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NOTE: this solution sheet went through quite some iterations. Please do not hesitate to
contact me at pieterbart.peters@math.ethz.ch if you have any questions, or found some
errors. There might be some minor corrections somewhere at the end of the semester so
feel free to check it out at a later point (you can see the date modified at the bottom of
the page).

3.1. Spectrum of a self-adjoint operator on H*(S')

(a) We recall (see e.g. FA I, lecture 10 example 6) that on S' the Sobolev spaces for
s € R are given by

1/2
H*(SY) = F 1 (h*(Z)) where h*(Z) = { a := ((ap)nez) : (Z(l + ) |an|* < oo) ,

neN
(1)
In other words

H(SY) = {u e L*(S") : Z:Z(l + |n|)*|Fu(n)| < oo}, (2)
with norm

1/2
||u||gs = (Z(l + |n|)25].7:u(n)\2) 1 (3)

ne”

and scalar product

ne”

(u,v) s = (Z(l + |n|)2s}"u(n)}'v(n)) . (4)

As such, functions in H*(S') can always be identified by their Fourier series,

ue H*(SY) iff u(@) =" a,e™ with (a,)nez € h*(Z). (5)

ne”Z

In the above it obviously holds that a,, = Fu(n), where we recall that the forward Fourier
transform F : H*(S') — h?*(Z) is given by

(Fu)n)nez = (Fu(n))nez with Fu(n) = /S Cu(@)e"0do (6)
and the inverse transform F~1 : h*(Z) — H*(S') given by (a,)nez by
F  (an)nez) Z ape™. (7)
nez

! Alternatively, one can take the closure of C°°(S!) with respect to this norm.
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As the norm of H*(S') is defined by pulling back the norm from h*(Z) both F and F~!
are isometric (unitary!) isomorphisms. We will make use of this unitary equivalence
several times throughout this exercise.

First we treat the hint and show that D3 +i : H*(S') — L?(S!) is invertible. This is
most easily seen when we consider the unitarily equivalent operator D3 : h2(Z) — (2(Z),
defined via D2 := F o D3 o F~'. A simple computation yields for (a,)nen € h2(S") that
D2, is explicitly given by

FtoDjoFlap)men = F (Z Dganeme) ()

ne’l

=F (% n2anem9) 9)

= (n2an)n€Z- (1())

Note that from the above clearly follows that D2 : h%(Z) — (2(Z) is bounded and thus
also D3 : H*(S') — L*(S!)

Then, we have that D2 + i is given by
(Dj £ ) (an)nez = ((0* £ i) an)nez: (11)
Clearly we can explicitly invert this when we define (D2 +4)~' : (2(Z) — h*(Z) as
(D £8) " (an)nez = ((n° £9) " an)nez, (12)

which is bounded as well. We conclude that the unitarily equivalent operator DZ 4 i also
has a bounded inverse. Secondly we analyze the multiplication operator V : H*(Z) —
L*(Z). This is most easy to do without Fourier transforming. Let us define V : L*(S') —
L3(S') (a slightly larger domain) via

V(u) =V - u. (13)
Then we have that

1Vl = /Sl V(@) Flu(@)Pdp(a) < [[V][7lullz: (14)

thus V : L*(Z) — L?*(Z) is bounded. 2 Moreover we have seen in class that the compact
inclusion ¢ : H*(S') — L*(S') is compact. Using this Sobolev embedding we conclude that
V =V o is compact as the composition of a bounded operator and compact inclusion.

2If one were to prove this on the Fourier side for V : £2(Z) — ¢3(Z) one would have to use Young’s
inequality for convolutions (as the Fourier transform sends products to convolutions)
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Thus we see that D7 +V £+ : H*(S') — L*(S') is a Fredholm operator of index 0 as
it is the sum of D + i : H*(Z) — L?*(Z), which is invertible and V : H*(Z) — L*(Z)
which is compact, see also FA 1 chapter 11. As a reminder, left and right multiplying by
(D2 4 i)~ we have

(D24+i) o (D24i+V)=Idy+ (D2+i) oV (15)

and
(D3+i+V)o(Di+i) " =Idp+Vo(D}£i)"! (17)
= Id;2 + Ko, (18)

where K, := (D2 £i) LoV : H*S') — H?*(S') and Ky := (D2 £ i+ V)o (D32 +4)"!:
L2(S') — L?(S') are again compact operators as compositions of compact and bounded
operators.

Finally we know that P = D} +V : H*(S') — L*(S') is symmetric which follows directly?
from

<Pu,u)Lz:/ Dgu-ude+/ V-1 df (19)
St St
= [ \Dgul* do + [ uVu do (20)
St St
:/ uDju d€+/ uVu df = (u, Pu)pe. (21)
St St

We know therefore that o,(P) C R and therefore that +i ¢ o0,(H) and thus that
P4 i= D}+V +iis injective. As P is also Fredholm of index 0, it is surjective and
therefore bijective with continuous inverse. By theorem 7.5(i7i), H is self-adjoint.

(b) The easiest way to prove that o(P) = 0,(P) and has a complete orthonormal basis,
is done by "raising the potential" V' and then use some results that we know from chapter
13, FA L.

Let us choose a z € Ry with z > ||V||re + 1 Then it is easy to see that (see also chapter
13, FA 1, page 4) P + z : H*(S') — L*(S') is injective. Assume u € ker(P + z) then

(P + 2y uyze = [|Doulfa + [ VIuf + 2luf*ds (22)
> [ G = VD)ul*as > (2= IV llz=)lfullfe (23)
> |Jul|72 > 0. (24)

3This is arguably even easier to show in the Fourier domain
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One can similarily to question a) very easily prove that P + z is a self-adjoint operator,
hence by equation (22) P + z is bounded from below. Therefore we know from an
exercise sheet in FA I, that if P + z is injective then (P + z)* = P + z is also surjective.
Therefore P + z is bijective, bounded and therefore its resolvent B_, = (z + P)™! lies in
L(L3(SY), H*(S') by the theorem of bounded inverse. Let us consider the same resolvent
R_. as a map from L*(S') — L?*(S'). Then R_. is also bounded. Therefore R_, = R_, o1
is compact again as a composition of a compact embedding and a bounded map. It is
self-adjoint because P + z is self-adjoint. Therefore, we can apply the theorems in chapter
13 of FA I, for compact self-adjoint operators. By the first theorem in the chapter we

know that
o(R-_.)\{0} = 0,(P)\{0}. (25)

As R_, is self-adjoint, we therefore know that o(R_,) C R. Finally, R_, is positive
because P + z is: if we let v € L?(S')\{0}, and set u = R_,v then

0 < ((z+ P)u,u)p2 (26)
=((z+ P)R_,v,R_,v) 2 (27)
(v, R_,v) 2 (28)

= (R_,v,v)2 (29)

Therefore the Courant-Fischer min-max principle applies to yield a set of eigenvalues
A1 > Ao > A N\ 0 as k — oo with eigenvectors {vg }ren that span L*(S!), ker(R_,) = 0.
But then we have for this set v, that

(P + 2)vp = A o (30)

and hence

Py = (A, = 2)up. (31)

Clearly, the eigenvalues \;' — z can only accumulate at +0o and we are done.

3.2. Spectral calculus for commuting self-adjoint operators.

By the Borel functional calculus, we know that there exists a *-algebra homomorphism
¢ : B®(0(A)) — L(H) such that if B € L(H) commutes with A € L(H) then B
commutes with ¢(f) := f(A) for all f € B®(c(A)), i.e.

f(A)o B = Bo f(A). (32)

Keeping in mind that ¢ maps Borel measurable functions on o(A) into continuous
operators in L(H), we can therefore apply the same trick again: i.e. for f(A) € L(H)
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and B € L(H) there exists a ¢ : 0(B) — L(H), *-algebra homomorphism such that if
f(A) commutes with B then ¢(g) := g(B) commutes with f(A) for all g € B®, so we
have

f(A)og(B) =g(B)o f(A) (33)
for all f € B>*(0(A)) and g € B>*(¢(B)) and in particular for f,g € B*(R) as well
(as they are Borel measurable on both o(A) and o(B) respectively. Finally, the above
statement holds in particular for spectral projects f = 1q for Q C 0(A) measurable and
g = 1o with ' C o(B) measurable.

3.3. Resolvents to characterize the spectral measure.

We know from Riesz-Markov that for u € H dfi, and A € L(H) self-adjoint there exists
a regular Borel measure (the spectral measure of u) p, (supported on o(A) such that

(F(A ) = [ FE)dnalt) (34)
Applying the above to the resolvent functions
R\ —ie) =R\ +ie)=(A—A—ie) ' = (A= A+ie)! (35)
then we have by Riesz-Markov for this measure du, and A that
1
<2m,(R()\ —ie) — RO\ +ie))u, u) - /g AT = (At i) (1) (36)

and extending p,(t) trivially outside of its support on o(A) to a regular measure fi,(t)
we can rewrite this (with slight abuse of notation) as

(271m'(R()\ —i€) — R(\ +i€))u, “) - 217m R()‘ —t—ie) " — (A —t+ie) " d,(t). (37)

Thus we note that that for e > 0 arbitrary we have that

[ (55 (RO ie) = RO i) SO0A = [ 55 [ Ovmtie) ™ = (A thie) ()7 ()

27

(38)

Now we note that we can rewrite the integrand as

1 1 €
— (A=t —ie) = (A =t+ie) )f\) = —————=f(A 39
(A0 (Ot D) = L) (39)
Therefore for € > 0 fixed we know that
b1 € b1 €
S F)]dr < / S S—; ) 4

/a 7r62—|—()\—t)2f() _Ca7r62+(/\—t)2 (40)

1 b—t a—t
=— (arctan ( ) — arctan ( )> <1, (41)
T € €
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where we set C':= supye(,.p) |f(V)]-

/ab A 21m A=t —ie) = (A=t +ie) ) f(A)du(t)dA (42)
= / / 27” —t—ie)_l — (A=t +ie) D f(N)dfiy(t)dA. (43)
- [ o ) (w4

Now we still want to take a limit € N\, O inside the first integral. For this we apply
dominated convergence. As f € C%(a,b) and (a,b) is a bounded interval we can choose a
C > 0 such that |f(A\)| < +&; for all A € (a,b). Let us set g(t) as

1+22
)= [ i T (45)
9e _7T a€2+(A—t)2 ’
then one can calculate that
(1+¢)C
e A\ = ——F"—, 4
(¢ /1+/\2€2 —1)? (1+e+12 (46)

hence g.(t) is uniformily bounded for all € > 0. To summarize, putting all of the above
together, up until now we have the following equalities

11{%271%[;)((1%& i) — RO +i€))u, 1) f(\) A = 11{%/ /ME2 o ) di (1)
(47)
- 11\1,4%/ / e+ Qf()\) dXdfiu(?)
(48)
b1 € -
RLI{% ; ’/Tmf()\) dAdji, (1),
(49)

where the main steps were Fubini and dominated convergence. We are done when we
can show that

b1 €
[ ool a=so. (50)
Let us define ¥ (A —t) as
(A —1t) = 71T€2+(/€\—t)27 (51)
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we claim that it is an approximation of the Dirac distribution supported at {t} 1.e.
Ye(XN —t) satisfies ¥.(- — t) — d(- — t) in the sense of distributions:

li{%/ beON— ) F(H)dN = f(¢) for all f € CO(R) (52)
and therefore ,
lim / b — ) F(N A = f(1) for all f € C%a,b). (53)
WLOG we will prove that this holds in ¢ = 0, i.e. for
1 €
S 4
() e+ N2 (54)

It will follow from the lemma below, if we check three things: 1) 1.(\) > 0 for all € > 0,
2) Jg ¥e(N) and 3) for § > 0 arbitrary, we have

li J(\) = 0. 55
lim R\[_mw( ) (55)

It is trivial that ¥.(\) > 0 for all € > 0. The second identity follows quickly, we have

1 € 1 .
[~ = - Jim (aretan(A/e) — arctan(=)/e) (56)
1 (57)

by changing variables to z = \/e.
Finally the third requirement follows from the fact that

) 1, x ) o,
11{% s Ve (N)d\ = 11{% 7r((§ - arctan(g)) - ((arctan(z) —5) (58)
=0. (59)
combined with the lemma below this proves that
[ v = 0500 = 7o) (60)
We conclude now that we have proven
N L . . -
1{% 2—7”/(1 <(R()\ —i€) — R(A + @e))u, u>f( / hm/ Ye(t — A)dAdfi,(t)
(61)
= [ f@)dzu() (62)
— [ o (63)
=(f (A)u, U) (64)
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as desired. We note that the weak *-convergence on the dual space of C?(R) that is
being mentioned here is that of regular Borel measures on R, often denote as the set
M(R). We identify regular measures g € M(R) with functionals L, : C?(X) — C
as L,(f) = [z fdu. We recall that the weak-+ topology on C?(R) is given by the
smallest topology that makes evaluation functions of these functionals continuous, i.e.
the functionals M(X)* 3 f: M(X) — C that for f € C°(R) are defined by

flw) = ) = [ s (65)

Clearly the spectral measure of u € H, p, is a regular measure on R. As f € C%(R) is
arbitrary and we can also extend the integration bounds trivially and get

lim —— / ((R(A —ie) = RO+ i) )u, u) Oy = [ fd) (66)

eNO0 271

from where we conclude that f (%m((R( —i€) — R(- + ie))u,u)ﬁ) — f(dfi) as € \, 0,

where d£ is the standard Lebesque measure, for any evaluation function f defined by
f € C%a,b). This is precisely the definition of a limit in the weak-* topology on M (R).

Lemma. We say that the family (n.)c>0 C L'(R) is called an approzimating sequence of
the d-distribution the following three statements hold:

)ne=0V e>0 (67)

i) /n6dx:1 Ve>0 (68)
R

i7i) lim ndr=0Y 6 >0 fized. (69)
€=0 JR\[—6,9]

Then we have that n. — d(z) as € \, 0, i.e. we have

lim [ 6@ (x) de = 6(0) for all ¢ € CI(R). (70)

Proof. Let ¢ € C°(R) and € > 0. Then we have that

‘/Rd) “Ne dx — d)(O)‘ = /R¢~776d:v — (b(O)/Rneda: (71)
= | [6(@) = o(0)nda (72)
< [, 0@ =0 nlayde + [ [o(a) —6(0) e, (73)
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where in we used (67) in the second line. Thus if we choose § > 0 in such a way that
|op(x) — @(0)] < €/2 (by continuity of ¢), and €(d) > 0 such that € — 0, for

(dr < min{é/2,1}, 74
Jo el < min{e/2,1) (74)

we have that

€ ¢
/[_575] () = 6(0)) | ne()dzr < 3 /R ne(@)dr = 3 (75)
T
and g g g
/]]{\[_5,5] ‘¢($) - ¢(O))’ Nedx < imin{l, 5} < 5’ (76)
and we are done.
H

Remark. Hopefully the steps in the above and the approximation of the delta distributions
are something that might have been treated in a previous lecture on analysis (they are
basically a family of Poisson kernels). The formula that was proven in (61) is also known
as Stone’s formula.

3.4. Diagonalization of %.

This is a simple applications of the concepts we used in the first exercise of this sheet.
We know from exercise 1.1 that A is self-adjoint. The obvious unitary transformation
(isometric isomorphism) would then be the Fourier transform applied to D(A) = H!(S!).
Clearly F : D(A) — (*(Z) and we have for a given (a,)nez € (*(Z)

d
Fo Z% o F_l(an)nel = (_nan)nEZ- (77)

Clearly the space we are looking for is therefore M = (¢*(Z), uz) where uz : Z — [0, 00)
is the discrete counting measure. The function ¢ : Z — R is clearly given by

g(n) = —n. (78)

In this way T, : (*(Z) — (*(Z) is simply given by T, (a,)nez = (—nay)nez.
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