let Q =] − L, L[n. Then we first define
our operator on C∞

c (Ω). We define E : C∞
c (Ω) → C∞

c (Q) by extending by 0

E(ϕ)(x) =

ϕ(x) if x ∈ Ω
0 if x ∈ Ω\Q.

Clearly E(ϕ) is still smooth on the domain Ω\Q. Note also that

||E(ϕ)||L2(Q) = ||ϕ||L2(Ω) and ||E(∇ϕ)||L2(Q) = ||∇ϕ||L2(Ω)
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so
||E(ϕ)||H1(Q) = ||ϕ||H1(Ω).

We conclude that E is an isometry and continuous. As C∞
c (Ω) is dense in H1

0 (Ω) we can
extend E to a map E : H1

0 (Ω) → H1
0 (Q). To see that E is truly a well defined extension

we want to show that
||E(u)|Ω − u||H1

0 (Ω) = 0 for all u ∈ H1
0 (Ω). (16)

This follows as when we take C∞
c (Ω) ∋ uk → u in H1

0 (Ω) we have that E(uk)|Ω = uk →
E(u)|Ω in H1

0 (Ω).

(b) The problem with this question is that the domain Q =] − L, L[n does not have a
C1-boundary so we cannot instantly apply some Rellich compactness (corollary C.8) or
Sobolev embedding result. With the particular instance of the cube Q we can circumvent
this somewhat though. Let B be a ball that contains Q. Then as the hint suggests we
keep reflecting across the boundaries of Q to get a larger square Q′ such that B lies in Q′

proper. As B is bounded we can do this in a finite number of reflections across the edges,
say N times, where we reflect in every dimension fully so that the projection of B into
that dimension is fully contained in Q′ (i.e. for R2 we first reflect Q fully horizontally
and then vertically so as not to get a reflection from two cubes Q1, Q2 on a third shared
boundary cube Q3).

Figure 1: Left: the n-dimensional cube (black) inside the ball B (red), Center: The
correct extension by reflections of Q to Q′ (yellow), Right: An inconsistent
extension of the cube Q.

Now using a reflection operator as defined in the lecture (e.g. as in lemma L.14) we also
get a reflection operator E : H1(Q) → H1(Q′) where

||Eu||H1(Q′) ≤ C||u||H1(Q)
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for all u ∈ H1(Q′) for some constant C > 0 and with Eu|Q = u. Thus for u ∈ H1(Q)
arbitrary, we have that Eu ∈ H1(Q′) but then by restriction also Eu ∈ H1(B). But then
Eu ∈ H1(B) by restriction, as B ⊊ Q′. For B we can use Rellich’s compactness theorem,
i.e. that

H1(B) ↪→ L2(B) (17)
compactly via an embedding ι : H1(B) ↪→ L2(B). Then restricting with a map r :
L2(B) → L2(Q), given by

r(v) = v|Q for v ∈ H1(B)
we have that the inclusion i : H1(Q) → L2(Q) is be given by

i = r ◦ ι ◦ E,

which is compact, as it is the composition of continuous r, E with the compact embedding
ι.

(c) ( =⇒ ) WLOG for this exercise we take Q to be Q =] − π, π[n. For u ∈ H1(B) we
have that u ∈ L2(B) and ∇u ∈ L2(B). Thus we can expand

u(x) =
∑

k∈Zn

ukeikx and ∇u =
∑

k∈Zn

d⃗keikx, (18)

where d⃗k ∈ Cn and moreover that∑
k∈Zn

|uk|2 < ∞ and
∑

k∈Zn

||d⃗k||2 < ∞

We now aim to show that d⃗k = ikck. Let us extend u and ∇u by periodicity on to ∂Q so
we get two functions in L2(Q̄) with Q̄ = [−π, π]n. Recall that u ∈ H1(Q̄) also implies
that ∫

Q̄
∇uϕ dx = −

∫
Q̄

u∇ϕ dx (19)

for all ϕ ∈ C∞
c (Q̄). Therefore let us take ϕ = e−ikx ∈ C∞

c (Q̄). Then we find using
integration by parts

d⃗k =
∫

Q̄
∇ue−ikx dx

= −
∫

Q
u∇(e−ikx) dx +

∫
∂Q

ue−ikx dx︸ ︷︷ ︸
=0

=
∫

Q
iku(e−ikx) dx

=
∫

Q
ik
∑
k′

uk(ei(k−k′)x) dx

= ikuk,
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where we used swapping of sum and integral due to absolute L2 convergence in (18).
Thus from the assumption that ∑k d⃗k is square summable we get that |k|2|uk|2 is square
summable, whence ∑

k

(1 + |k|2)|uk|2 < ∞.

( ⇐= ) Now in the opposite direction we want to show that∑
k

(1 + |k|2)|uk|2 < ∞.

We use for this the characterization of W 1,p by duality i.e. u ∈ W 1,p(Ω) if and only if2∣∣∣∣∫
Ω

u∇ϕ dx

∣∣∣∣ ≤ C||ϕ||Lq , for all ϕ ∈ C∞
c .

Now let us assume that for u ∈ H1(Q) we have∑
k∈Zn

(1 + |k|2)|uk|2 < ∞.

Then again expanding ϕ = ∑
k ϕkeikx and ∇ϕ = ∑

k ikϕkeikx we get (with also expanding
u = ∑

k ukeikx that∣∣∣∣∫
Ω

u∇ϕ dx
∣∣∣∣ ≤

∑
k∈Zn

|kukϕ−k|

≤

∑
k∈Zn

|k|2|uk|2
1/2

+
∑

k∈Zn

|ϕ−k|2
1/2

= ||kck||ℓ2||ϕk||ℓ2 .

But by our assumption, ||kck||ℓ2 < ∞ from which we conclude with the duality charac-
terization.

(d) This final statement again follows from what we have seen many times before,
namely that h1(Zn) ↪→ ℓ2(Zn) embeds compactly (see also e.g. exercise sheet 3 and
corresponding lectures in FAII and FAI). Most definitely the expansion ∑

k∈Zn ukeikx

should most definitely be interpreted as a Fourier sum. One can also define norms
on L2(Q) and H1(Q) by pulling via F to ℓ2(Zn) and h1(Zn). We see that the map
ι : H1(Q) → L2(Q) is compact. Finally as the inclusion i : H1

0 (Q) → H1(Q) from part
(a) is continuous we conclude that ι ◦ i : H1

0 (Q) ↪→ L2(Q) is compact as the composition
of a continuous and a compact function.

2A cute exercise to prove yourself.
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We note that the final statement at the start of the exercise, i.e. the existence of a
compact inclusion

H1
0 (Ω) ↪→ L2(ω)

is also proven. Letting the inclusion from part (a) be denoted by

˜iota : H1
0 (Ω) ↪→ H1

0 (Q)

and defining the restriction r̃ : L2(Q) → L2(Ω) in the usual way, we conclude that

r̃ ◦ ι ◦ i ◦ ι̃ : H1
0 (Ω) → H1

0 (Q) → H1(Q) ↪→ L2(Q) → L2(Ω)

is compact as a composition of continuous maps and a compact map (ι).

10.4. Min-max characterization of eigenvalues.

We have seen in exercise sheet 3 that −∆ admits a complete orthonormal basis of
eigenvectors um of L2(Ω) with eigenvalues 0 < λ1 ≤ λ2 ≤ ... ≤ λm → ∞. This allows for
the decomposition

u =
∞∑

m=1
amum. (20)

Now for any u ∈ H1
0 (Ω) we have that

||∇u||2L2 =
∫

Ω
∇u · ∇v dx =

∫
Ω
(−∆u)u dx

so expanding u as in (20) and −∆u as

−∆u =
∞∑

m=1
bmum

we first want to show that
bm = λmam. (21)

This is easily proven using the fact that ∆−1 : L2(Ω) → H1
0 (Ω) is bounded, i.e. we find

∞∑
m=1

amum = u = −∆−1
( ∞∑

k=0
bmum

)
.

As ∆−1 is bounded we know that the r.h.s. is absolutely convergent in L2(Ω). We can
therefore swap integral and ∆−1 and get

∞∑
m=1

amum = u =
( ∞∑

k=0
bm · (−∆−1)(um)

)
=
( ∞∑

k=0

bm

λm

um

)
.
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We conclude that (21) holds by orthogonality. From integration by parts it then also
follows that

||∇u||2L2 =
∞∑

m=1
⟨amum, λmamum⟩ =

∞∑
m=1

λma2
m ||um||2L2︸ ︷︷ ︸

=1

=
∞∑

m=1
λma2

m.

Hence we have that
||∇u||L2

||u||L2
=
∑∞

m=1 λma2
m∑∞

m=1 a2
m

.

Now let V ⊂ H1
0 (Ω) be spanned by the linearly independent set {v1, ..., vk} ∈ H1

0 (Ω).
Using Gauss elimination we can then find a v ∈ V such that

v =
∞∑

m=1
amum

where a1 = a2 = ... = ak−1 = 0 so

v =
∑
m≥k

amum.

Therefore we get
||∇v||L2

||v||L2
=
∑

m≥k λma2
m∑

m≥k a2
m

≥
λk
∑

m≥k a2
m∑

m≥k a2
m

= λk

Therefore we see that
λk ≤ sup

u∈V \{0}

||∇u||L2

||u||L2

On the other hand we see that if we choose v1 = u1, v2 = u2 and thus set V ′ =
span{u1, ..., um−1} we have that

λk = sup
u∈V ′\{0}

||∇u||L2

||u||L2
.

From this we conclude as we wanted for the infimum of n-dimensional spaces V ⊆ H1(Ω)

λk = inf
V ⊂H1

0 (Ω)
dim(V )=k

sup
0̸=u∈V

∥∇u∥2
L2(Ω)

∥u∥2
L2(Ω)

.
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