2.1. An equivalence for closed surjective operators

Let us first prove $a) \Longleftrightarrow b$). This follows straight from theorem $T .4$ in the notes. We have $\operatorname{Im}(A)={ }^{\perp} \operatorname{ker}\left(A^{*}\right)$. For $\left.\left.a\right) \Longrightarrow b\right)$ notice that if $\operatorname{Im}(A)=Y$ then clearly for all $y^{*} \in{ }^{\perp} \operatorname{ker}\left(A^{*}\right)$ it must hold that $y^{*}(y)=0$ for all $y \in Y$. Hahn-Banach will then immediately leads us to the conclusion that ${ }^{\perp} \operatorname{ker}\left(A^{*}\right)=\{0\}$, i.e. it can only contain the zero functional, and A^{*} is injective. Moreover $\operatorname{Im}\left(A^{*}\right)$ is closed as corollary of the Banach closed range theorem $(\operatorname{Im}(A)$ is closed and A is densely defined). For the converse we also immediately see that if A^{*} is injective then $\operatorname{ker}\left(A^{*}\right)=\{0\}$ hence ${ }^{\perp} \operatorname{ker}\left(A^{*}\right)=Y=\operatorname{Im}(A)$ and A is surjective.
Now we prove $b) \Longrightarrow c$). If $\operatorname{Im}\left(A^{*}\right)$ is closed we know it is Banach as a subspace of X^{*}. Thus if $A^{*}: D\left(A^{*}\right) \subset Y^{*} \rightarrow \operatorname{Im}\left(A^{*}\right)$ is injective, we know that it is invertible as a map between $D\left(A^{*}\right) \rightarrow \operatorname{Im}\left(A^{*}\right)$ theorem $T .1^{1}$ Thus there exists a $C>0$ such that for $A^{*}: \operatorname{Im}\left(A^{*}\right) \rightarrow D\left(A^{*}\right)$ we have

$$
\begin{equation*}
\left\|\left(A^{*}\right)^{-1} x^{*}\right\|_{Y^{*}} \leq C\left\|x^{*}\right\|_{Y^{*}} \tag{1}
\end{equation*}
$$

and setting $c_{0}=\frac{1}{C}$ and using that $x^{*}=A^{*} y^{*}$ for some y^{*} gives the result.
Finally to prove $c) \Longrightarrow b$), notice that A^{*} is clearly injective. Now let $x_{k}^{*}=A^{*} y_{k}^{*}$ for $k \in \mathbb{N}$ be a sequence in $\operatorname{Im}\left(A^{*}\right)$ with $x_{k}^{*} \rightarrow x^{*}$ as $k \rightarrow \infty$. Because of

$$
\begin{equation*}
c_{0}\left\|y_{k}^{*}\right\|_{Y^{*}} \leq \underbrace{\left\|A y_{k}^{*}\right\|_{X^{*}}}_{:=x_{k}^{*}}, \tag{2}
\end{equation*}
$$

we know that y_{k}^{*} is Cauchy. Thus let $y^{*}=\lim _{k \rightarrow \infty} y_{k}^{*}$. We know that A is densely defined hence A^{*} is a closed operator and $y^{*} \in D_{A^{*}}{ }^{2}$ We conclude $x^{*}=A^{*} y^{*}$ hence $\operatorname{Im}\left(A^{*}\right)$ is closed.

2.2. Self-adjoint extensions of $i \frac{\mathrm{~d}}{\mathrm{~d} t}$

(a) First of all we remark that A_{α} as an operator on $L^{2}(0,1)$ is densely defined as $D\left(A_{\alpha}\right)$ most definitely contains $C_{c}^{\infty}(0,1)$ which lie dense in $L^{2}(0,1)$. Second of all we note that A_{α} is symmetric on $D\left(A_{\alpha}\right) \subset L^{2}[0,1]$. This is proven by simple integration by parts: Let

[^0]Functional Analysis II
Solution to Problem Set 2

ETH Zürich
Spring 2023
$u, v \in D\left(A_{\alpha}\right)$ then

$$
\begin{align*}
\left\langle A_{\alpha} u, v\right\rangle_{L^{2}} & =\int_{0}^{1} i \frac{\mathrm{du}}{\mathrm{~d} t} \bar{v} d t \tag{3}\\
& =\int_{0}^{1} i \frac{\mathrm{~d} u}{\mathrm{~d} t} \bar{v} d t \tag{4}\\
& =\int_{0}^{1}-i u \overline{\mathrm{~d} v} \mathrm{~d} t t+i(u(1) \overline{v(1)}-u(0) \overline{v(0)}) \tag{5}\\
& =\int_{0}^{1} u \overline{\left(i \frac{\mathrm{~d} v}{\mathrm{~d} t}\right)} d t+\underbrace{\overbrace{e^{i \alpha} e^{-i \alpha}}^{=1} u(0) \bar{v}(0)-u(0) \overline{v(0)})}_{=0} \tag{6}\\
& =\left\langle u, A_{\alpha} v\right\rangle_{L^{2}} . \tag{7}
\end{align*}
$$

Thus given that A_{α} is symmetric and densely defined it makes sense to start considering its adjoint A_{α}^{*}. The easiest way to show self-adjointness is now to show that $D\left(A_{\alpha}\right)=D\left(A_{\alpha}^{*}\right)$. Let $\phi \in C_{c}^{\infty}((0,1)) \subset D\left(A_{\alpha}\right)$ and $v \in D\left(A_{\alpha}^{*}\right)$. Then we have that

$$
\begin{equation*}
\int_{0}^{1} i \frac{\mathrm{~d} \phi}{\mathrm{~d} t} \bar{v} d t=\left\langle A_{\alpha} u, v\right\rangle=\left\langle v, A_{\alpha}^{*} u\right\rangle=\int_{0}^{1} u \overline{A_{\alpha}^{*} v} d t \tag{8}
\end{equation*}
$$

From this it follows immediately that

$$
\begin{equation*}
A_{\alpha}^{*} v=i \frac{\mathrm{~d} v}{\mathrm{~d} t} \tag{9}
\end{equation*}
$$

weakly in $H^{1}(0,1)$. Thus this means that for all $u \in D\left(A_{\alpha}\right)$ that

$$
\begin{align*}
\left\langle u, A_{\alpha}^{*} v\right\rangle & =\int_{0}^{1} u\left(-i \frac{\mathrm{~d} v}{\mathrm{~d} t}\right) \tag{10}\\
& =\int_{0}^{1} i \frac{\mathrm{~d} u}{\mathrm{~d} t} \bar{v} d t \tag{11}\\
& =\left\langle A_{\alpha} u, v\right\rangle \tag{12}\\
& =i\left((u(1) \overline{v(1)}-u(0) \overline{v(0)})+\int_{0}^{1} u \overline{A_{\alpha}^{*} v} d t\right. \tag{13}\\
& =i\left((u(1) \overline{v(1)}-u(0) \overline{v(0)})+\left\langle u, A_{\alpha}^{*} v\right\rangle\right. \tag{14}
\end{align*}
$$

Therefore again, we have that $v \in D\left(A^{*}\right)$ if and only if

$$
\begin{equation*}
((u(1) \overline{v(1)}-u(0) \overline{v(0)})=0 \tag{15}
\end{equation*}
$$

But $u \in D(A)$ by assumption! Hence we have $u(1)=e^{i \alpha} u(0)$, and so for (15) to hold we have

$$
\begin{equation*}
\overline{v(1)}=e^{-i \alpha} \overline{v(0)}, \tag{16}
\end{equation*}
$$

from which we conclude $v(1)=e^{i \alpha} v(0)$. So $v \in D(A)$, whence $D\left(A_{\alpha}\right)=D\left(A_{\alpha}^{*}\right)$.

ETH Zürich
Spring 2023
(b) Surjectivity of $L: H^{1}(0,1) \rightarrow \mathbb{C}^{2}$ given by $L(u)=(u(0), u(1))$ follows, as clearly the C^{∞} function $u(x)=a x+b$ for $a, b \in \mathbb{C}$ lies in $H^{1}(0,1)$. Given $\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}$ we simply choose $a=z_{1}, b=z_{2}$. Intuitively we know of course that $H_{0}^{1}(0,1)=\overline{C_{c}^{\infty}(0,1)}{ }^{\|\cdot\|_{H^{1}}}$ has to be the space $\left\{u \in H^{1}(0,1): u(0)=0=u(1)\right\}$. To prove it however we need use that H^{1} convergence implies uniform convergence. In particular let ϕ_{n} be a sequence in $C_{c}^{\infty}(0,1)$ that converges to u in $H_{0}^{1}(0,1)$ (with respect to the H^{1} norm). Then we have that for $t \in[0,1]$

$$
\begin{equation*}
\phi_{n}(t)-\phi_{m}(t)=\int_{0}^{t} \phi_{n}^{\prime}\left(t^{\prime}\right)-\phi_{m}^{\prime}\left(t^{\prime}\right) d t^{\prime} \tag{17}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\left|\phi_{n}(t)-\phi_{m}(t)\right| \leq \int_{0}^{t}\left|\phi_{n}^{\prime}\left(t^{\prime}\right)-\phi_{m}^{\prime}\left(t^{\prime}\right)\right| d t^{\prime} . \tag{18}
\end{equation*}
$$

Taking the supremum, we get

$$
\begin{align*}
\left\|\phi_{n}(t)-\phi_{m}(t)\right\|_{\infty} & =\sup _{t \in[0,1]}\left|\phi_{n}(t)-\phi_{m}(t)\right| \tag{19}\\
& \leq \sup _{t \in[0,1]} \int_{0}^{t}\left|\phi_{n}^{\prime}\left(t^{\prime}\right)-\phi_{m}^{\prime}\left(t^{\prime}\right)\right| d t^{\prime} \tag{20}\\
& =\int_{0}^{1}\left|\phi_{n}^{\prime}\left(t^{\prime}\right)-\phi_{m}^{\prime}\left(t^{\prime}\right)\right| d t^{\prime} \tag{21}\\
& =\left\|\phi_{n}^{\prime}-\phi_{m}^{\prime}\right\|_{L^{2}} \underbrace{\|1\|_{L^{2}}}_{=1}, \tag{22}
\end{align*}
$$

where we use a Cauchy-Schwarz (Hölder) inequality in the last part. Now as ϕ_{n} converges in the H^{1} norm we have that it is a Cauchy sequence and in particular that $\left\|\phi_{n}^{\prime}-\phi_{m}^{\prime}\right\|_{L^{2}} \rightarrow$ 0 when $m, n \rightarrow \infty$. From this it follows that ϕ_{n} is a Cauchy sequence in the uniform norm $\|\cdot\|_{\infty}$ and thus it converges, to a continuous function which is u by the uniqueness of the limit. We find that $u(0)=0=u(1)$ and the claim follows. We finally find that quotient map $p: H^{1}(0,1) / H_{0}^{1}(0,1) \rightarrow \mathbb{C}^{2}$ induced by L is an isomorphism, whence $\operatorname{dim}\left(H^{1}(0,1) / H_{0}^{1}(0,1)\right)=2$.
(c) From the hint it is immediately clear that neither B_{0} or B_{0}^{*} are self-adjoint as $D\left(B_{0}\right)=H_{0}^{1}(0,1)$ and $D\left(B_{0}^{*}\right)=H^{1}(0,1)$ and $H_{0}^{1}(0,1) \neq H^{1}(0,1) .^{3}$ Additionally, know that for any self-adjoint extension B of B_{0} we have $D\left(B_{0}\right) \subseteq D(B)$ and $D\left(B^{*}\right) \subseteq D\left(B_{0}\right)$ and $D(B)=D\left(B^{*}\right)$. With this and the fact that neither B_{0} and B_{0}^{*} are strict inequalities we get the following chain of strict inclusions

$$
\begin{equation*}
H_{0}^{1}(0,1)=D\left(B_{0}\right) \subsetneq D(B) \subsetneq D\left(B_{0}^{*}\right)=H^{1}(0,1) . \tag{23}
\end{equation*}
$$

[^1]From this it follows that

$$
\begin{equation*}
\operatorname{dim} D\left(B_{0}\right) / D(B)<\operatorname{dim} D\left(B_{0}^{*}\right) / D(B)<\operatorname{dim} D\left(B_{0}^{*}\right) / D\left(B_{0}\right) \tag{24}
\end{equation*}
$$

It is clear that $\operatorname{dim} D\left(B_{0}\right) / D(B)=0$ and from part b) we know that $\operatorname{dim} D\left(B_{0}^{*}\right) / D\left(B_{0}\right)=$ 2. Therefore it must follow that $\operatorname{dim} D\left(B_{0}^{*}\right) / D(B)=1$ and $D\left(B_{0}^{*}\right) / D(B) \cong \mathbb{C}$. Let $q: D\left(B_{0}^{*}\right) \rightarrow D\left(B^{*}\right) / D(B)$ be the quotient map. Note that $D\left(B_{0}\right) \subset D(B)=\operatorname{ker} q$.

Let us now recall ${ }^{4}$ the universal property of quotients: if we have a groups G and K and a group homomorphism $\phi: G \rightarrow K$, a normal subgroup $H \triangleleft G$ satisfying $H \subseteq \operatorname{ker} \phi$ with quotient map $\pi: G \rightarrow G / H$, then there exists a $\tilde{\phi}: G / H \rightarrow K$ such that the following diagram commutes:

. That is, we have $\phi=\tilde{\phi} \circ \pi$
Now in our case we take $G=D\left(B_{0}^{*}\right), K=D\left(B_{0}^{*}\right) / D(B)$ and $\phi=q: D\left(B_{0}^{*}\right) \rightarrow$ $D\left(B_{0}^{*}\right) / D(B)$. Remember that from the previous exercise we have the induced quotient $\operatorname{map} p: H^{1}(0,1)=D\left(B_{0}^{*}\right) \rightarrow H^{1}(0,1) / H_{0}^{1}(0,1)=D\left(B_{0}^{*}\right) / D\left(B_{0}\right) \cong \mathbb{C}^{2}$ given explicitly by $p(u)=(u(0), u(1))$. Note that $D\left(B_{0}\right) \subset D(B)$, so $D\left(B_{0}\right) \subset \operatorname{ker} q$. Thus we take $H=D\left(B_{0}\right)$ and we deduce the existence of a $\lambda: D\left(B_{0}^{*}\right) / D\left(B_{0}\right) \rightarrow D\left(B_{0}^{*}\right) / D(B)$ such that the following diagram commutes:

[^2]Functional Analysis II

, i.e. we have that

$$
\begin{equation*}
q(u)=\lambda(p(u))=\lambda(u(0), u(1)) \tag{25}
\end{equation*}
$$

We conclude that

$$
\begin{aligned}
D(B) & =\operatorname{ker} \lambda \circ p \\
& =\left\{u \in H^{1}(0,1): p(u) \in \operatorname{ker} \lambda\right\} \\
& =\left\{u \in H_{0}^{1}(0,1): \lambda(u(0), u(1))=0\right\},
\end{aligned}
$$

as desired.
(d) We conclude from parts a) to c) that if B is a self-adjoint extension of B_{0} then

$$
\begin{equation*}
D(B)=\left\{u \in H^{1}(0,1): \lambda(u(0), u(1))=0\right\} . \tag{26}
\end{equation*}
$$

As λ is in fact a linear functional from \mathbb{C}^{2} to \mathbb{C} this implies that there exists constants $a_{0}, a_{1} \in \mathbb{C}$ such that

$$
\begin{equation*}
D(B)=\left\{u \in H^{1}(0,1): a_{0} u(0)+a_{1} u(1)=0\right\} \tag{27}
\end{equation*}
$$

Now if $a_{0}=0$ and $a_{1}=0$ we get that $D(B)=H_{0}^{1}(0,1)$, hence B cannot be adjoint. If WLOG only $a_{0}=0$ we have that $D(B)=\left\{u \in H^{1}(0,1): u(1)=0\right\}$. Integrating by parts then we see that for $v \in D\left(B^{*}\right)$ similar as in example $E .8$ that for $v \in D(B)$

$$
\begin{aligned}
\langle u, B v\rangle & =\int_{0}^{1} u \overline{\bar{v}^{\prime}} d t \\
& =i(\underbrace{u(1) \overline{v(1)}}_{=0}-u(0) \overline{v(0)})=\int_{0}^{1} i u^{\prime} \bar{v} d t
\end{aligned}
$$

while we also have per definition

$$
\begin{equation*}
\langle u, B v\rangle=\left\langle B^{*} u, v\right\rangle=\int_{0}^{1} i u^{\prime} \bar{v} d t \tag{28}
\end{equation*}
$$

from which we deduce that for $u(0)$ arbitrary that $\overline{v(0)}=0$, i.e. that $v(0)=0$. Therefore in this case we must have $D\left(B^{*}\right)=\left\{u \in H^{1}(0,1): u(0)=0\right\}, D(B) \neq D\left(B^{*}\right)$ and B cannot be self-adjoint. Thus assume $a_{0} \neq 0$ and $a_{1} \neq 0$, we then get

$$
\begin{equation*}
D(B)=\left\{u \in H^{1}(0,1): \frac{a_{0}}{a_{1}} u(0)+u(1)=0\right\} \tag{29}
\end{equation*}
$$

By a similar integration as above, that

$$
\begin{equation*}
\langle B u, v\rangle=i(u(1) \overline{v(1)}-u(0) \overline{v(0)})+\langle u, B v\rangle \tag{30}
\end{equation*}
$$

For B to be self-adjoint we want the boundary terms to vanish, we get for $u, v \in D(B)$:

$$
\begin{equation*}
u(1) \overline{v(1)}-u(0) \overline{v(0)}=0 \tag{31}
\end{equation*}
$$

We use

$$
\begin{equation*}
u(1)=-\frac{a_{0}}{a_{1}} u(0) \text { and } \overline{v(1)}=-\frac{\overline{a_{0}}}{\overline{a_{1}}} \overline{v(0)} \tag{32}
\end{equation*}
$$

and thus we have that

$$
\begin{equation*}
u(0) \overline{v(0)}\left(\frac{a_{0}}{a_{1}} \frac{\overline{a_{0}}}{\overline{a_{1}}}-1\right)=u(0) \overline{v(0)}\left(\left|\frac{a_{0}}{a_{1}}\right|^{2}-1\right)=0 \tag{33}
\end{equation*}
$$

This last equation can only hold if for all $u, v \in D(B)$ if $\left|\frac{a_{0}}{a_{1}}\right|=1$, i.e. $-\frac{a_{0}}{a_{1}}=e^{i \alpha}$ for some α. We then conclude that

$$
\begin{equation*}
D(B)=\left\{u \in H^{1}(0,1): u(1)=e^{i \alpha} u(0)\right\}=D\left(A_{\alpha}\right) \tag{34}
\end{equation*}
$$

2.3. Spectrum and adjoint of an operator on $l^{2}(\mathbb{Z})$.

(a) Assume $\left(a^{(m)}, A a^{(m)}\right)_{m \in \mathbb{N}}$ converges in the graph of $\Gamma_{A} \subset \ell^{2}(\mathbb{Z}) \times \ell^{2}(\mathbb{Z})$ to some (a, b) as $m \rightarrow \infty$, that is

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|a^{(m)}-a\right\|_{\ell^{2}}=0 \text { and } \lim _{m \rightarrow \infty}\left\|A a^{(m)}-b\right\|_{\ell^{2}}=0 \tag{35}
\end{equation*}
$$

where we denote with $\|\cdot\|_{\ell^{2}}$ the standard ℓ^{2}-norm

$$
\begin{equation*}
\|u\|_{\ell^{2}}=\left(\sum_{n \in \mathbb{Z}}\left|u_{n}\right|^{2}\right)^{1 / 2} \tag{36}
\end{equation*}
$$

ETH Zürich

Spring 2023

From the first equality and the fact that convergence in (36) (i.e. absolute convergence) implies pointwise (entry-wise) convergence we know that for all $n \in \mathbb{N}$,

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left|a_{n}^{(m)}-a_{n}\right|=0 \tag{37}
\end{equation*}
$$

Of course from this it follows easily that for each $q_{n} \in \mathbb{C}$

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left|q_{n} a_{n}^{(m)}-q_{n} a_{n}\right|=\lim _{m \rightarrow \infty}\left|q_{n}\right|\left|a_{n}^{(m)}-a_{n}\right|=0 \tag{38}
\end{equation*}
$$

from which pointwise convergence follows

$$
\begin{equation*}
\lim _{m \rightarrow \infty} q_{n} a_{n}^{(m)}=q_{n} a_{n} \tag{39}
\end{equation*}
$$

on the other we have absolute convergence from (35)

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(\sum_{n \in \mathbb{Z}}\left|q_{n} a_{n}^{(m)}-b_{n}\right|^{2}\right)^{1 / 2}=0 \tag{40}
\end{equation*}
$$

As again absolute convergence in ℓ^{2} implies pointwise convergence we end up with the fact

$$
\begin{equation*}
b_{n}=q_{n} a_{n} \text { for all } n \in \mathbb{N} . \tag{41}
\end{equation*}
$$

We conclude $b=A a$ and that $b \in \ell^{2}(\mathbb{Z})$ by completeness, therefore $a \in D(A)$ and we are done.

Remark 1. The above statement is a specific case of a more general principle that holds, namely that multiplication operators on measurable spaces are always closed. In particlar the following holds for $1 \leq p \leq \infty$: if (X, μ) is a measurable space and $m: X \rightarrow \mathbb{C}$ is a measurable function then the operator $M: \mathcal{L}^{p}(X, \mu) \rightarrow \mathcal{L}^{p}(X, \mu)$ given by

$$
\begin{equation*}
M(f)(x):=m(x) f(x) \text { on } D(M):=\left\{f \in \mathcal{L}^{p}(X, \mu): m \cdot f \in \mathcal{L}^{p}(X, \mu)\right\} \tag{42}
\end{equation*}
$$

is always a closed operator. It might be a fun exercise to prove this more general fact as well.
(b) First of all (!!!) we need to make sure an adjoint can be well-defined in the first place. In other words we need to make sure that D is densely defined in $\ell^{2}(\mathbb{Z})$ as we recall that in general A^{*} is not unique if $D(A)$ is not densely defined. One could conclude this directly from the fact that $c_{00} \subset D$ lies dense in $\ell^{2}(\mathbb{Z})$. One could also prove this with the following reasoning (which can also be applied to general arguments in $\left.\mathcal{L}^{p}(X, \mu)\right)^{5}$:

[^3]assume that D does not lie dense in $\ell^{2}(\mathbb{Z})$ then $\operatorname{dim}\left(D^{\perp}\right) \geq 1$. Assume that $g \in D^{\perp} \backslash\{0\}$, we then define the sequence h entry-wise as
\[

$$
\begin{equation*}
h_{n}:=\frac{1}{1+\left|q_{n}\right|^{2}} \bar{g}_{n} . \tag{43}
\end{equation*}
$$

\]

Clearly then, we have that $h \in \ell^{2}(\mathbb{Z})$ as $\frac{1}{1+\left|q_{n}\right|^{2}} \leq 1$ for all $n \in \mathbb{Z}$ and g was assumed to be in $\ell^{2}(\mathbb{Z})$. However we also have $h \in D$ as $|z| \leq\left(1+|z|^{2}\right)$ for all $z \in \mathbb{C}$, whence

$$
\begin{equation*}
\|q \cdot h\|_{\ell^{2}}^{2}=\sum_{n \in \mathbb{Z}} \frac{\left|q_{n}\right|^{2}}{\left(1+\left|q_{n}\right|^{2}\right)^{2}}\left|g_{n}\right|^{2} \leq \sum_{n \in \mathbb{Z}}\left|g_{n}\right|^{2}=\|g\|_{\ell^{2}}<\infty . \tag{44}
\end{equation*}
$$

Now combining this with the fact that $g \in D^{\perp}$, we find that

$$
\begin{equation*}
0=\langle g, h\rangle_{\ell^{2}}=\sum_{n \in \mathbb{Z}} \frac{1}{1+\left|q_{n}\right|^{2}}\left|g_{n}\right|^{2}, \tag{45}
\end{equation*}
$$

from which we conclude that $g_{n}=0$ for all $n \in \mathbb{N}$, leading to a contradiction.
The adjoint of A determined through the equation $(A x, y)_{\ell^{2}}=\left(x, A^{*} y\right)_{\ell^{2}}$ for $x, y \in \ell^{2}(\mathbb{Z})$. From this we derive that

$$
\begin{equation*}
(A x, y)_{\ell^{2}}=\sum_{n \in \mathbb{Z}}\left(q_{n} a_{n}\right) \overline{b_{n}}=\sum_{n \in \mathbb{Z}} a_{n} \overline{\left(\overline{q_{n}} b_{n}\right)}=\left(x, A^{*} y\right)_{\ell^{2}} . \tag{46}
\end{equation*}
$$

From this it readily follows that the action of A^{*} should be given with by

$$
\begin{equation*}
A^{*} y_{n}=\overline{q_{n}} y_{n} \text { for all } y \in \ell^{2}(\mathbb{Z})^{*}=\ell^{2}(\mathbb{Z}), \tag{47}
\end{equation*}
$$

clearly with domain

$$
\begin{equation*}
D\left(A^{*}\right)=\left\{a \in \ell^{2}(\mathbb{Z}):\left(\overline{q_{n}} a_{n}\right)_{n \in \mathbb{Z}} \in \ell^{2}(\mathbb{Z})\right\}, \tag{48}
\end{equation*}
$$

because when we set $z_{n}=\overline{q_{n}} a_{n}$ for all $n \in \mathbb{Z}$ we have $\left(z_{n}\right)_{n \in \mathbb{Z}} \in \ell^{2}(\mathbb{Z})$ and clearly

$$
\begin{equation*}
\left(x, A^{*} y\right)_{\ell^{2}}=(x, z)_{\ell^{2}} \text { for all } x \in D . \tag{49}
\end{equation*}
$$

The final statement, namely that A is self-adjoint, if $\left(q_{n}\right)_{n \in \mathbb{Z}} \subset \mathbb{R}$ follows immediately from (46) and the fact that $\overline{q_{n}}=q_{n}$ for all $n \in \mathbb{Z}$.
(c) It is a general known fact that the spectrum $\sigma(A)$ is a closed set (see FA I, lecture $12)^{6}$. Clearly we know that the $e^{i} \in \ell^{2}(\mathbb{Z})$ given by

$$
\begin{equation*}
\left(e_{n}^{i}\right)_{n \in \mathbb{Z}}=\delta_{i n} \tag{50}
\end{equation*}
$$

[^4]are eigenvectors of A with eigenvalue $q_{i} \in \mathbb{C}$
\[

$$
\begin{equation*}
A e^{i}=q_{i} e^{i} \tag{51}
\end{equation*}
$$

\]

Therefore the entries of q must be part of the point spectrum of A and we know that

$$
\begin{equation*}
\overline{\left\{q_{n} \mid n \in \mathbb{Z}\right\}} \subseteq \sigma(A) . \tag{52}
\end{equation*}
$$

We claim that in fact equality holds. Let $\lambda \in \mathbb{C} \backslash \overline{\left\{q_{n}: n \in \mathbb{Z}\right\}}$. Then clearly $(\lambda \mathbf{1}-A)^{-1}$: $\ell^{2}(\mathbb{Z}) \rightarrow \ell^{2}(\mathbb{Z})$ is given directly by

$$
\begin{equation*}
A^{-1} a_{n}:=\frac{1}{\lambda-q_{n}} a_{n}, \tag{53}
\end{equation*}
$$

and it is bounded as

$$
\begin{equation*}
C=\inf _{n \in \mathbb{Z}}\left|\lambda-q_{n}\right|>0 \tag{54}
\end{equation*}
$$

implies

$$
\begin{equation*}
\left\|A^{-1} a_{n}\right\|_{\ell^{2}}=\sum_{n \in \mathbb{Z}}\left(\frac{1}{\left|\lambda-q_{n}\right|^{2}}\left|a_{n}\right|^{2}\right)^{1 / 2} \leq \frac{1}{C}\|a\|_{\ell} . \tag{55}
\end{equation*}
$$

From which we conclude that $\lambda \notin \sigma(A)$.

2.4. The adjoint operator is always closed

Let $V: H \times H \in H \rightarrow H \times H$ be given as in the hint, i.e. $V(x, y)=(-y, x)$. Clearly V is an isometric isomorphism. We will now show that $\Gamma_{A^{*}}=\left(V\left(\Gamma_{A}\right)\right)^{\perp}$.
For $\Gamma_{A^{*}} \subseteq\left[V\left(\Gamma_{A}\right)\right]^{\perp}$ we not that

$$
\begin{equation*}
\Gamma_{A^{*}}=\left\{\left(x, A^{*} x\right) \in H \times H: x \in D\left(A^{*}\right)\right\},^{7} \tag{56}
\end{equation*}
$$

Thus if $x \in D\left(A^{*}\right)$ and $y \in D(A)$, and letting $\langle\cdot, \cdot\rangle_{H}$ induce the scalar product on $H \times H$ we have

$$
\begin{align*}
\left\langle\left(x, A^{*} x\right), V(y, A y)\right\rangle_{H \times H} & =\left\langle\left(x, A^{*} x\right),(-A y, y)\right\rangle_{H \times H} \tag{57}\\
& =\langle x,-A y\rangle_{H}+\left\langle A^{*} x, y\right\rangle_{H} \tag{58}\\
& =-\langle x, A y\rangle_{H}+\langle x, A y\rangle_{H}=0 . \tag{59}
\end{align*}
$$

To see that $\left[V\left(\Gamma_{A}\right]^{\perp} \subseteq \Gamma_{A^{*}}\right.$, let $(x, y) \in\left(V\left(\Gamma_{A}\right)\right)^{\perp}$. Then if $z \in D(A)$ we have

$$
\begin{equation*}
0=\langle(x, y),(-A(z), z)\rangle_{H \times H}=-\langle x, A(z)\rangle_{H}+\langle y, z\rangle_{H} . \tag{60}
\end{equation*}
$$

Therefore $\langle A(z), x\rangle_{H}=\langle z, y\rangle_{H}$. Therefore for $x \in H$ there exists a $y \in H$ such that $A^{*}(x)=l_{y}^{*}=\langle\cdot, y\rangle_{H}$. We conclude $x \in D\left(A^{*}\right)$ and we are done. The statement that an adjoint operator is always closed now follows from closedness of annihilator sets.

[^5]
[^0]: ${ }^{1}$ Originally, I wrote here that it was by the inverse mapping theorem, but this requires $D\left(A^{*}\right)$ to be complete (i.e. clsoed), which does not necessarily hold...
 ${ }^{2}$ Note that we cannot use the well known argument from FA I that $\operatorname{Im}\left(A^{*}\right)$ is closed because it is bounded from below, e.g. as in FA I ex 5.2 d), because A^{*} is not necessarily assumed to be bounded/continuous in this case!

[^1]: ${ }^{3}$ Actually, this was also discussed in the lecture.

[^2]: ${ }^{4}$ Yes, we are actually going to use some abstract algebra...

[^3]: ${ }^{5}$ Can you think of reason why the former argument fails in $L^{2}(\mathbb{R})$ for multiplication with a measurable function? I.e. using density of $C_{c}^{\infty}(\mathbb{R})$?

[^4]: ${ }^{6}$ For perhaps a more concrete proof of this fact you can argue that the resolvent set is open by expanding in a Neumann series

[^5]: ${ }^{7}$ Note that we identify H^{*} with itself using Riesz representation theorem, hence dropping the x^{*} notation.

