## 2.1. An equivalence for closed surjective operators

Let us first prove  $a) \iff b$ ). This follows straight from theorem T.4 in the notes. We have  $\operatorname{Im}(A) = {}^{\perp} \operatorname{ker}(A^*)$ . For  $a) \implies b$ ) notice that if  $\operatorname{Im}(A) = Y$  then clearly for all  $y^* \in {}^{\perp} \operatorname{ker}(A^*)$  it must hold that  $y^*(y) = 0$  for all  $y \in Y$ . Hahn-Banach will then immediately leads us to the conclusion that  ${}^{\perp} \operatorname{ker}(A^*) = \{0\}$ , i.e. it can only contain the zero functional, and  $A^*$  is injective. Moreover  $\operatorname{Im}(A^*)$  is closed as corollary of the Banach closed range theorem ( $\operatorname{Im}(A)$  is closed and A is densely defined). For the converse we also immediately see that if  $A^*$  is injective then  $\operatorname{ker}(A^*) = \{0\}$  hence  ${}^{\perp} \operatorname{ker}(A^*) = Y = \operatorname{Im}(A)$ and A is surjective.

Now we prove  $b) \implies c$ ). If  $\operatorname{Im}(A^*)$  is closed we know it is Banach as a subspace of  $X^*$ . Thus if  $A^* : D(A^*) \subset Y^* \to \operatorname{Im}(A^*)$  is injective, we know that it is invertible as a map between  $D(A^*) \to \operatorname{Im}(A^*)$  theorem  $T.1^1$  Thus there exists a C > 0 such that for  $A^* : \operatorname{Im}(A^*) \to D(A^*)$  we have

$$||(A^*)^{-1}x^*||_{Y^*} \le C||x^*||_{Y^*} \tag{1}$$

and setting  $c_0 = \frac{1}{C}$  and using that  $x^* = A^* y^*$  for some  $y^*$  gives the result. Finally to prove  $c) \implies b$ , notice that  $A^*$  is clearly injective. Now let  $x_k^* = A^* y_k^*$  for  $k \in \mathbb{N}$  be a sequence in  $\text{Im}(A^*)$  with  $x_k^* \to x^*$  as  $k \to \infty$ . Because of

$$c_0||y_k^*||_{Y^*} \le \underbrace{||Ay_k^*||_{X^*}}_{:=x_k^*},\tag{2}$$

we know that  $y_k^*$  is Cauchy. Thus let  $y^* = \lim_{k\to\infty} y_k^*$ . We know that A is densely defined hence  $A^*$  is a closed operator and  $y^* \in D_{A^*}$ .<sup>2</sup> We conclude  $x^* = A^*y^*$  hence  $\operatorname{Im}(A^*)$  is closed.

## 2.2. Self-adjoint extensions of $i\frac{\mathrm{d}}{\mathrm{d}t}$

(a) First of all we remark that  $A_{\alpha}$  as an operator on  $L^2(0,1)$  is densely defined as  $D(A_{\alpha})$  most definitely contains  $C_c^{\infty}(0,1)$  which lie dense in  $L^2(0,1)$ . Second of all we note that  $A_{\alpha}$  is symmetric on  $D(A_{\alpha}) \subset L^2[0,1]$ . This is proven by simple integration by parts: Let

<sup>&</sup>lt;sup>1</sup>Originally, I wrote here that it was by the inverse mapping theorem, but this requires  $D(A^*)$  to be complete (i.e. clsoed), which does not necessarily hold...

<sup>&</sup>lt;sup>2</sup>Note that we cannot use the well known argument from FA I that  $Im(A^*)$  is closed because it is bounded from below, e.g. as in FA I ex 5.2 d), because  $A^*$  is not necessarily assumed to be bounded/continuous in this case!

 $u, v \in D(A_{\alpha})$  then

$$\langle A_{\alpha}u,v\rangle_{L^{2}} = \int_{0}^{1} i\frac{\mathrm{d}u}{\mathrm{d}t}\overline{v}dt \tag{3}$$

$$= \int_{0}^{1} i \frac{\mathrm{d}u}{\mathrm{d}t} \overline{v} dt \tag{4}$$

$$= \int_{0}^{1} -iu \frac{\mathrm{d}v}{\mathrm{d}t} dt + i(u(1)\overline{v(1)} - u(0)\overline{v(0)})$$
(5)

$$= \int_{0}^{1} u \overline{\left(i\frac{\mathrm{d}v}{\mathrm{d}t}\right)} dt + \underbrace{e^{i\alpha}e^{-i\alpha}}_{=0} u(0)\overline{v(0)} - u(0)\overline{v(0)})_{=0}$$
(6)

$$= \langle u, A_{\alpha}v \rangle_{L^2}. \tag{7}$$

Thus given that  $A_{\alpha}$  is symmetric and densely defined it makes sense to start considering its adjoint  $A_{\alpha}^*$ . The easiest way to show self-adjointness is now to show that  $D(A_{\alpha}) = D(A_{\alpha}^*)$ . Let  $\phi \in C_c^{\infty}((0,1)) \subset D(A_{\alpha})$  and  $v \in D(A_{\alpha}^*)$ . Then we have that

$$\int_0^1 i \frac{\mathrm{d}\phi}{\mathrm{d}t} \overline{v} dt = \langle A_\alpha u, v \rangle = \langle v, A_\alpha^* u \rangle = \int_0^1 u \overline{A_\alpha^* v} dt.$$
(8)

From this it follows immediately that

$$A_{\alpha}^* v = i \frac{\mathrm{d}v}{\mathrm{d}t} \tag{9}$$

weakly in  $H^1(0,1)$ . Thus this means that for all  $u \in D(A_\alpha)$  that

$$\langle u, A_{\alpha}^* v \rangle = \int_0^1 u \left( -i \frac{\mathrm{d}v}{\mathrm{d}t} \right) \tag{10}$$

$$= \int_0^1 i \frac{\mathrm{d}u}{\mathrm{d}t} \bar{v} dt \tag{11}$$

$$= \langle A_{\alpha}u, v \rangle \tag{12}$$

$$= i((u(1)\overline{v(1)} - u(0)\overline{v(0)}) + \int_0^1 u\overline{A^*_{\alpha}v}dt$$
(13)

$$= i((u(1)\overline{v(1)} - u(0)\overline{v(0)}) + \langle u, A^*_{\alpha}v \rangle.$$
(14)

Therefore again, we have that  $v \in D(A^*)$  if and only if

$$((u(1)\overline{v(1)} - u(0)\overline{v(0)}) = 0.$$
(15)

But  $u \in D(A)$  by assumption! Hence we have  $u(1) = e^{i\alpha}u(0)$ , and so for (15) to hold we have

$$\overline{v(1)} = e^{-i\alpha}\overline{v(0)},\tag{16}$$

from which we conclude  $v(1) = e^{i\alpha}v(0)$ . So  $v \in D(A)$ , whence  $D(A_{\alpha}) = D(A_{\alpha}^*)$ .

last update: 30 July 2023

(b) Surjectivity of  $L: H^1(0,1) \to \mathbb{C}^2$  given by L(u) = (u(0), u(1)) follows, as clearly the  $C^{\infty}$  function u(x) = ax + b for  $a, b \in \mathbb{C}$  lies in  $H^1(0,1)$ . Given  $(z_1, z_2) \in \mathbb{C}^2$  we simply choose  $a = z_1, b = z_2$ . Intuitively we know of course that  $H_0^1(0,1) = \overline{C_c^{\infty}(0,1)}^{\|\cdot\|_{H^1}}$  has to be the space  $\{u \in H^1(0,1): u(0) = 0 = u(1)\}$ . To prove it however we need use that  $H^1$  convergence implies uniform convergence. In particular let  $\phi_n$  be a sequence in  $C_c^{\infty}(0,1)$  that converges to u in  $H_0^1(0,1)$  (with respect to the  $H^1$  norm). Then we have that for  $t \in [0,1]$ 

$$\phi_n(t) - \phi_m(t) = \int_0^t \phi'_n(t') - \phi'_m(t')dt'$$
(17)

and therefore

$$|\phi_n(t) - \phi_m(t)| \le \int_0^t |\phi'_n(t') - \phi'_m(t')| dt'.$$
(18)

Taking the supremum, we get

$$||\phi_n(t) - \phi_m(t)||_{\infty} = \sup_{t \in [0,1]} |\phi_n(t) - \phi_m(t)|$$
(19)

$$\leq \sup_{t \in [0,1]} \int_0^t |\phi'_n(t') - \phi'_m(t')| dt'$$
(20)

$$= \int_0^1 |\phi'_n(t') - \phi'_m(t')| dt'$$
(21)

$$= ||\phi'_n - \phi'_m||_{L^2} \underbrace{||1||_{L^2}}_{=1}, \tag{22}$$

where we use a Cauchy-Schwarz (Hölder) inequality in the last part. Now as  $\phi_n$  converges in the  $H^1$  norm we have that it is a Cauchy sequence and in particular that  $||\phi'_n - \phi'_m||_{L^2} \rightarrow 0$  when  $m, n \rightarrow \infty$ . From this it follows that  $\phi_n$  is a Cauchy sequence in the uniform norm  $|| \cdot ||_{\infty}$  and thus it converges, to a continuous function which is u by the uniqueness of the limit. We find that u(0) = 0 = u(1) and the claim follows. We finally find that quotient map  $p: H^1(0,1)/H^1_0(0,1) \rightarrow \mathbb{C}^2$  induced by L is an isomorphism, whence  $\dim(H^1(0,1)/H^1_0(0,1)) = 2.$ 

(c) From the hint it is immediately clear that neither  $B_0$  or  $B_0^*$  are self-adjoint as  $D(B_0) = H_0^1(0, 1)$  and  $D(B_0^*) = H^1(0, 1)$  and  $H_0^1(0, 1) \neq H^1(0, 1)$ .<sup>3</sup> Additionally, know that for any self-adjoint extension B of  $B_0$  we have  $D(B_0) \subseteq D(B)$  and  $D(B^*) \subseteq D(B_0)$  and  $D(B) = D(B^*)$ . With this and the fact that neither  $B_0$  and  $B_0^*$  are strict inequalities we get the following chain of strict inclusions

$$H_0^1(0,1) = D(B_0) \subsetneq D(B) \subsetneq D(B_0^*) = H^1(0,1).$$
(23)

last update: 30 July 2023

 $<sup>^{3}</sup>$ Actually, this was also discussed in the lecture.

ETH Zürich Spring 2023

From this it follows that

$$\dim D(B_0)/D(B) < \dim D(B_0^*)/D(B) < \dim D(B_0^*)/D(B_0).$$
(24)

It is clear that dim  $D(B_0)/D(B) = 0$  and from part b) we know that dim  $D(B_0^*)/D(B_0) = 2$ . 2. Therefore it must follow that dim  $D(B_0^*)/D(B) = 1$  and  $D(B_0^*)/D(B) \cong \mathbb{C}$ . Let  $q: D(B_0^*) \to D(B^*)/D(B)$  be the quotient map. Note that  $D(B_0) \subset D(B) = \ker q$ .

Let us now recall<sup>4</sup> the universal property of quotients: if we have a groups G and K and a group homomorphism  $\phi : G \to K$ , a normal subgroup  $H \triangleleft G$  satisfying  $H \subseteq \ker \phi$  with quotient map  $\pi : G \to G/H$ , then there exists a  $\tilde{\phi} : G/H \to K$  such that the following diagram commutes:



. That is, we have  $\phi = \tilde{\phi} \circ \pi$ 

Now in our case we take  $G = D(B_0^*)$ ,  $K = D(B_0^*)/D(B)$  and  $\phi = q : D(B_0^*) \to D(B_0^*)/D(B)$ . Remember that from the previous exercise we have the induced quotient map  $p: H^1(0,1) = D(B_0^*) \to H^1(0,1)/H_0^1(0,1) = D(B_0^*)/D(B_0) \cong \mathbb{C}^2$  given explicitly by p(u) = (u(0), u(1)). Note that  $D(B_0) \subset D(B)$ , so  $D(B_0) \subset \ker q$ . Thus we take  $H = D(B_0)$  and we deduce the existence of a  $\lambda : D(B_0^*)/D(B_0) \to D(B_0^*)/D(B)$  such that the following diagram commutes:

 $<sup>^4\</sup>mathrm{Yes},$  we are actually going to use some abstract algebra...



, i.e. we have that

$$q(u) = \lambda(p(u)) = \lambda(u(0), u(1)).$$
(25)

We conclude that

$$D(B) = \ker \lambda \circ p$$
  
= { $u \in H^1(0, 1) : p(u) \in \ker \lambda$ }  
= { $u \in H^1_0(0, 1) : \lambda(u(0), u(1)) = 0$ },

as desired.

(d) We conclude from parts a) to c) that if B is a self-adjoint extension of  $B_0$  then

$$D(B) = \{ u \in H^1(0,1) : \lambda(u(0), u(1)) = 0 \}.$$
(26)

As  $\lambda$  is in fact a linear functional from  $\mathbb{C}^2$  to  $\mathbb{C}$  this implies that there exists constants  $a_0, a_1 \in \mathbb{C}$  such that

$$D(B) = \{ u \in H^1(0,1) : a_0 u(0) + a_1 u(1) = 0 \}.$$
 (27)

Now if  $a_0 = 0$  and  $a_1 = 0$  we get that  $D(B) = H_0^1(0, 1)$ , hence B cannot be adjoint. If WLOG only  $a_0 = 0$  we have that  $D(B) = \{u \in H^1(0, 1) : u(1) = 0\}$ . Integrating by parts then we see that for  $v \in D(B^*)$  similar as in example E.8 that for  $v \in D(B)$ 

$$\begin{aligned} \langle u, Bv \rangle &= \int_0^1 u \overline{iv'} dt \\ &= i(\underbrace{u(1)\overline{v(1)}}_{=0} - u(0)\overline{v(0)}) = \int_0^1 i u' \overline{v} dt \end{aligned}$$

last update: 30 July 2023

while we also have per definition

$$\langle u, Bv \rangle = \langle B^*u, v \rangle = \int_0^1 i u' \bar{v} dt.$$
 (28)

from which we deduce that for u(0) arbitrary that  $\overline{v(0)} = 0$ , i.e. that v(0) = 0. Therefore in this case we must have  $D(B^*) = \{u \in H^1(0,1) : u(0) = 0\}, D(B) \neq D(B^*)$  and Bcannot be self-adjoint. Thus assume  $a_0 \neq 0$  and  $a_1 \neq 0$ , we then get

$$D(B) = \{ u \in H^1(0,1) : \frac{a_0}{a_1}u(0) + u(1) = 0 \}.$$
 (29)

By a similar integration as above, that

$$\langle Bu, v \rangle = i(u(1)\overline{v(1)} - u(0)\overline{v(0)}) + \langle u, Bv \rangle.$$
(30)

For B to be self-adjoint we want the boundary terms to vanish, we get for  $u, v \in D(B)$ :

$$u(1)\overline{v(1)} - u(0)\overline{v(0)} = 0.$$
(31)

We use

$$u(1) = -\frac{a_0}{a_1}u(0) \text{ and } \overline{v(1)} = -\frac{\overline{a_0}}{\overline{a_1}}\overline{v(0)}$$
(32)

and thus we have that

$$u(0)\overline{v(0)}\left(\frac{a_0}{a_1}\frac{\overline{a_0}}{\overline{a_1}} - 1\right) = u(0)\overline{v(0)}\left(\left|\frac{a_0}{a_1}\right|^2 - 1\right) = 0.$$
(33)

This last equation can only hold if for all  $u, v \in D(B)$  if  $\left|\frac{a_0}{a_1}\right| = 1$ , i.e.  $-\frac{a_0}{a_1} = e^{i\alpha}$  for some  $\alpha$ . We then conclude that

$$D(B) = \{ u \in H^1(0,1) : u(1) = e^{i\alpha}u(0) \} = D(A_{\alpha}).$$
(34)

## **2.3.** Spectrum and adjoint of an operator on $l^2(\mathbb{Z})$ .

(a) Assume  $(a^{(m)}, Aa^{(m)})_{m \in \mathbb{N}}$  converges in the graph of  $\Gamma_A \subset \ell^2(\mathbb{Z}) \times \ell^2(\mathbb{Z})$  to some (a, b) as  $m \to \infty$ , that is

$$\lim_{m \to \infty} ||a^{(m)} - a||_{\ell^2} = 0 \text{ and } \lim_{m \to \infty} ||Aa^{(m)} - b||_{\ell^2} = 0,$$
(35)

where we denote with  $|| \cdot ||_{\ell^2}$  the standard  $\ell^2$ -norm

$$||u||_{\ell^2} = \left(\sum_{n \in \mathbb{Z}} |u_n|^2\right)^{1/2}$$
(36)

last update: 30 July 2023

From the first equality and the fact that convergence in (36) (i.e. absolute convergence) implies pointwise (entry-wise) convergence we know that for all  $n \in \mathbb{N}$ ,

$$\lim_{m \to \infty} |a_n^{(m)} - a_n| = 0.$$
(37)

Of course from this it follows easily that for each  $q_n \in \mathbb{C}$ 

$$\lim_{m \to \infty} |q_n a_n^{(m)} - q_n a_n| = \lim_{m \to \infty} |q_n| |a_n^{(m)} - a_n| = 0,$$
(38)

from which pointwise convergence follows

$$\lim_{m \to \infty} q_n a_n^{(m)} = q_n a_n \tag{39}$$

on the other we have absolute convergence from (35)

$$\lim_{m \to \infty} \left( \sum_{n \in \mathbb{Z}} |q_n a_n^{(m)} - b_n|^2 \right)^{1/2} = 0.$$
 (40)

As again absolute convergence in  $\ell^2$  implies pointwise convergence we end up with the fact

$$b_n = q_n a_n \text{ for all } n \in \mathbb{N}.$$
(41)

We conclude b = Aa and that  $b \in \ell^2(\mathbb{Z})$  by completeness, therefore  $a \in D(A)$  and we are done.

**Remark 1.** The above statement is a specific case of a more general principle that holds, namely that multiplication operators on measurable spaces are always closed. In particlar the following holds for  $1 \le p \le \infty$ : if  $(X, \mu)$  is a measurable space and  $m : X \to \mathbb{C}$  is a measurable function then the operator  $M : \mathcal{L}^p(X, \mu) \to \mathcal{L}^p(X, \mu)$  given by

$$M(f)(x) := m(x)f(x) \text{ on } D(M) := \{ f \in \mathcal{L}^p(X,\mu) : m \cdot f \in \mathcal{L}^p(X,\mu) \}$$
(42)

is always a closed operator. It might be a fun exercise to prove this more general fact as well.

(b) First of all (!!!) we need to make sure an adjoint can be well-defined in the first place. In other words we need to make sure that D is densely defined in  $\ell^2(\mathbb{Z})$  as we recall that in general  $A^*$  is *not* unique if D(A) is not densely defined. One could conclude this directly from the fact that  $c_{00} \subset D$  lies dense in  $\ell^2(\mathbb{Z})$ . One could also prove this with the following reasoning (which can also be applied to general arguments in  $\mathcal{L}^p(X,\mu)$ )<sup>5</sup>:

<sup>&</sup>lt;sup>5</sup>Can you think of reason why the former argument fails in  $L^2(\mathbb{R})$  for multiplication with a measurable function? I.e. using density of  $C_c^{\infty}(\mathbb{R})$ ?

assume that D does not lie dense in  $\ell^2(\mathbb{Z})$  then  $\dim(D^{\perp}) \geq 1$ . Assume that  $g \in D^{\perp} \setminus \{0\}$ , we then define the sequence h entry-wise as

$$h_n := \frac{1}{1 + |q_n|^2} \overline{g}_n.$$
(43)

Clearly then, we have that  $h \in \ell^2(\mathbb{Z})$  as  $\frac{1}{1+|q_n|^2} \leq 1$  for all  $n \in \mathbb{Z}$  and g was assumed to be in  $\ell^2(\mathbb{Z})$ . However we also have  $h \in D$  as  $|z| \leq (1+|z|^2)$  for all  $z \in \mathbb{C}$ , whence

$$||q \cdot h||_{\ell^2}^2 = \sum_{n \in \mathbb{Z}} \frac{|q_n|^2}{(1+|q_n|^2)^2} |g_n|^2 \le \sum_{n \in \mathbb{Z}} |g_n|^2 = ||g||_{\ell^2} < \infty.$$
(44)

Now combining this with the fact that  $g \in D^{\perp}$ , we find that

$$0 = \langle g, h \rangle_{\ell^2} = \sum_{n \in \mathbb{Z}} \frac{1}{1 + |q_n|^2} |g_n|^2, \tag{45}$$

from which we conclude that  $g_n = 0$  for all  $n \in \mathbb{N}$ , leading to a contradiction.

The adjoint of A determined through the equation  $(Ax, y)_{\ell^2} = (x, A^*y)_{\ell^2}$  for  $x, y \in \ell^2(\mathbb{Z})$ . From this we derive that

$$(Ax, y)_{\ell^2} = \sum_{n \in \mathbb{Z}} (q_n a_n) \overline{b_n} = \sum_{n \in \mathbb{Z}} a_n \overline{(\overline{q_n} b_n)} = (x, A^* y)_{\ell^2}.$$
 (46)

From this it readily follows that the action of  $A^*$  should be given with by

$$A^* y_n = \overline{q_n} y_n \text{ for all } y \in \ell^2(\mathbb{Z})^* = \ell^2(\mathbb{Z}),$$
(47)

clearly with domain

$$D(A^*) = \{ a \in \ell^2(\mathbb{Z}) : (\overline{q_n} a_n)_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z}) \},$$
(48)

because when we set  $z_n = \overline{q_n} a_n$  for all  $n \in \mathbb{Z}$  we have  $(z_n)_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z})$  and clearly

$$(x, A^*y)_{\ell^2} = (x, z)_{\ell^2} \text{ for all } x \in D.$$
 (49)

The final statement, namely that A is self-adjoint, if  $(q_n)_{n \in \mathbb{Z}} \subset \mathbb{R}$  follows immediately from (46) and the fact that  $\overline{q_n} = q_n$  for all  $n \in \mathbb{Z}$ .

(c) It is a general known fact that the spectrum  $\sigma(A)$  is a closed set (see FA I, lecture 12)<sup>6</sup>. Clearly we know that the  $e^i \in \ell^2(\mathbb{Z})$  given by

$$(e_n^i)_{n\in\mathbb{Z}} = \delta_{in} \tag{50}$$

 $<sup>^6{\</sup>rm For}$  perhaps a more concrete proof of this fact you can argue that the resolvent set is open by expanding in a Neumann series

are eigenvectors of A with eigenvalue  $q_i \in \mathbb{C}$ 

$$Ae^i = q_i e^i. (51)$$

Therefore the entries of q must be part of the point spectrum of A and we know that

$$\overline{\{q_n | n \in \mathbb{Z}\}} \subseteq \sigma(A).$$
(52)

We claim that in fact equality holds. Let  $\lambda \in \mathbb{C} \setminus \overline{\{q_n : n \in \mathbb{Z}\}}$ . Then clearly  $(\lambda \mathbf{1} - A)^{-1}$ :  $\ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$  is given directly by

$$A^{-1}a_n := \frac{1}{\lambda - q_n} a_n,\tag{53}$$

and it is bounded as

$$C = \inf_{n \in \mathbb{Z}} |\lambda - q_n| > 0 \tag{54}$$

implies

$$||A^{-1}a_n||_{\ell^2} = \sum_{n \in \mathbb{Z}} \left( \frac{1}{|\lambda - q_n|^2} |a_n|^2 \right)^{1/2} \le \frac{1}{C} ||a||_{\ell^2}.$$
(55)

From which we conclude that  $\lambda \notin \sigma(A)$ .

## 2.4. The adjoint operator is *always* closed

Let  $V : H \times H \in H \to H \times H$  be given as in the hint, i.e. V(x, y) = (-y, x). Clearly V is an isometric isomorphism. We will now show that  $\Gamma_{A^*} = (V(\Gamma_A))^{\perp}$ . For  $\Gamma_{A^*} \subseteq [V(\Gamma_A)]^{\perp}$  we not that

$$\Gamma_{A^*} = \{ (x, A^* x) \in H \times H : x \in D(A^*) \},^7$$
(56)

Thus if  $x \in D(A^*)$  and  $y \in D(A)$ , and letting  $\langle \cdot, \cdot \rangle_H$  induce the scalar product on  $H \times H$  we have

$$\langle (x, A^*x), V(y, Ay) \rangle_{H \times H} = \langle (x, A^*x), (-Ay, y) \rangle_{H \times H}$$
(57)

$$= \langle x, -Ay \rangle_H + \langle A^*x, y \rangle_H \tag{58}$$

$$= -\langle x, Ay \rangle_H + \langle x, Ay \rangle_H = 0.$$
(59)

To see that  $[V(\Gamma_A]^{\perp} \subseteq \Gamma_{A^*}$ , let  $(x, y) \in (V(\Gamma_A))^{\perp}$ . Then if  $z \in D(A)$  we have

$$0 = \langle (x, y), (-A(z), z) \rangle_{H \times H} = -\langle x, A(z) \rangle_{H} + \langle y, z \rangle_{H}.$$
(60)

Therefore  $\langle A(z), x \rangle_H = \langle z, y \rangle_H$ . Therefore for  $x \in H$  there exists a  $y \in H$  such that  $A^*(x) = l_y^* = \langle \cdot, y \rangle_H$ . We conclude  $x \in D(A^*)$  and we are done. The statement that an adjoint operator is always closed now follows from closedness of annihilator sets.

 $<sup>^7\</sup>mathrm{Note}$  that we identify  $H^*$  with itself using Riesz representation theorem, hence dropping the  $x^*$  notation.