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2.1. An equivalence for closed surjective operators

Let us first prove a) ⇐⇒ b). This follows straight from theorem T.4 in the notes.
We have Im(A) = ⊥ ker(A∗). For a) =⇒ b) notice that if Im(A) = Y then clearly for
all y∗ ∈ ⊥ ker(A∗) it must hold that y∗(y) = 0 for all y ∈ Y . Hahn-Banach will then
immediately leads us to the conclusion that ⊥ ker(A∗) = {0}, i.e. it can only contain the
zero functional, and A∗ is injective. Moreover Im(A∗) is closed as corollary of the Banach
closed range theorem (Im(A) is closed and A is densely defined). For the converse we also
immediately see that if A∗ is injective then ker(A∗) = {0} hence ⊥ ker(A∗) = Y = Im(A)
and A is surjective.
Now we prove b) =⇒ c). If Im(A∗) is closed we know it is Banach as a subspace of
X∗. Thus if A∗ : D(A∗) ⊂ Y ∗ → Im(A∗) is injective, we know that it is invertible as a
map between D(A∗) → Im(A∗) theorem T.11 Thus there exists a C > 0 such that for
A∗ : Im(A∗) → D(A∗) we have

||(A∗)−1x∗||Y ∗ ≤ C||x∗||Y ∗ (1)

and setting c0 = 1
C

and using that x∗ = A∗y∗ for some y∗ gives the result.
Finally to prove c) =⇒ b), notice that A∗ is clearly injective. Now let x∗

k = A∗y∗
k for

k ∈ N be a sequence in Im(A∗) with x∗
k → x∗ as k → ∞. Because of

c0||y∗
k||Y ∗ ≤ ||Ay∗

k||X∗︸ ︷︷ ︸
:=x∗

k

, (2)

we know that y∗
k is Cauchy. Thus let y∗ = limk→∞ y∗

k. We know that A is densely defined
hence A∗ is a closed operator and y∗ ∈ DA∗ .2 We conclude x∗ = A∗y∗ hence Im(A∗) is
closed.

2.2. Self-adjoint extensions of i d
dt

(a) First of all we remark that Aα as an operator on L2(0, 1) is densely defined as D(Aα)
most definitely contains C∞

c (0, 1) which lie dense in L2(0, 1). Second of all we note that
Aα is symmetric on D(Aα) ⊂ L2[0, 1]. This is proven by simple integration by parts: Let

1Originally, I wrote here that it was by the inverse mapping theorem, but this requires D(A∗) to be
complete (i.e. clsoed), which does not necessarily hold...

2Note that we cannot use the well known argument from FA I that Im(A∗) is closed because it
is bounded from below, e.g. as in FA I ex 5.2 d), because A∗ is not necessarily assumed to be
bounded/continuous in this case!
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u, v ∈ D(Aα) then

⟨Aαu, v⟩L2 =
∫ 1

0
i
du
dt

vdt (3)

=
∫ 1

0
i
du

dt
vdt (4)

=
∫ 1

0
−iu

dv

dt
dt + i(u(1)v(1) − u(0)v(0)) (5)

=
∫ 1

0
u

(
i
dv

dt

)
dt +

=1︷ ︸︸ ︷
eiαe−iα u(0)v(0) − u(0)v(0))︸ ︷︷ ︸

=0

(6)

= ⟨u, Aαv⟩L2 . (7)

Thus given that Aα is symmetric and densely defined it makes sense to start considering its
adjoint A∗

α. The easiest way to show self-adjointness is now to show that D(Aα) = D(A∗
α).

Let ϕ ∈ C∞
c ((0, 1)) ⊂ D(Aα) and v ∈ D(A∗

α). Then we have that∫ 1

0
i
dϕ

dt
vdt = ⟨Aαu, v⟩ = ⟨v, A∗

αu⟩ =
∫ 1

0
uA∗

αvdt. (8)

From this it follows immediately that

A∗
αv = i

dv

dt
(9)

weakly in H1(0, 1). Thus this means that for all u ∈ D(Aα) that

⟨u, A∗
αv⟩ =

∫ 1

0
u

(
−i

dv

dt

)
(10)

=
∫ 1

0
i
du

dt
v̄dt (11)

= ⟨Aαu, v⟩ (12)

= i((u(1)v(1) − u(0)v(0)) +
∫ 1

0
uA∗

αvdt (13)

= i((u(1)v(1) − u(0)v(0)) + ⟨u, A∗
αv⟩. (14)

Therefore again, we have that v ∈ D(A∗) if and only if

((u(1)v(1) − u(0)v(0)) = 0. (15)

But u ∈ D(A) by assumption! Hence we have u(1) = eiαu(0), and so for (15) to hold we
have

v(1) = e−iαv(0), (16)
from which we conclude v(1) = eiαv(0). So v ∈ D(A), whence D(Aα) = D(A∗

α).
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(b) Surjectivity of L : H1(0, 1) → C2 given by L(u) = (u(0), u(1)) follows, as clearly the
C∞ function u(x) = ax + b for a, b ∈ C lies in H1(0, 1). Given (z1, z2) ∈ C2 we simply
choose a = z1, b = z2. Intuitively we know of course that H1

0 (0, 1) = C∞
c (0, 1)||·||H1 has to

be the space {u ∈ H1(0, 1) : u(0) = 0 = u(1)}. To prove it however we need use that H1

convergence implies uniform convergence. In particular let ϕn be a sequence in C∞
c (0, 1)

that converges to u in H1
0 (0, 1) (with respect to the H1 norm). Then we have that for

t ∈ [0, 1]

ϕn(t) − ϕm(t) =
∫ t

0
ϕ′

n(t′) − ϕ′
m(t′)dt′ (17)

and therefore

|ϕn(t) − ϕm(t)| ≤
∫ t

0
|ϕ′

n(t′) − ϕ′
m(t′)|dt′. (18)

Taking the supremum, we get

||ϕn(t) − ϕm(t)||∞ = sup
t∈[0,1]

|ϕn(t) − ϕm(t)| (19)

≤ sup
t∈[0,1]

∫ t

0
|ϕ′

n(t′) − ϕ′
m(t′)|dt′ (20)

=
∫ 1

0
|ϕ′

n(t′) − ϕ′
m(t′)|dt′ (21)

= ||ϕ′
n − ϕ′

m||L2 ||1||L2︸ ︷︷ ︸
=1

, (22)

where we use a Cauchy-Schwarz (Hölder) inequality in the last part. Now as ϕn converges
in the H1 norm we have that it is a Cauchy sequence and in particular that ||ϕ′

n−ϕ′
m||L2 →

0 when m, n → ∞. From this it follows that ϕn is a Cauchy sequence in the uniform
norm || · ||∞ and thus it converges, to a continuous function which is u by the uniqueness
of the limit. We find that u(0) = 0 = u(1) and the claim follows. We finally find
that quotient map p : H1(0, 1)/H1

0 (0, 1) → C2 induced by L is an isomorphism, whence
dim(H1(0, 1)/H1

0 (0, 1)) = 2.

(c) From the hint it is immediately clear that neither B0 or B∗
0 are self-adjoint as

D(B0) = H1
0 (0, 1) and D(B∗

0) = H1(0, 1) and H1
0 (0, 1) ̸= H1(0, 1).3 Additionally, know

that for any self-adjoint extension B of B0 we have D(B0) ⊆ D(B) and D(B∗) ⊆ D(B0)
and D(B) = D(B∗). With this and the fact that neither B0 and B∗

0 are strict inequalities
we get the following chain of strict inclusions

H1
0 (0, 1) = D(B0) ⊊ D(B) ⊊ D(B∗

0) = H1(0, 1). (23)
3Actually, this was also discussed in the lecture.
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From this it follows that

dim D(B0)/D(B) < dim D(B∗
0)/D(B) < dim D(B∗

0)/D(B0). (24)

It is clear that dim D(B0)/D(B) = 0 and from part b) we know that dim D(B∗
0)/D(B0) =

2. Therefore it must follow that dim D(B∗
0)/D(B) = 1 and D(B∗

0)/D(B) ∼= C. Let
q : D(B∗

0) → D(B∗)/D(B) be the quotient map. Note that D(B0) ⊂ D(B) = ker q.

Let us now recall4 the universal property of quotients: if we have a groups G and
K and a group homomorphism ϕ : G → K, a normal subgroup H ◁ G satisfying
H ⊆ ker ϕ with quotient map π : G → G/H, then there exists a ϕ̃ : G/H → K such that
the following diagram commutes:

G

G/H K

ϕ
π

ϕ̃

. That is, we have ϕ = ϕ̃ ◦ π

Now in our case we take G = D(B∗
0), K = D(B∗

0)/D(B) and ϕ = q : D(B∗
0) →

D(B∗
0)/D(B). Remember that from the previous exercise we have the induced quotient

map p : H1(0, 1) = D(B∗
0) → H1(0, 1)/H1

0 (0, 1) = D(B∗
0)/D(B0) ∼= C2 given explicitly

by p(u) = (u(0), u(1)). Note that D(B0) ⊂ D(B), so D(B0) ⊂ ker q. Thus we take
H = D(B0) and we deduce the existence of a λ : D(B∗

0)/D(B0) → D(B∗
0)/D(B) such

that the following diagram commutes:

4Yes, we are actually going to use some abstract algebra...
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D(B∗
0)

D(B∗
0)/D(B0)︸ ︷︷ ︸
∼=C2

D(B∗
0)/D(B)︸ ︷︷ ︸
∼=C

q
p

λ

, i.e. we have that
q(u) = λ(p(u)) = λ(u(0), u(1)). (25)

We conclude that

D(B) = ker λ ◦ p

= {u ∈ H1(0, 1) : p(u) ∈ ker λ}
= {u ∈ H1

0 (0, 1) : λ(u(0), u(1)) = 0},

as desired.

(d) We conclude from parts a) to c) that if B is a self-adjoint extension of B0 then

D(B) = {u ∈ H1(0, 1) : λ(u(0), u(1)) = 0}. (26)

As λ is in fact a linear functional from C2 to C this implies that there exists constants
a0, a1 ∈ C such that

D(B) = {u ∈ H1(0, 1) : a0u(0) + a1u(1) = 0}. (27)

Now if a0 = 0 and a1 = 0 we get that D(B) = H1
0 (0, 1), hence B cannot be adjoint. If

WLOG only a0 = 0 we have that D(B) = {u ∈ H1(0, 1) : u(1) = 0}. Integrating by
parts then we see that for v ∈ D(B∗) similar as in example E.8 that for v ∈ D(B)

⟨u, Bv⟩ =
∫ 1

0
uiv′dt

= i(u(1)v(1)︸ ︷︷ ︸
=0

−u(0)v(0)) =
∫ 1

0
iu′v̄dt
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while we also have per definition

⟨u, Bv⟩ = ⟨B∗u, v⟩ =
∫ 1

0
iu′v̄dt. (28)

from which we deduce that for u(0) arbitrary that v(0) = 0, i.e. that v(0) = 0. Therefore
in this case we must have D(B∗) = {u ∈ H1(0, 1) : u(0) = 0}, D(B) ̸= D(B∗) and B
cannot be self-adjoint. Thus assume a0 ̸= 0 and a1 ̸= 0, we then get

D(B) = {u ∈ H1(0, 1) : a0

a1
u(0) + u(1) = 0}. (29)

By a similar integration as above, that

⟨Bu, v⟩ = i(u(1)v(1) − u(0)v(0)) + ⟨u, Bv⟩. (30)

For B to be self-adjoint we want the boundary terms to vanish, we get for u, v ∈ D(B):

u(1)v(1) − u(0)v(0) = 0. (31)

We use
u(1) = −a0

a1
u(0) and v(1) = −a0

a1
v(0) (32)

and thus we have that

u(0)v(0)
(

a0

a1

a0

a1
− 1

)
= u(0)v(0)

(∣∣∣∣a0

a1

∣∣∣∣2 − 1
)

= 0. (33)

This last equation can only hold if for all u, v ∈ D(B) if
∣∣∣a0

a1

∣∣∣ = 1, i.e. −a0
a1

= eiα for some
α. We then conclude that

D(B) = {u ∈ H1(0, 1) : u(1) = eiαu(0)} = D(Aα). (34)

2.3. Spectrum and adjoint of an operator on l2(Z).

(a) Assume (a(m), Aa(m))m∈N converges in the graph of ΓA ⊂ ℓ2(Z) × ℓ2(Z) to some (a, b)
as m → ∞, that is

lim
m→∞

||a(m) − a||ℓ2 = 0 and lim
m→∞

||Aa(m) − b||ℓ2 = 0, (35)

where we denote with || · ||ℓ2 the standard ℓ2-norm

||u||ℓ2 =
∑

n∈Z
|un|2

1/2

(36)
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From the first equality and the fact that convergence in (36) (i.e. absolute convergence)
implies pointwise (entry-wise) convergence we know that for all n ∈ N,

lim
m→∞

|a(m)
n − an| = 0. (37)

Of course from this it follows easily that for each qn ∈ C

lim
m→∞

|qna(m)
n − qnan| = lim

m→∞
|qn||a(m)

n − an| = 0, (38)

from which pointwise convergence follows

lim
m→∞

qna(m)
n = qnan (39)

on the other we have absolute convergence from (35)

lim
m→∞

∑
n∈Z

|qna(m)
n − bn|2

1/2

= 0. (40)

As again absolute convergence in ℓ2 implies pointwise convergence we end up with the
fact

bn = qnan for all n ∈ N. (41)

We conclude b = Aa and that b ∈ ℓ2(Z) by completeness, therefore a ∈ D(A) and we are
done.

Remark 1. The above statement is a specific case of a more general principle that holds,
namely that multiplication operators on measurable spaces are always closed. In particlar
the following holds for 1 ≤ p ≤ ∞: if (X, µ) is a measurable space and m : X → C is a
measurable function then the operator M : Lp(X, µ) → Lp(X, µ) given by

M(f)(x) := m(x)f(x) on D(M) := {f ∈ Lp(X, µ) : m · f ∈ Lp(X, µ)} (42)

is always a closed operator. It might be a fun exercise to prove this more general fact as
well.

(b) First of all (!!!) we need to make sure an adjoint can be well-defined in the first place.
In other words we need to make sure that D is densely defined in ℓ2(Z) as we recall
that in general A∗ is not unique if D(A) is not densely defined. One could conclude this
directly from the fact that c00 ⊂ D lies dense in ℓ2(Z). One could also prove this with
the following reasoning (which can also be applied to general arguments in Lp(X, µ))5:

5Can you think of reason why the former argument fails in L2(R) for multiplication with a measurable
function? I.e. using density of C∞

c (R)?
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assume that D does not lie dense in ℓ2(Z) then dim(D⊥) ≥ 1. Assume that g ∈ D⊥ \ {0},
we then define the sequence h entry-wise as

hn := 1
1 + |qn|2

gn. (43)

Clearly then, we have that h ∈ ℓ2(Z) as 1
1+|qn|2 ≤ 1 for all n ∈ Z and g was assumed to

be in ℓ2(Z). However we also have h ∈ D as |z| ≤ (1 + |z|2) for all z ∈ C, whence

||q · h||2ℓ2 =
∑
n∈Z

|qn|2

(1 + |qn|2)2 |gn|2 ≤
∑
n∈Z

|gn|2 = ||g||ℓ2 < ∞. (44)

Now combining this with the fact that g ∈ D⊥, we find that

0 = ⟨g, h⟩ℓ2 =
∑
n∈Z

1
1 + |qn|2

|gn|2, (45)

from which we conclude that gn = 0 for all n ∈ N, leading to a contradiction.

The adjoint of A determined through the equation (Ax, y)ℓ2 = (x, A∗y)ℓ2 for x, y ∈ ℓ2(Z).
From this we derive that

(Ax, y)ℓ2 =
∑
n∈Z

(qnan)bn =
∑
n∈Z

an(qnbn) = (x, A∗y)ℓ2 . (46)

From this it readily follows that the action of A∗ should be given with by

A∗yn = qnyn for all y ∈ ℓ2(Z)∗ = ℓ2(Z), (47)

clearly with domain

D(A∗) = {a ∈ ℓ2(Z) : (qnan)n∈Z ∈ ℓ2(Z)}, (48)

because when we set zn = qnan for all n ∈ Z we have (zn)n∈Z ∈ ℓ2(Z) and clearly

(x, A∗y)ℓ2 = (x, z)ℓ2 for all x ∈ D. (49)

The final statement, namely that A is self-adjoint, if (qn)n∈Z ⊂ R follows immediately
from (46) and the fact that qn = qn for all n ∈ Z.

(c) It is a general known fact that the spectrum σ(A) is a closed set (see FA I, lecture
12)6. Clearly we know that the ei ∈ ℓ2(Z) given by

(ei
n)n∈Z = δin (50)

6For perhaps a more concrete proof of this fact you can argue that the resolvent set is open by expanding
in a Neumann series
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are eigenvectors of A with eigenvalue qi ∈ C

Aei = qie
i. (51)

Therefore the entries of q must be part of the point spectrum of A and we know that

{qn|n ∈ Z} ⊆ σ(A). (52)

We claim that in fact equality holds. Let λ ∈ C\{qn : n ∈ Z}. Then clearly (λ1−A)−1 :
ℓ2(Z) → ℓ2(Z) is given directly by

A−1an := 1
λ − qn

an, (53)

and it is bounded as
C = inf

n∈Z
|λ − qn| > 0 (54)

implies

||A−1an||ℓ2 =
∑
n∈Z

(
1

|λ − qn|2
|an|2

)1/2

≤ 1
C

||a||ℓ2 . (55)

From which we conclude that λ /∈ σ(A).

2.4. The adjoint operator is always closed

Let V : H × H ∈ H → H × H be given as in the hint, i.e. V (x, y) = (−y, x). Clearly V
is an isometric isomorphism. We will now show that ΓA∗ = (V (ΓA))⊥.
For ΓA∗ ⊆ [V (ΓA)]⊥ we not that

ΓA∗ = {(x, A∗x) ∈ H × H : x ∈ D(A∗)}, 7 (56)

Thus if x ∈ D(A∗) and y ∈ D(A), and letting ⟨·, ·⟩H induce the scalar product on H × H
we have

⟨(x, A∗x), V (y, Ay)⟩H×H = ⟨(x, A∗x), (−Ay, y)⟩H×H (57)
= ⟨x, −Ay⟩H + ⟨A∗x, y⟩H (58)
= −⟨x, Ay⟩H + ⟨x, Ay⟩H = 0. (59)

To see that [V (ΓA]⊥ ⊆ ΓA∗ , let (x, y) ∈ (V (ΓA))⊥. Then if z ∈ D(A) we have

0 = ⟨(x, y), (−A(z), z)⟩H×H = −⟨x, A(z)⟩H + ⟨y, z⟩H . (60)

Therefore ⟨A(z), x⟩H = ⟨z, y⟩H . Therefore for x ∈ H there exists a y ∈ H such that
A∗(x) = l∗

y = ⟨·, y⟩H . We conclude x ∈ D(A∗) and we are done. The statement that an
adjoint operator is always closed now follows from closedness of annihilator sets.

7Note that we identify H∗ with itself using Riesz representation theorem, hence dropping the x∗

notation.
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