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11.1. A product of functions in H1
0 (Ω)

For this exercise we recall that for an interval u ∈ H1
0 ((0, L)) we in fact have that these u

are uniformily continuous, see also exercise 2.2 for a cute proof of this fact. In particular
we then have that u ∈ H1

0 (Ω) are characterized as continuous functions in H1((0, L))
with u(0) = 0 = u(L). Let us from now on only work on two variables x, y on the cube
Q = (0, Lx)x × (0, Ly)y, the higher dimensional cases are generalized to trivially.
We set Q =

f(x) = sin
(
πkxx

Lx

)
and g(y) = sin

(
πkyy

Ly

)
. (1)

and want to show f · g ∈ H1
0 (Q). Note that clearly we have f ∈ H1((0, Lx)), and

g ∈ H1((0, Ly)). Now let us choose ϕn ∈ C∞
c (0, Lx) and ψn ∈ C∞

c (0, Ly) such that

lim
n→∞

||f − ϕn||H1 → 0 and lim
n→∞

||g − ψn||H1 = 0. (2)

Clearly then ϕn · ψn ∈ C∞
c ((0, Lx) × (0, Ly)) for all n ∈ N. Now we want to prove that

lim
n→∞

||ϕnψn − fg||H1 = 0

To prove this we need some triangle inequalities:

||ϕnψn − fg||H1(Q) ≤ ||ϕnψn − fψn||H1(Q) + ||fψn − fg||H1(Q)

for the L2 part of this norm we note simply that

||ϕnψn − fψn||L2(Q) + ||fψn − fg||L2(Q) ≤ Ly ||ψn||L∞(0,Ly)︸ ︷︷ ︸
≤C1

||ϕn − f ||L2(0,Lx)︸ ︷︷ ︸
→0

(3)

+ Lx ||f ||L∞(0,LX)︸ ︷︷ ︸
≤C2

||g − ψn||L2(0,Ly)︸ ︷︷ ︸
→0

(4)

where we use that as ψn is convergent thus bounded in the H1
0 (0, Lx) it must be bounded

in the uniform norm as well. Note that we took care to seperate the integrals in the
different variables on the left hand side to the right hand side. For the derivatives we
can actually play the same game

||∇(ϕnψn) − ∇(fg)||L2(Q) = ||ϕn∇ψn + ψn∇ϕn − g∇f − f∇g||L2(Q)

≤ ||ϕn∇ψn − f∇g||L2(Q)︸ ︷︷ ︸
:=In

+ ||ψn∇ϕn − g∇f ||L2(Q)︸ ︷︷ ︸
:=Jn
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We then see that

||ϕn∇ψn − f∇g||L2(Q) ≤ ||ϕn∇ψn − ϕn∇g + ϕn∇g − f∇g||L2(Q)

≤ ||ϕn∇ψn − ϕn∇g||L2(Q) + ||ϕn∇g − f∇g||L2(Q)

≤ ||ϕn||L2(Q)||∇ψn − ∇g||L2(Q) + ||∇g||L2(Q)||ϕn − f ||L2(Q)

= (Ly)1/2 ||ϕn||L2(0,Lx)︸ ︷︷ ︸
bounded

L1/2
x ||∇ψn − ∇g||L2(0,Ly)︸ ︷︷ ︸

→0

+ L1/2
x ||∇g||L2(0,Ly)︸ ︷︷ ︸

bounded

L1/2
y ||ϕn − f ||L2(0,Lx)︸ ︷︷ ︸

→0

where we use that ∇g is bounded because g ∈ H1
0 (0, Ly) and ϕn bounded in L2 norm as it

converges in H1
0 (0, Lx). We conclude that In → 0 as n → ∞. One can argue analogously

that Jn → 0 as n → ∞.

11.2. Decay rate of eigenfunction expansion of −∆ on H1
0 (Ω).

First of all let us note that from corollary C.30 one can deduce the Riesz-Fischer theorem:
for an open C∞ domain Ω: for u ∈ L2(Ω) expanded in the basis of −∆ : H1

0 (Ω)⋂H2(Ω) →
L2(Ω) as

u(x) =
∞∑

k=1
ckuk (5)

we have that ck ∈ ℓ2(N) is given by

ck = ⟨u, uk⟩L2(Ω).

Conversely, if ck ∈ ℓ2(N) the limit uN = ∑N
k=1 ckuk converges to a u ∈ L2(Ω).

(a) Let us first prove for q = 1. We then have for u ∈ H2(Ω)⋂H1
0 (Ω) that −∆u ∈ L2(Ω).

Let us expand
−∆u =

∞∑
k=1

dkuk,

with ∑∞
k=1 |dk|2 < ∞. And let u be given as in (5). Our goal is to show

dk = λkck.

Note that

dk = ⟨uk,−∆u⟩L2 = ⟨−∆uk, u⟩L2

= λk⟨uk, u⟩L2 = λkck.
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Hence we have that
−∆u =

∞∑
k=1

λkckuk (6)

where the convergence is in L2(Ω). In other words, setting

vN =
N∑

k=1
λkckuk (7)

we have that vN → −∆u in L2(Ω) from which we have

∞ > || − ∆u||2L2(Ω) = lim
N→∞

||vN ||2L2(Ω)

= lim
N→∞

⟨vN , vN⟩L2(Ω)

= lim
N→∞

〈
N∑

k=1
λkckuk,

N∑
k=1

λkckuk

〉
L2(Ω)

= lim
N→∞

N∑
k=1

λ2
k|ck|2

=
∞∑

k=1
λ2

k|ck|2

as desired. Now for the case q > 1 one can play exactly the same game, by noting that if
u ∈ H2q ∩H1

0 (Ω) we have that (−∆)qu ∈ L2(Ω) and hence that we can expand again

(−∆)qu =
∞∑

k=1
d̃kuk,

and noting that

d̃k = ⟨(−∆)qu, uk⟩L2

= ⟨u, (−∆)quk⟩L2

= λq
k⟨u, uk⟩L2

= λq
kck

And arguing as above. Conversely, let (ck)k∈N be such that
∞∑

k=1
|λk|2|ck|2 < ∞,

then λkck ∈ ℓ2(N). Then notice that as

lim
k→∞

|λk| = ∞,

last update: 5 June 2023 3 3/10



d-math
Prof. P. Hintz
Assistant: P. Peters

Functional Analysis II
Solution to Problem Set 11

ETH Zürich
Spring 2023

we have that there exists an M such that
∞∑

k=M

|ck|2 <
∞∑

k=M

|ck|2|λk|2 (8)

which then proves that ck ∈ ℓ2(N). This means we can then define

u(x) =
∞∑

k=1
ckuk(x) ∈ L2(Ω) and v(x) :=

∞∑
k=1

λkckuk(x) ∈ L2(Ω),

where the convergence is in L2(Ω). We now want to prove that u ∈ H2(Ω) ∩H1
0 (Ω). Let

us define for N ∈ N

uN(x) =
N∑

k=1
ckuk(x) and vN(x) :=

N∑
k=1

λkckuk(x),

we then have that uN , vN ∈ C∞(Ω̄)∩H1
0 (Ω) with the above mentioned L2(Ω) convergence

to u,−∆u respectively. Notice that also that for all N ∈ N we have

−∆uN = vN .

Now notice that by interior regularity we have

||uN ||H2(Ω) ≤ C||∆uN ||L2(Ω) = C||vN ||L2(Ω).

Now as vN is a Cauchy sequence we then have that uN is a Cauchy sequence in H2(Ω),
so uN → ũ in H2(Ω). As we already know that uN → u ∈ L2(Ω) we must then also have
that u = ũ. This argument can then easily be bootstrapped with induction for higher
orders of q. In this case one defines uN as above and vN as

vN =
N∑

k=1
λq

kckuk.

where vN converges again in L2-norm to (−∆)qu which in L2(Ω) has the expansion
(−∆)qu = ∑N

k=1 λ
q
kckuk. Interior regularity then gives us

||uN ||H2q ≤ C||(−∆)quN ||L2(Ω), (9)

from this it then follows that uN is Cauchy in H2q(Ω) and converges to u. We conclude
u ∈ H1

0 (Ω) ∩H2q(Ω).

(b) From the previous exercise we deduce that for u ∈ H2q(Ω) ∩ H1
0 (Ω) with L2(Ω)

expansion as in (5) we have that

||∆qu||L2(Ω) =
∞∑

k=1
λ2q

k |ck|2
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The l.h.s of the inequality that we have to prove then follows again from interior regularity,
we have that

||u||H2q(Ω) ≤ C ′||∆qu||L2(Ω) =
∞∑

k=1
|λk|2|ck|2.

On the other hand we have that a priori (by the sheer definition of the norm || · ||H2q)
that ∞∑

k=1
|λk|2|ck|2 = ||∆qu||L2(Ω) ≤ ||u||H2q(Ω).

Thus when we set C = max{1, C ′}1 the inequality on both sides follows.

(c) By the previous exercise, we know that for u ∈ H2q(Ω) ∩H1
0 (Ω) expressed as (5) in

the eigenvector basis of −∆ in L2(Ω) have that we can equivalently express the norm of
u in H1

0 ∩H2q(Ω) as follows

||u||H2q =
∞∑

k=1
|ck|2|λk|2q,

as the previous exercise simply implies that this sum in the series expansion defines an
equivalent norm on H2q(Ω) ∩H1

0 (Ω). Now trivially, the expansion of an eigenvector uk in
this basis is simply given by ck = 1 and cm = 0 for all m ̸= k. From this it follows that

||uk||H2q = |λk|2. (10)

Now for 2q > n/2 we want to apply a Sobolev embedding for case ii) in T.30. In the
most general case (including when k − n

p
∈ N0) (see also e.g. theorem 6 chapter 5.6 in

Evans) we see that
H2q(Ω) ↪→ C2q−[ n

2 ]−1,α(Ω̄) (11)

with α =
[

n
2

]
+ 1 − n

p
if n

p
if n

2 is not an integer, and 0 < α < 1 if n/2 is an integer2. In
either case we can always trivially bind the supremum norm || · ||L∞(Ω) by the Hölder
norm C l,α for any l and α. We then see with the above that

||uk||L∞(Ω) ≤ C ′||uk||
C

2q−[ n
2 ]−1,α

≤ C||uk||H2q ≤ C|λk|2 (12)

as required.

11.3. Asymptotics for the eigenvalues of −∆

1To be honest this last little step in redefining C is not that relevant for the exercise but it gives you
the precise inequality as stated on the sheet.

2Verify these constants for yourself! It is easy to mix things up.
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We know by Weyl’s law (theorem T.35) that the eigenvalue counting function N(T ) =
|{i ∈ N | λi ≤ T}| denote the eigenvalue counting function. Then

lim
T →∞

N(T )
T n/2 = Ln(B1(0))

(2π)n
Ln(Ω).

Now choose T = |λn|, we then get that

N(|λk|) = |{m ∈ N||λm| ≤ |λk|} ≥ k.

Therefore we get after taking a power in Weyl’s law

lim sup
n→∞

k
2
d

|λk|
≤ lim

k→∞

N(|λk|) 2
n

|λk|
= 4π2(Ln(B(0, 1))Ln(Ω)) 2

n ,

which proves one side of the statement.
For the other half consider the adapted counting function

N ′(T ) = |{m | |λm| < T},

then N(T − 1) ≤ N ′(T ) ≤ N(T ) for all T . This then implies that

(2π)−nLn(B(0, 1))Ln(Ω) = lim
T →∞

N(T − 1)
(T − 1)n

2

T
n
2

(T − 1)n
2

= lim
T →∞

N(T − 1)
T

n
2

≤ lim inf
T →∞

N ′(T )
T

n
2

≤ lim sup N
′(T )
T

n
2

≤ lim
T →∞

N(T )
T

n
2

= Ln(B1(0))
(2π)n

Ln(Ω)

So Weyl’s law must also hold for N ′. Notice that

N ′
Ω(|λk|) = |{m ∈ Z | |λm| < |λk|}| < k.

Therefore
lim inf

k→∞

k
2
n

|λk|
≥ lim

k→∞

N ′(|λk|) 2
d

|λk|
= (2π)−nLn(B(0, 1))Ln(Ω) (13)

which concludes the proof.

11.4. Supremum bounds for eigenfunctions on compact sets.

last update: 5 June 2023 6 6/10



d-math
Prof. P. Hintz
Assistant: P. Peters

Functional Analysis II
Solution to Problem Set 11

ETH Zürich
Spring 2023

(a) We prove this exercise using higher interior regularity. Let χ, χ̃ with 0 ≤ χ ≤ 1,
0 ≤ χ̃ ≤ 1, Ω′′ = suppχ and Ω′ = supp χ̃ on and χ̃ ≡ 1 on Ω′′. The statement we want
to prove is simply that of higher interior regularity. Note that as f ∈ C∞(Ω)⋂H1

0 (Ω)
that f ∈ Hk

loc(Ω) for all k ≥ 0.
We remark that the assumption that f ∈ Hk(Ω) is actually slightly stronger than we
need. From this it immediately follows that u ∈ Hk+2(Ω), by boundary regularity
for Ω. Now, notice that multiplication χ ∈ C∞

c (Ω′) is a continuous operator from
Hk+2(Ω′) → Hk+2(Ω′) as we have for any multi-index |α| ≤ k + 2 that

||∂α(χu)||L2(Ω′) ≤ sup
|γ|≤|α|

||∂γχ||∞ sup
|β|≤|α|

||∂βu||L2(Ω′) ≤ C(χ)||u||Hk+2(Ω′)

Now as u solves −∆u = f on Ω, so in particular on Ω′, and f ∈ Hk(Ω′) we can use
higher regularity to estimate

||χu||Hk+2(Ω′) ≤ C(χ)||u||Hk+2(Ω′) ≤ C(χ)(||f ||Hk(Ω′) + ||u||L2(Ω′)).

Now as χu is supported inside Ω′ we know that

||χu||Hk+2(Ω′) = ||χu||Hk+2(Ω),

as we simply extend by 0. Furthermore as χ̃ ≡ 1 on supp(χ) = Ω′ we have that

||f ||Hk(Ω′) ≤ ||χ̃f ||Hk(Ω), (14)

and for the same reason, that

||u||L2(Ω′) ≤ ||χ̃u||L2(Ω) ≤ ||χ̃u||Hk(Ω) (15)

so the estimate follows.

(b) We know from the previous exercise using only (15) and equation (14) that

||χv||Hk(Ω) ≤ C(k, χ)(||χ̃f ||Hk(Ω) + ||χ̃u||L2(Ω)),

where χ̃ is chosen as in (a). As v ∈ C∞(Ω) ∩H1
0 (Ω) was an eigenfunction, i.e. −∆v = λv

we have that f = λv ∈ C∞(Ω) ∩H1
0 (Ω). In particular f ∈ Hk

loc(Ω). From this follows

||χv||Hk(Ω) ≤ C(k, χ)(|λ|||χ̃v||Hk−2(Ω) + ||χ̃v||L2(Ω).

Iterating the above estimate k
2 times in the first term on the r.h.s. we have that

||χv||Hk(Ω) ≤ C(k, χ, χ̃)(|λ|k/2 + 1)||χ̃v||L2(Ω)

Under the assumption |λ| > 1 we can estimate (|λ|k/2 + 1) ≤ 2|λ|k/2) and absorb into
the coefficient to get

||χv||Hk(Ω) ≤ C(k, χ, χ̃)|λ|k/2||χ̃v||L2(Ω) ≤ C(k, χ, χ̃)|λ|k/2||v||L2(Ω)
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(c) We recall that the equation mentioned in the hint is the Sobolev embedding into
Hölder spaces for k > n

2 . In particular we can choose n
2 < k < n

2 + 1 From this we know
that (choosing a χ ∈ C∞

c (Ω) with χ ≡ 1 on K using exercise (b) that

||v||K,Ω ≤ C||χv||Hk(Ω ≤ Cλk/2||v||L2(Ω) ≤ Cλ
n/2+1

2 ||v||L2(Ω)

and the claim follows.

11.5. The heat equation.

(a) Follows easily from arguments in previous analysis courses.

(b) Note that u(·, t) ∈ L2(Ω) as

||u(·, t)||2L2(U) =
∞∑

n=1
|an|2e−2|λn|t ≤ e−|λ1|t

∞∑
n=1

|an|2

we note that from this follows that

lim
t→∞

||u(·, t)||L2 = 0. (16)

Now for the first claim, we compute directly

||u(·, t) − u0||2L2(U) =
∞∑

n=1
|an|2|eλnt − 1|2 ≤ ϵ+

N∑
n=1

|an|2|eλnt − 1|2

where ϵ > 0 is given and N ∈ N is chosen large enough. We note that
N∑

n=1
|an||eλnt − 1|2 ≤ |eλN t − 1|2

N∑
n=1

|an|2 ≤ |eλN t − 1|2
∞∑

n=1
|an|2 → 0 as t → 0. (17)

where the λn are the eigenvalues of ∆. For the second part let us first prove the claim.

Lemma. If Ω ⊂ Rn is open and bounded and f1, f2... ∈ H1
0 (Ω)⋂C∞(Ω) be the sequence of

eigenfunctions of ∆ which forms an orthonormal basis of L2(Ω). Then let g = ∑∞
n=1 anfn,

show that g ∈ H1
0 (Ω) if and only if

∞∑
n=1

|an|2|λn| < ∞. (18)

Proof. ( =⇒ ) Assume that g ∈ H1
0 (Ω), we have that |λn|−1/2fn forms an orthonormal

basis of H1
0 (Ω). We may thus write

g =
∞∑

n=1
bn|λn|−

1
2fn
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where ||g||H1 = ∑∞
n=1 |bn|2. Since ι : H1

0 (Ω) → L2(Ω) we have g = ∑∞
n=1 bn|λn|− 1

2fn in
L2(Ω) and therefore an = bn|λn|− 1

2 . In particular we have
∞∑

n=1
|an|2|λn| =

∞∑
n=1

< ∞.

For the converse note that ∑∞
n=1 |an|2λn < ∞ implies that the series

∞∑
n=1

||anfn||2H1 < ∞,

and therefore ∑∞
n=1 anfn converges in H1

0 (Ω). This convergence holds in particular when
applying ι and thus it must be equal to g. Thus g ∈ H1

0 (Ω).

Now back to the proof, by the lemma it is enough to show that
∞∑

n=1
|an|2|λn|e2|λn|t (19)

is convergent. Then the series ∑∞
n=1 |an|2 = ||u0||L2(Ω) is convergent, hence (an) is bounded

and ther exists an M > 0 such that
∞∑

n=1
|an|2|λn|e2|λn|t ≤ M

∞∑
n=1

|λn|e2|λn|t.

By the asymptotic formula, there exist C1, C2 > 0 such that

C1n
2
d ≤ |λn|t ≤ C2n

2
d .

This gives us
∞∑

n=1
|λn|e2|λn|t ≤

∞∑
n=1

C2n
2
d e−2C1n

2
d t,

but the latter is convergent as it is exponentially decaying in d as t > 0.

(c) For any compact set K ⊂ Ω we have
∞∑

n=1
|an|e−|λn|t||fn||K,∞ ≪

∞∑
n=1

nκe−2C1n
2
d t,

for some κ > 0, which is again a convergent series as in (b). Since C0(K) is a Banach
space, u is continuous on K. But K was arbirary so u(·, t) is continuous on Ω.
It remains to check that ||u(·, t)||K,∞ → 0 as t → ∞. By the above it suffices to show
that for any κ > 0

b(t) :=
∞∑

n=1
nκe−2C1n

2
d t → 0
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as t → ∞. Note that b is monotonely decreasing and so it suffices to show that for any
ϵ > 0 we can find t ∈ R with b(t) < ϵ. Let N ∈ N be such that

∞∑
n=N

nκe−2C1n
d
2 < ϵ.

Note that for any l ∈ N we have

b(ℓ 2
d ) =

∞∑
n=N

nκe−2C1n
2
d ℓ

2
d

=
∑

m∈N : l|m

(
m

l

)κ

e2C1m
2
d

= ℓ−κ
∑

m∈N : l|m
mκe2C1m

2
d .

which goes to zero as l → ∞.

(d) We recall that the solutoin of exercise 4 consisted of two steps: 1. Estimating the
supremum norm on K by the Hk-norm for some k and
2. Estimating the Hk-norm by the eigenvalue and the L2-norm.

For step 1 we note that we have an inclusion

Hk(Ω) → C l(Ω) (20)

which for k > l + d
2 is fullfilled by the Sobolev embedding theorem. Therefore, one ought

to show that
||∂αf ||K,∞ = ||∂α(χf)||K,∞ ≪ ||χf ||Hk(Ω)

for all χ ∈ C∞
c (Ω) with χ|K ≡ 1 and α with |α| ≤ ℓ. Then applying the statment in

exercise 5 for ℓ and k with ℓ+ d
2 < k ≤ ℓ+ d

2 + 1 verbatim we obtain for |α| ≤ ℓ. Then
applying the statement in exercise 4 with ℓ+ d

2 < k ≤ ℓ+ d
2 + 1 we see that

||∂αf ||K,∞ ≪ ||χf ||Hk(Ω) ≪ |λ|
k
2 ||f ||L2(Ω) ≪ |λ|

d
4 + ℓ

2 + 1
2 ||f ||L2(Ω).

This gives the polynomial rate in the eigenvalue and therefore the partial sums of u(·, t)
converge in Cℓ on K. Which implies smoothness for x. For smoothness in all paramters
we note that the time derivatives of the partial sums of u(·, t) look like

N∑
n=1

anλ
m
n e

λntfn(x). (21)
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