ETH Zürich
Spring 2023

NOTE: this solution sheet went through quite some iterations. Please do not hesitate to contact me at pieterbart.peters@math.ethz.ch if you have any questions, or found some errors. There might be some minor corrections somewhere at the end of the semester so feel free to check it out at a later point (you can see the date modified at the bottom of the page).

3.1. Spectrum of a self-adjoint operator on $H^{2}\left(\mathbb{S}^{1}\right)$

(a) We recall (see e.g. FA I, lecture 10 example 6) that on \mathbb{S}^{1} the Sobolev spaces for $s \in \mathbb{R}$ are given by
$H^{s}\left(\mathbb{S}^{1}\right)=\mathcal{F}^{-1}\left(h^{s}(\mathbb{Z})\right)$ where $h^{s}(\mathbb{Z})=\left\{a:=\left(\left(a_{n}\right)_{n \in \mathbb{Z}}\right):\left(\sum_{n \in \mathbb{N}}(1+|n|)^{2 s}\left|a_{n}\right|^{2}<\infty\right)^{1 / 2}\right\}$,
In other words

$$
\begin{equation*}
H^{s}\left(\mathbb{S}^{1}\right)=\left\{u \in L^{2}\left(\mathbb{S}^{1}\right): \sum_{n \in \mathbb{Z}}(1+|n|)^{2 s}|\mathcal{F} u(n)|<\infty\right\}, \tag{2}
\end{equation*}
$$

with norm

$$
\begin{equation*}
\|u\|_{H^{s}}=\left(\sum_{n \in \mathbb{Z}}(1+|n|)^{2 s}|\mathcal{F} u(n)|^{2}\right)^{1 / 2},{ }^{1} \tag{3}
\end{equation*}
$$

and scalar product

$$
\begin{equation*}
\langle u, v\rangle_{H^{s}}=\left(\sum_{n \in \mathbb{Z}}(1+|n|)^{2 s} \mathcal{F} u(n) \overline{\mathcal{F} v(n)}\right) . \tag{4}
\end{equation*}
$$

As such, functions in $H^{s}\left(\mathbb{S}^{1}\right)$ can always be identified by their Fourier series,

$$
\begin{equation*}
u \in H^{s}\left(\mathbb{S}^{1}\right) \text { iff } u(\theta)=\sum_{n \in \mathbb{Z}} a_{n} e^{i n \theta} \text { with }\left(a_{n}\right)_{n \in \mathbb{Z}} \in h^{s}(\mathbb{Z}) . \tag{5}
\end{equation*}
$$

In the above it obviously holds that $a_{n}=\mathcal{F} u(n)$, where we recall that the forward Fourier transform $\mathcal{F}: H^{2}\left(\mathbb{S}^{1}\right) \rightarrow h^{2}(\mathbb{Z})$ is given by

$$
\begin{equation*}
\left((\mathcal{F} u)_{n}\right)_{n \in \mathbb{Z}}=(\mathcal{F} u(n))_{n \in \mathbb{Z}} \text { with } \mathcal{F} u(n)=\int_{\mathbb{S}^{1}} u(\theta) e^{-i n \theta} d \theta \tag{6}
\end{equation*}
$$

and the inverse transform $\mathcal{F}^{-1}: h^{s}(\mathbb{Z}) \rightarrow H^{s}\left(\mathbb{S}^{1}\right)$ given by $\left(a_{n}\right)_{n \in \mathbb{Z}}$ by

$$
\begin{equation*}
\mathcal{F}^{-1}\left(\left(a_{n}\right)_{n \in \mathbb{Z}}\right)=\sum_{n \in \mathbb{Z}} a_{n} e^{i n \theta} . \tag{7}
\end{equation*}
$$

[^0]ETH Zürich
Spring 2023

As the norm of $H^{s}\left(\mathbb{S}^{1}\right)$ is defined by pulling back the norm from $h^{s}(\mathbb{Z})$ both \mathcal{F} and \mathcal{F}^{-1} are isometric (unitary!) isomorphisms. We will make use of this unitary equivalence several times throughout this exercise.
First we treat the hint and show that $D_{\theta}^{2} \pm i: H^{2}\left(\mathbb{S}^{1}\right) \rightarrow L^{2}\left(\mathbb{S}^{1}\right)$ is invertible. This is most easily seen when we consider the unitarily equivalent operator $\hat{D}_{\theta}^{2}: h^{2}(\mathbb{Z}) \rightarrow \ell^{2}(\mathbb{Z})$, defined via $\hat{D}_{\theta}^{2}:=\mathcal{F} \circ \hat{D}_{\theta}^{2} \circ \mathcal{F}^{-1}$. A simple computation yields for $\left(a_{n}\right)_{n \in \mathbb{N}} \in h^{2}\left(\mathbb{S}^{1}\right)$ that $\hat{D}_{\text {theta }}^{2}$ is explicitly given by

$$
\begin{align*}
\mathcal{F}^{-1} \circ D_{\theta}^{2} \circ \mathcal{F}\left(a_{n}\right)_{n \in \mathbb{N}} & =\mathcal{F}\left(\sum_{n \in \mathbb{Z}} D_{\theta}^{2} a_{n} e^{i n \theta}\right) \tag{8}\\
& =\mathcal{F}\left(\sum_{n \in \mathbb{Z}} n^{2} a_{n} e^{i n \theta}\right) \tag{9}\\
& =\left(n^{2} a_{n}\right)_{n \in \mathbb{Z}} . \tag{10}
\end{align*}
$$

Note that from the above clearly follows that $\hat{D}_{\theta}^{2}: h^{2}(\mathbb{Z}) \rightarrow \ell^{2}(\mathbb{Z})$ is bounded and thus also $D_{\theta}^{2}: H^{2}\left(\mathbb{S}^{1}\right) \rightarrow L^{2}\left(\mathbb{S}^{1}\right)$
Then, we have that $\hat{D}_{\theta}^{2} \pm i$ is given by

$$
\begin{equation*}
\left(\hat{D}_{\theta}^{2} \pm i\right)\left(a_{n}\right)_{n \in \mathbb{Z}}=\left(\left(n^{2} \pm i\right) a_{n}\right)_{n \in \mathbb{Z}} . \tag{11}
\end{equation*}
$$

Clearly we can explicitly invert this when we define $\left(\hat{D}_{\theta}^{2} \pm i\right)^{-1}: \ell^{2}(\mathbb{Z}) \rightarrow h^{2}(\mathbb{Z})$ as

$$
\begin{equation*}
\left(\hat{D}_{\theta}^{2} \pm i\right)^{-1}\left(a_{n}\right)_{n \in \mathbb{Z}}:=\left(\left(n^{2} \pm i\right)^{-1} a_{n}\right)_{n \in \mathbb{Z}}, \tag{12}
\end{equation*}
$$

which is bounded as well. We conclude that the unitarily equivalent operator $D_{\theta}^{2} \pm i$ also has a bounded inverse. Secondly we analyze the multiplication operator $V: H^{2}(\mathbb{Z}) \rightarrow$ $L^{2}(\mathbb{Z})$. This is most easy to do without Fourier transforming. Let us define $\tilde{V}: L^{2}\left(\mathbb{S}^{1}\right) \rightarrow$ $L^{2}\left(\mathbb{S}^{1}\right)$ (a slightly larger domain) via

$$
\begin{equation*}
\tilde{V}(u)=V \cdot u \tag{13}
\end{equation*}
$$

Then we have that

$$
\begin{equation*}
\|\tilde{V} u\|_{L^{2}}^{2}=\int_{\mathbb{S}^{1}}|V(x)|^{2}|u(x)|^{2} d \mu(x) \leq\|V\|_{L^{\infty}}^{2}\|u\|_{L^{2}}^{2} \tag{14}
\end{equation*}
$$

thus $\tilde{V}: L^{2}(\mathbb{Z}) \rightarrow L^{2}(\mathbb{Z})$ is bounded. ${ }^{2}$ Moreover we have seen in class that the compact inclusion $\iota: H^{2}\left(\mathbb{S}^{1}\right) \rightarrow L^{2}\left(\mathbb{S}^{1}\right)$ is compact. Using this Sobolev embedding we conclude that $V=\tilde{V} \circ \iota$ is compact as the composition of a bounded operator and compact inclusion.
${ }^{2}$ If one were to prove this on the Fourier side for $\hat{\tilde{V}}: \ell^{2}(\mathbb{Z}) \rightarrow \ell^{2}(\mathbb{Z})$ one would have to use Young's inequality for convolutions (as the Fourier transform sends products to convolutions)

Functional Analysis II
Solution to Problem Set 3

ETH Zürich
Spring 2023

Thus we see that $D_{\theta}^{2}+V \pm i: H^{2}\left(\mathbb{S}^{1}\right) \rightarrow L^{2}\left(\mathbb{S}^{1}\right)$ is a Fredholm operator of index 0 as it is the sum of $D_{\theta}^{2} \pm i: H^{2}(\mathbb{Z}) \rightarrow L^{2}(\mathbb{Z})$, which is invertible and $V: H^{2}(\mathbb{Z}) \rightarrow L^{2}(\mathbb{Z})$ which is compact, see also FA I chapter 11. As a reminder, left and right multiplying by $\left(D_{\theta}^{2} \pm i\right)^{-1}$ we have

$$
\begin{align*}
\left(\left(D_{\theta}^{2} \pm i\right)^{-1} \circ\left(D_{\theta}^{2} \pm i+V\right)\right. & =I d_{H^{2}}+\left(D_{\theta}^{2} \pm i\right)^{-1} \circ V \tag{15}\\
& =I d_{H^{2}}+K_{1} \tag{16}
\end{align*}
$$

and

$$
\begin{align*}
\left(D_{\theta}^{2} \pm i+V\right) \circ\left(D_{\theta}^{2} \pm i\right)^{-1} & =I d_{L^{2}}+V \circ\left(D_{\theta}^{2} \pm i\right)^{-1} \tag{17}\\
& =I d_{L^{2}}+K_{2}, \tag{18}
\end{align*}
$$

where $K_{1}:=\left(D_{\theta}^{2} \pm i\right)^{-1} \circ V: H^{2}\left(\mathbb{S}^{1}\right) \rightarrow H^{2}\left(\mathbb{S}^{1}\right)$ and $K_{2}:=\left(D_{\theta}^{2} \pm i+V\right) \circ\left(D_{\theta}^{2} \pm i\right)^{-1}$: $L^{2}\left(\mathbb{S}^{1}\right) \rightarrow L^{2}\left(\mathbb{S}^{1}\right)$ are again compact operators as compositions of compact and bounded operators.

Finally we know that $P=D_{\theta}^{2}+V: H^{2}\left(\mathbb{S}^{1}\right) \rightarrow L^{2}\left(\mathbb{S}^{1}\right)$ is symmetric which follows directly ${ }^{3}$ from

$$
\begin{align*}
\langle P u, u\rangle_{L^{2}} & =\int_{\mathbb{S}^{1}} D_{\theta}^{2} u \cdot \bar{u} d \theta+\int_{\mathbb{S}^{1}} V u \cdot \bar{u} d \theta \tag{19}\\
& =\int_{\mathbb{S}^{1}}\left|D_{\theta} u\right|^{2} d \theta+\int_{\mathbb{S}^{1}} u \overline{V u} d \theta \tag{20}\\
& =\int_{\mathbb{S}^{1}} u \overline{D_{\theta}^{2} u} d \theta+\int_{\mathbb{S}^{1}} u \overline{V u} d \theta=\langle u, P u\rangle_{L^{2}} \tag{21}
\end{align*}
$$

We know therefore that $\sigma_{p}(P) \subset \mathbb{R}$ and therefore that $\pm i \notin \sigma_{p}(H)$ and thus that $P \pm i=D_{\theta}^{2}+V+i$ is injective. As P is also Fredholm of index 0 , it is surjective and therefore bijective with continuous inverse. By theorem T.5(iii), H is self-adjoint.
(b) The easiest way to prove that $\sigma(P)=\sigma_{p}(P)$ and has a complete orthonormal basis, is done by "raising the potential" V and then use some results that we know from chapter 13, FA I.
Let us choose a $z \in \mathbb{R}_{+}$with $z>\|V\|_{L^{h} \infty}+1$ Then it is easy to see that (see also chapter 13, FA I, page 4) $P+z: H^{2}\left(\mathbb{S}^{1}\right) \rightarrow L^{2}\left(\mathbb{S}^{1}\right)$ is injective. Assume $u \in \operatorname{ker}(P+z)$ then

$$
\begin{align*}
\langle(P+z) u, u\rangle_{L^{2}} & =\left\|D_{\theta} u\right\|_{L^{2}}^{2}+\int_{\mathbb{S}^{1}} V|u|^{2}+z|u|^{2} d \theta \tag{22}\\
& \geq \int_{\mathbb{S}^{1}}(z-|V|)|u|^{2} d \theta \tag{23}\\
& >\|u\|_{L^{2}}^{2} \geq 0 . \tag{24}
\end{align*}
$$

[^1]ETH Zürich
Spring 2023

One can similarily to question a) very easily prove that $P+z$ is a self-adjoint operator, hence by equation (22) $P+z$ is bounded from below. Therefore we know from an exercise sheet in FA I, that if $P+z$ is injective then $(P+z)^{*}=P+z$ is also surjective. Therefore $P+z$ is bijective, bounded and therefore its resolvent $R_{-z}=(z+P)^{-1}$ lies in $L\left(L^{2}\left(\mathbb{S}^{1}\right), H^{2}\left(\mathbb{S}^{1}\right)\right.$ by the theorem of bounded inverse. Let us consider the same resolvent \tilde{R}_{-z} as a map from $L^{2}\left(\mathbb{S}^{1}\right) \rightarrow L^{2}\left(\mathbb{S}^{1}\right)$. Then \tilde{R}_{-z} is also bounded. Therefore $R_{-z}=\tilde{R}_{-z} \circ \iota$ is compact again as a composition of a compact embedding and a bounded map. It is self-adjoint because $P+z$ is self-adjoint. Therefore, we can apply the theorems in chapter 13 of FA I, for compact self-adjoint operators. By the first theorem in the chapter we know that

$$
\begin{equation*}
\sigma\left(R_{-z}\right) \backslash\{0\}=\sigma_{p}(P) \backslash\{0\} . \tag{25}
\end{equation*}
$$

As R_{-z} is self-adjoint, we therefore know that $\sigma\left(R_{-z}\right) \subset \mathbb{R}$. Finally, R_{-z} is positive because $P+z$ is: if we let $v \in L^{2}\left(\mathbb{S}^{1}\right) \backslash\{0\}$, and set $u=R_{-z} v$ then

$$
\begin{align*}
0 & <\langle(z+P) u, u\rangle_{L^{2}} \tag{26}\\
& =\left\langle(z+P) R_{-z} v, R_{-z} v\right\rangle_{L^{2}} \tag{27}\\
& =\left\langle v, R_{-z} v\right\rangle_{L^{2}} \tag{28}\\
& =\left\langle R_{-z} v, v\right\rangle_{L^{2}} . \tag{29}
\end{align*}
$$

Therefore the Courant-Fischer min-max principle applies to yield a set of eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \lambda_{k} \searrow 0$ as $k \rightarrow \infty$ with eigenvectors $\left\{v_{k}\right\}_{k \in \mathbb{N}}$ that span $L^{2}\left(\mathbb{S}^{1}\right), \operatorname{ker}\left(R_{-z}\right)=\emptyset$. But then we have for this set v_{k} that

$$
\begin{equation*}
(P+z) v_{k}=\lambda_{k}^{-1} v_{k} \tag{30}
\end{equation*}
$$

and hence

$$
\begin{equation*}
P v_{k}=\left(\lambda_{k}^{-1}-z\right) v_{k} . \tag{31}
\end{equation*}
$$

Clearly, the eigenvalues $\lambda_{k}^{-1}-z$ can only accumulate at $\pm \infty$ and we are done.

3.2. Spectral calculus for commuting self-adjoint operators.

By the Borel functional calculus, we know that there exists a *-algebra homomorphism $\phi: \mathcal{B}^{\infty}(\sigma(A)) \rightarrow L(H)$ such that if $B \in L(H)$ commutes with $A \in L(H)$ then B commutes with $\phi(f):=f(A)$ for all $f \in \mathcal{B}^{\infty}(\sigma(A))$, i.e.

$$
\begin{equation*}
f(A) \circ B=B \circ f(A) \tag{32}
\end{equation*}
$$

Keeping in mind that ϕ maps Borel measurable functions on $\sigma(A)$ into continuous operators in $L(H)$, we can therefore apply the same trick again: i.e. for $f(A) \in L(H)$

Functional Analysis II
Solution to Problem Set 3

ETH Zürich
Spring 2023
and $B \in L(H)$ there exists a $\tilde{\phi}: \sigma(B) \rightarrow L(H)$, *-algebra homomorphism such that if $f(A)$ commutes with B then $\tilde{\phi}(g):=g(B)$ commutes with $f(A)$ for all $g \in \mathcal{B}^{\infty}$, so we have

$$
\begin{equation*}
f(A) \circ g(B)=g(B) \circ f(A) \tag{33}
\end{equation*}
$$

for all $f \in \mathcal{B}^{\infty}(\sigma(A))$ and $g \in \mathcal{B}^{\infty}(\sigma(B))$ and in particular for $f, g \in \mathcal{B}^{\infty}(\mathbb{R})$ as well (as they are Borel measurable on both $\sigma(A)$ and $\sigma(B)$ respectively. Finally, the above statement holds in particular for spectral projects $f=\mathbf{1}_{\Omega}$ for $\Omega \subset \sigma(A)$ measurable and $g=1_{\Omega^{\prime}}$ with $\Omega^{\prime} \subset \sigma(B)$ measurable.

3.3. Resolvents to characterize the spectral measure.

We know from Riesz-Markov that for $u \in H d \tilde{\mu}_{u}$ and $A \in L(H)$ self-adjoint there exists a regular Borel measure (the spectral measure of u) μ_{u} (supported on $\sigma(A)$ such that

$$
\begin{equation*}
(f(A) u, u)=\int_{\sigma(A)} f(t) d \mu_{u}(t) \tag{34}
\end{equation*}
$$

Applying the above to the resolvent functions

$$
\begin{equation*}
R(\lambda-i \epsilon)-R(\lambda+i \epsilon)=(\lambda-A-i \epsilon)^{-1}-(\lambda-A+i \epsilon)^{-1} \tag{35}
\end{equation*}
$$

then we have by Riesz-Markov for this measure $d \mu_{u}$ and A that

$$
\begin{equation*}
\left(\frac{1}{2 \pi i}(R(\lambda-i \epsilon)-R(\lambda+i \epsilon)) u, u\right)=\int_{\sigma(A)}(\lambda-t-i \epsilon)^{-1}-(\lambda-t+i \epsilon)^{-1} d \mu_{u}(t) \tag{36}
\end{equation*}
$$

and extending $\mu_{u}(t)$ trivially outside of its support on $\sigma(A)$ to a regular measure $\tilde{\mu}_{u}(t)$ we can rewrite this (with slight abuse of notation) as

$$
\begin{equation*}
\left(\frac{1}{2 \pi i}(R(\lambda-i \epsilon)-R(\lambda+i \epsilon)) u, u\right)=\frac{1}{2 \pi i} \int_{\mathbb{R}}(\lambda-t-i \epsilon)^{-1}-(\lambda-t+i \epsilon)^{-1} d \tilde{\mu}_{u}(t) \tag{37}
\end{equation*}
$$

Thus we note that that for $\epsilon>0$ arbitrary we have that

$$
\begin{equation*}
\int_{a}^{b}\left(\frac{1}{2 \pi i}(R(\lambda-i \epsilon)-R(\lambda+i \epsilon)) u, u\right) f(\lambda) d \lambda=\int_{a}^{b} \frac{1}{2 \pi i} \int_{\mathbb{R}}(\lambda-t-i \epsilon)^{-1}-(\lambda-t+i \epsilon)^{-1} d \tilde{\mu}_{u}(t) f(\lambda) d \lambda . \tag{38}
\end{equation*}
$$

Now we note that we can rewrite the integrand as

$$
\begin{equation*}
\frac{1}{2 \pi i}\left((\lambda-t-i \epsilon)^{-1}-(\lambda-t+i \epsilon)^{-1}\right) f(\lambda)=\frac{1}{\pi} \frac{\epsilon}{\epsilon^{2}+(\lambda-t)^{2}} f(\lambda) \tag{39}
\end{equation*}
$$

Therefore for $\epsilon>0$ fixed we know that

$$
\begin{align*}
\int_{a}^{b}\left|\frac{1}{\pi} \frac{\epsilon}{\epsilon^{2}+(\lambda-t)^{2}} f(\lambda)\right| d \lambda & \leq C \int_{a}^{b} \frac{1}{\pi} \frac{\epsilon}{\epsilon^{2}+(\lambda-t)^{2}} d \lambda \tag{40}\\
& =\frac{1}{\pi}\left(\arctan \left(\frac{b-t}{\epsilon}\right)-\arctan \left(\frac{a-t}{\epsilon}\right)\right) \leq 1 \tag{41}
\end{align*}
$$

Functional Analysis II
Solution to Problem Set 3

ETH Zürich
Spring 2023
where we set $C:=\sup _{\lambda \in(a, b)}|f(\lambda)|$.

$$
\begin{align*}
\int_{a}^{b} \int_{\mathbb{R}} \frac{1}{2 \pi i} & \left((\lambda-t-i \epsilon)^{-1}-(\lambda-t+i \epsilon)^{-1}\right) f(\lambda) d \tilde{\mu}_{u}(t) d \lambda \tag{42}\\
& =\int_{\mathbb{R}} \int_{a}^{b} \frac{1}{2 \pi i}\left((\lambda-t-i \epsilon)^{-1}-(\lambda-t+i \epsilon)^{-1}\right) f(\lambda) d \tilde{\mu}_{u}(t) d \lambda \tag{43}\\
& =\int_{\mathbb{R}} \int_{a}^{b} \frac{1}{\pi} \frac{\epsilon}{\epsilon^{2}+(\lambda-t)^{2}} f(\lambda) d \lambda d \tilde{\mu}_{u}(t) \tag{44}
\end{align*}
$$

Now we still want to take a limit $\epsilon \searrow 0$ inside the first integral. For this we apply dominated convergence. As $f \in C_{c}^{0}(a, b)$ and (a, b) is a bounded interval we can choose a $C>0$ such that $|f(\lambda)|<\frac{C}{1+\lambda^{2}}$ for all $\lambda \in(a, b)$. Let us set $g_{\epsilon}(t)$ as:

$$
\begin{equation*}
g_{\epsilon}(t)=\frac{1}{\pi} \int_{a}^{b} \frac{\epsilon}{\epsilon^{2}+(\lambda-t)^{2}} f(\lambda) d \lambda \tag{45}
\end{equation*}
$$

then one can calculate that

$$
\begin{equation*}
\left|g_{\epsilon}(t)\right| \leq \frac{1}{\pi} \int_{\mathbb{R}} \frac{C}{1+\lambda^{2}} \frac{\epsilon}{\epsilon^{2}+(\lambda-t)^{2}} d \lambda=\frac{(1+\epsilon) C}{\left(1+\epsilon^{2}+t^{2}\right.} \tag{46}
\end{equation*}
$$

hence $g_{\epsilon}(t)$ is uniformily bounded for all $\epsilon>0$. To summarize, putting all of the above together, up until now we have the following equalities

$$
\begin{align*}
\lim _{\epsilon \searrow 0} \frac{1}{2 \pi i} \int_{a}^{b}((R(\lambda-i \epsilon)-R(\lambda+i \epsilon)) u, u) f(\lambda) d \lambda & =\lim _{\epsilon \searrow 0} \int_{a}^{b} \int_{\mathbb{R}} \frac{1}{\pi} \frac{\epsilon}{\epsilon^{2}+(\lambda-t)^{2}} f(\lambda) d \tilde{\mu}_{u}(t) d \lambda \tag{47}\\
& =\lim _{\epsilon \searrow 0} \int_{\mathbb{R}} \int_{a}^{b} \frac{1}{\pi} \frac{\epsilon}{\epsilon^{2}+(\lambda-t)^{2}} f(\lambda) d \lambda d \tilde{\mu}_{u}(t) \tag{48}\\
& =\int_{\mathbb{R} \epsilon \searrow 0} \lim _{\epsilon} \int_{a}^{b} \frac{1}{\pi} \frac{\epsilon}{\epsilon^{2}+(\lambda-t)^{2}} f(\lambda) d \lambda d \tilde{\mu}_{u}(t) \tag{49}
\end{align*}
$$

where the main steps were Fubini and dominated convergence. We are done when we can show that

$$
\begin{equation*}
\int_{a}^{b} \frac{1}{\pi} \frac{\epsilon}{\epsilon^{2}+(\lambda-t)^{2}} f(\lambda) d \lambda=f(t) \tag{50}
\end{equation*}
$$

Let us define $\psi_{\epsilon}(\lambda-t)$ as

$$
\begin{equation*}
\psi_{\epsilon}(\lambda-t)=\frac{1}{\pi} \frac{\epsilon}{\epsilon^{2}+(\lambda-t)^{2}} \tag{51}
\end{equation*}
$$

we claim that it is an approximation of the Dirac distribution supported at $\{t\}$ i.e. $\psi_{\epsilon}(\lambda-t)$ satisfies $\psi_{\epsilon}(\cdot-t) \rightarrow \delta(\cdot-t)$ in the sense of distributions:

$$
\begin{equation*}
\lim _{\epsilon \searrow 0} \int_{\mathbb{R}} \psi_{\epsilon}(\lambda-t) f(t) d \lambda=f(t) \text { for all } f \in C^{0}(\mathbb{R}) \tag{52}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\lim _{\epsilon \searrow 0} \int_{a}^{b} \psi_{\epsilon}(\lambda-t) f(\lambda) d \lambda=f(t) \text { for all } f \in C_{c}^{0}(a, b) \tag{53}
\end{equation*}
$$

WLOG we will prove that this holds in $t=0$, i.e. for

$$
\begin{equation*}
\psi_{\epsilon}(\lambda)=\frac{1}{\pi} \frac{\epsilon}{\epsilon^{2}+\lambda^{2}} \tag{54}
\end{equation*}
$$

It will follow from the lemma below, if we check three things: 1) $\psi_{\epsilon}(\lambda) \geq 0$ for all $\epsilon>0$, 2) $\int_{\mathbb{R}} \psi_{\epsilon}(\lambda)$ and 3) for $\delta>0$ arbitrary, we have

$$
\begin{equation*}
\lim _{\epsilon \searrow 0} \int_{\mathbb{R} \backslash[-\delta, \delta]} \psi_{\epsilon}(\lambda)=0 \tag{55}
\end{equation*}
$$

It is trivial that $\psi_{\epsilon}(\lambda) \geq 0$ for all $\epsilon>0$. The second identity follows quickly, we have

$$
\begin{align*}
\int_{\mathbb{R}} \frac{1}{\pi} \frac{\epsilon}{\epsilon^{2}+\lambda^{2}} d \lambda & =\frac{1}{\pi} \lim _{\lambda \rightarrow \infty}(\arctan (\lambda / \epsilon)-\arctan (-\lambda / \epsilon)) \tag{56}\\
& =1 \tag{57}
\end{align*}
$$

by changing variables to $x=\lambda / \epsilon$.
Finally the third requirement follows from the fact that

$$
\begin{align*}
\lim _{\epsilon \searrow 0} \int_{\mathbb{R} \backslash[-\delta, \delta]} \psi_{\epsilon}(\lambda) d \lambda & =\lim _{\epsilon \searrow 0} \frac{1}{\pi}((\frac{\pi}{2}-\underbrace{\arctan \left(\frac{\delta}{\epsilon}\right)}_{\rightarrow \frac{\pi}{2}})-(\underbrace{\arctan \left(\frac{\delta}{\epsilon}\right)}_{\rightarrow \frac{\pi}{2}}-\frac{\pi}{2}) \tag{58}\\
& =0 . \tag{59}
\end{align*}
$$

combined with the lemma below this proves that

$$
\begin{equation*}
\int_{a}^{b} \psi_{\epsilon}(\lambda-t) f(\lambda) d \lambda=f(t) \tag{60}
\end{equation*}
$$

We conclude now that we have proven

$$
\begin{align*}
\lim _{\epsilon \pm 0} \frac{1}{2 \pi i} \int_{a}^{b}((R(\lambda-i \epsilon)-R(\lambda+i \epsilon)) u, u) f(\lambda) \mathrm{d} \lambda & =\int_{\mathbb{R} \in \in 0} \lim _{a} \int_{a}^{b} \psi_{\epsilon}(t-\lambda) f(\lambda) d \lambda d \tilde{\mu}_{u}(t) \tag{61}\\
& =\int_{\mathbb{R}} f(t) d \tilde{\mu}_{u}(t) \tag{62}\\
& =\int \sigma(A) f(t) d \mu(t) \tag{63}\\
& =(f(A) u, u) \tag{64}
\end{align*}
$$

ETH Zürich
Spring 2023
as desired. We note that the weak $*$-convergence on the dual space of $C_{c}^{0}(\mathbb{R})$ that is being mentioned here is that of regular Borel measures on \mathbb{R}, often denote as the set $\mathcal{M}(\mathbb{R})$. We identify regular measures $\mu \in \mathcal{M}(\mathbb{R})$ with functionals $L_{\mu}: C_{c}^{0}(X) \rightarrow \mathbb{C}$ as $L_{\mu}(f)=\int_{\mathbb{R}} f d \mu$. We recall that the weak-* topology on $C_{c}^{0}(\mathbb{R})$ is given by the smallest topology that makes evaluation functions of these functionals continuous, i.e. the functionals $\mathcal{M}(X)^{*} \ni \hat{f}: \mathcal{M}(X) \rightarrow \mathbb{C}$ that for $f \in C_{c}^{0}(\mathbb{R})$ are defined by

$$
\begin{equation*}
\hat{f}(\mu)=\mu(f)=\int_{\mathbb{R}} f d \mu \tag{65}
\end{equation*}
$$

Clearly the spectral measure of $u \in H, \mu_{u}$ is a regular measure on \mathbb{R}. As $f \in C_{c}^{0}(\mathbb{R})$ is arbitrary and we can also extend the integration bounds trivially and get

$$
\begin{equation*}
\lim _{\epsilon \searrow 0} \frac{1}{2 \pi i} \int_{\mathbb{R}}((R(\lambda-i \epsilon)-R(\lambda+i \epsilon)) u, u) f(\lambda) \mathrm{d} \lambda=\int_{\mathbb{R}} f(t) d \tilde{\mu}(t) \tag{66}
\end{equation*}
$$

from where we conclude that $\hat{f}\left(\frac{1}{2 \pi i}((R(\cdot-i \epsilon)-R(\cdot+i \epsilon)) u, u) \mathcal{L}\right) \rightarrow \hat{f}\left(d \tilde{\mu}_{u}\right)$ as $\epsilon \searrow 0$, where $d \mathcal{L}$ is the standard Lebesque measure, for any evaluation function \hat{f} defined by $f \in C_{c}^{0}(a, b)$. This is precisely the definition of a limit in the weak-* topology on $\mathcal{M}(\mathbb{R})$.

Lemma. We say that the family $\left(\eta_{\epsilon}\right)_{\epsilon \geq 0} \subset L^{1}(\mathbb{R})$ is called an approximating sequence of the δ-distribution the following three statements hold:

$$
\begin{align*}
& \text { i) } \eta_{\epsilon} \geq 0 \forall \epsilon \geq 0 \tag{67}\\
& \text { ii) } \int_{\mathbb{R}} \eta_{\epsilon} d x=1 \quad \forall \epsilon \geq 0 \tag{68}\\
& \text { iii) } \lim _{\epsilon \rightarrow 0} \int_{\mathbb{R} \backslash[-\delta, \delta]} \eta_{\epsilon} d x=0 \quad \forall \delta>0 \quad \text { fixed. } \tag{69}
\end{align*}
$$

Then we have that $\eta_{\epsilon} \rightarrow \delta(x)$ as $\epsilon \searrow 0$, i.e. we have

$$
\begin{equation*}
\lim _{\epsilon \searrow 0} \int_{\mathbb{R}} \phi(x) \eta_{\epsilon}(x) d x=\phi(0) \text { for all } \phi \in C_{c}^{0}(\mathbb{R}) . \tag{70}
\end{equation*}
$$

Proof. Let $\phi \in C_{c}^{0}(\mathbb{R})$ and $\tilde{\epsilon}>0$. Then we have that

$$
\begin{align*}
\left|\int_{\mathbb{R}} \phi \cdot \eta_{\epsilon} d x-\phi(0)\right| & =|\int_{\mathbb{R}} \phi \cdot \eta_{\epsilon} d x-\phi(0) \underbrace{\int_{\mathbb{R}} \eta_{\epsilon} d x}_{=1}| \tag{71}\\
& =\left|\int_{\mathbb{R}}(\phi(x)-\phi(0)) \eta_{\epsilon} d x\right| \tag{72}\\
& \left.\left.\leq \int_{[-\delta, \delta]} \mid \phi(x)-\phi(0)\right)\left|\eta_{\epsilon}(x) d x+\int_{\mathbb{R} \backslash[-\delta, \delta]}\right| \phi(x)-\phi(0)\right) \mid \eta_{\epsilon} d x, \tag{73}
\end{align*}
$$

where in we used (67) in the second line. Thus if we choose $\delta>0$ in such a way that $|\phi(x)-\phi(0)|<\tilde{\epsilon} / 2$ (by continuity of ϕ), and $\epsilon(\delta)>0$ such that $\tilde{\epsilon} \rightarrow 0$, for

$$
\begin{equation*}
\int_{\mathbb{R} \backslash[-\delta, \delta]} \eta_{\epsilon} d x<\min \{\tilde{\epsilon} / 2,1\} \tag{74}
\end{equation*}
$$

we have that

$$
\begin{equation*}
\left.\int_{[-\delta, \delta]} \mid \phi(x)-\phi(0)\right) \left\lvert\, \eta_{\epsilon}(x) d x \leq \frac{\tilde{\epsilon}}{2} \underbrace{\int_{\mathbb{R}} \eta_{\epsilon}(x) d x}_{=1}=\frac{\tilde{\epsilon}}{2}\right. \tag{75}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\int_{\mathbb{R} \backslash[-\delta, \delta]} \mid \phi(x)-\phi(0)\right) \left\lvert\, \eta_{\epsilon} d x<\frac{\tilde{\epsilon}}{2} \min \left\{1, \frac{\tilde{\epsilon}}{2}\right\} \leq \frac{\tilde{\epsilon}}{2}\right., \tag{76}
\end{equation*}
$$

and we are done.

Remark. Hopefully the steps in the above and the approximation of the delta distributions are something that might have been treated in a previous lecture on analysis (they are basically a family of Poisson kernels). The formula that was proven in (61) is also known as Stone's formula.

3.4. Diagonalization of $\frac{\mathrm{d}}{\mathrm{d} t}$.

This is a simple applications of the concepts we used in the first exercise of this sheet. We know from exercise 1.1 that A is self-adjoint. The obvious unitary transformation (isometric isomorphism) would then be the Fourier transform applied to $D(A) \cong H^{1}\left(\mathbb{S}^{1}\right)$. Clearly $\mathcal{F}: D(A) \rightarrow \ell^{2}(\mathbb{Z})$ and we have for a given $\left(a_{n}\right)_{n \in \mathbb{Z}} \in \ell^{2}(\mathbb{Z})$

$$
\begin{equation*}
\mathcal{F} \circ i \frac{d}{d t} \circ \mathcal{F}^{-1}\left(a_{n}\right)_{n \in \mathbb{Z}}=\left(-n a_{n}\right)_{n \in \mathbb{Z}} . \tag{77}
\end{equation*}
$$

Clearly the space we are looking for is therefore $M=\left(\ell^{2}(\mathbb{Z}), \mu_{\mathbb{Z}}\right)$ where $\mu_{\mathbb{Z}}: \mathbb{Z} \rightarrow[0, \infty)$ is the discrete counting measure. The function $g: \mathbb{Z} \rightarrow \mathbb{R}$ is clearly given by

$$
\begin{equation*}
g(n)=-n \tag{78}
\end{equation*}
$$

In this way $T_{g}: \ell^{2}(\mathbb{Z}) \rightarrow \ell^{2}(\mathbb{Z})$ is simply given by $T_{g}\left(a_{n}\right)_{n \in \mathbb{Z}}=\left(-n a_{n}\right)_{n \in \mathbb{Z}}$.

[^0]: ${ }^{1}$ Alternatively, one can take the closure of $C^{\infty}\left(\mathbb{S}^{1}\right)$ with respect to this norm.

[^1]: ${ }^{3}$ This is arguably even easier to show in the Fourier domain

