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4.1. Explicit form of a unitary transformation of a self-adjoint operator.

(a) This entire exercise can be very nicely solved in the same vein as exercises 3.1 and
3.4 of the previous sheet when we note that D(A) ∼= H1(S1). We then know that the
Fourier transform F : H1(S1) → h1(S1) is the unitary transformation that diagonalizes
i d

dx
, we have for (an)n∈Z ∈ h1(Z), as from exercise 3.4 we have

F ◦ i d
dx

◦ F−1(an)n∈Z = (−nan)n∈Z, (1)

hence in the language of the spectral theorem for unbounded self-adjoint functions the
measurable function g : Z → R that we are after is given by g(n) = −n. Now the strongly
continuous operator family eitA for t ∈ R is easily expressed on the ℓ2(Z) as e−itn and we
get the actual operator by conjugating with F :

eitAf(x) = (F−1 ◦ eitg(n) ◦ F)f(x).

Using that f(x) = ∑
n∈Z ane

inx we can then compute directly

eitAf(x) = F−1 ◦ (e−itnan)m∈Z =
∑
n∈Z

ane
−itneinx

=
∑
n∈Z

ane
in(x−t) = f(x− t).

We conclude that eitA is translation by t.

(b) With our knowledge of the previous exercise, this is also proven rather easily. If we
define the unitary operator U ∈ C1((0, 1), L(L2(0, 1)) via

U(x)f(x) = e−iαxf(x), (2)

then if f ∈ D(A) = {f ∈ H1(0, 1)|f(0) = eiαf(1)} we have

U(1)f(1) = e−iαf(1) = e−iαeiαf(0) = U(0)f(0),

i.e. U((0, 1)×D(A)) = H1(S1). As U is also unitary, let us first analyze U(x)◦i d
dx

◦U(x)−1 :
H1(S1) ↪→ D(A) → L2(S1), where i d

dx
: D(A) → L2(S1). We emphasize here that

i d
dx

: D(A) → L2(0, 1) is not the same operator as i d
dx

: H1(S1) → L2(0, 1) in the exercise
above, i.e. it will be unitarily equivalent to a different operator Ã : H1(S1) → L2(S1).
We calculate for ψ ∈ H1(S1) using the product rule

(U(x) ◦ i d
dx

◦ U(x)−1)ψ(x) = e−iαxi
d

dx
eiαxψ(x)

= i
d

dx
ψ(x) − αψ(x).
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i.e. i d
dx

on D(A) is unitarily equivalent to i d
dx

− α on H1(S1). Obviously, the Fourier
transform diagonalizes this operator again, and we get for (an)n∈Z that

F(U(x) ◦ i d
dx

◦ U(x)−1)F−1(an)n∈Z = ((−n− α)an)n∈Z, (3)

i.e. the multiplication operator g : ℓ2(Z) → ℓ2(Z) given by g(n) = −n − α Thus
exponentiating we get that

F ◦ (U(x) ◦ eitA ◦ U(x)−1) ◦ F−1(an)n∈Z = (e−i(n−α)tan)n∈Z, (4)

and hence for f ∈ D(A) we calculate

U(x) ◦ F ◦ ei(n−α)t ◦ F−1 ◦ U(x)−1f(x) = U(x)−1 ◦ F−1 ◦ e−i(n−α)t ◦ F ◦ U(x)f(x)
= U(x)−1 ◦ F−1e−i(n−α)t ◦ Fψ(x)
= U(x)−1 ◦ F−1(e−i(n−α)tan)n∈Z

= U(x)−1 ◦ F−1(e−i(n−α)tan)n∈Z

= U(x)−1

∑
n∈Z

ane
in(x−t)−iαt


= U(x)−1ψ(x− t)e−iαt

= f(x− t)e−iαt,

where we use the identification H1(S1) ∋ ψ(x) := U(x)f(x) ∈ H1(S1) for f ∈ D(A) and
the Fourier decomposition

ψ(x) =
∑
n∈Z

ane
inx. (5)

1

4.2. Cauchy’s formula for the spectrum of self-adjoint operators.

To start of let us analyze the equality that we are trying to prove. On the l.h.s. we have
f(A) as it is given in the context of the continuous and Borel functional calculus that we
know quite well at this point. The equation on the right hand side is the definition of f(A)
through the so-called holomorphic functional calculus also known as the Riesz-Dunford
functional calculus. This exercise basically asks us to prove that the definition of both
functional calculi agree when f is holomorphic and A is bounded, but before we can

1Actually one would expect a factor e2πinx if we let x ∈ (0, 1) but we can always rescale this of course.
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prove anything we first need to make sure that the r.h.s even makes sense. I.e. that the
map for fixed A ∈ L(H) ΦH : H(σ(A)) → L(H) given by 2

Φ(f) = fH(A) := 1
2πi

∮
γ
f(z)(z − A)−1dz (6)

is well defined. Well-definedness in this case includes both making sure that the vector
valued integral on the r.h.s is well-defined. Then we will show that fH(A) = f(A)
whilst simultaneously showing that fH would not have changed if we had chosen another
homologous path γ̃. We will use a subscript H to distinguish the holomorphic functional
calculus from the Borel functional calculus as at this point it is not a priori evident that
they indeed coincide.

Vector valued integrals.

First, we need to make sure that the right hand side is well defined. Let us first
observe that as A ∈ L(H) is bounded, σ(A) is compact, so lets assume that σ(A) ⊆ [a, b].
So for any open U that contains σ(A) we can select a piecewise C1 path that winds
around σ(A) once and indeed the rectangle suggested would do the trick if we make ϵ
small enough. It will however be convinient for the exercise to even assume that we C∞

curve γ. Second, we need to make sense of what the integral on the r.h.s. actually is
in this case, and in what follows we leave out a lot of the details. We observe that the
function

C ⊃ γ ∋ z 7→ 1
2πif(z)(z − A)−1 ∈ L(H) (7)

defines a function γ → L(H) as the path γ lies outside of σ(A) by assumption. The
integral of this operator valued (we still call this vector valued) function is defined in
much the same way as one knows from the Lebesque integral and are called Bochner
integrals. We will record a number of definitions and theorems around Bochner integrals
below.

Definition. Let (X,Σ, µ) be a measure space and B a Banach space then simple functions

s : X → B

are defined as

s(x) =
n∑

i=1
biχEi

where bi ∈ B and Ei ∈ Σ. (8)

for some n ∈ N0

2Here we read H(σ(A)) as the germ of holomorophic functions on an open neighbourhood of σ(A)
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Definition. Let (X,Σ, µ) be a measure space and B a Banach space. We say that a
function f : X → B is Bochner measurable (strongly measurable), if there exists a
sequence {sk} of simple functions sk : X → B such that

f(x) = lim
k→∞

sk(x) for x ∈ X, µ− almost everywhere. (9)

We denote the stronly measurable functions f : X → B with M(X,Σ, µ;B). One can
also define weakly measurable functions as functions f for which for all ϕ ∈ X∗, the map

X ∋ x 7→ ϕ(f(x)) ∈ C (10)

is measurable.

Definition. (Bochner integral, Riemannian version) Consider [a, b] ⊂ R with the stan-
dard Lebesque measure (we will omit notation for the σ-algebra etc.), and let B be a
Banach space. Let f [a, b] → B be strongly measurable, and let T = {a = t1 < t2, ..., tn = b
be a partition of T . We define the mesh of T as

||T || = sup
1≤i≤T

|ti+1 − ti| (11)

and a set of intermediate points ξT subordinate to T as ξT = {ξi ∈ [0, 1]|ξi ∈ [ti, ti+1]}.
For these quantities we define the Riemann sum

S(f, T, ξT ) :=
n−1∑
i=0

(ti+1 − ti)f(ξi). (12)

We say that f is Riemann integrable if there exists some b ∈ B such that for every ϵ > 0
there exists a δ > 0 such that for every partition T and intermediate points ξT satisfying
||T || < δ we have

||S(f, T, ξT ) − b||B < ϵ. (13)
In this case we write ∫ b

a
f(t)dt = b. (14)

The following theorems should come as no suprise.

Theorem. Let f, g : [a, b] → B be Riemann integrable. Then for µ, λ ∈ C we have∫ b

a
λf(x) + g(x)dx = λ

∫ b

a
f(x)dx+

∫ b

a
g(x)dx. (15)

Moreover, if ||f(x)||B : [a, b] → R+ is Riemann integrable iff f : [a, b] → B is Riemann
integrable, and we have ∣∣∣∣∣

∣∣∣∣∣
∫ b

a
f(x)dx

∣∣∣∣∣
∣∣∣∣∣
B

≤
∫ b

a
||f(x)||Bdx (16)

Moreover, if f : [a, b] → B is continuous, it is Riemann integrable.
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Proof. Exercise for the reader.

Now we have to make sense of the taking a line integral γ ⊂ C where we will assume γ
to simply be smooth.

Definition. Let γ : [0, 1] → C be a closed C∞ curve and let ψ ∈ M(Cσ(A),Σ, µ;B) be
strongly measurable. We define the integral of ψ over γ as∮

γ
ψ(z)dz =

∫ 1

0
ψ(γ(t))γ′(t)dt, (17)

where the integral in the r.h.s. is understood to be the vector valued integral Riemann
integral of the function (ψ ◦ γ)γ′.3

Now as γ ∩ σ(A) = ∅, we know that f(z)(z − A)−1 is analytic (see also exercise 3) on
γ and so certainly f(γ(t))(γ(t) − A)−1γ′(t) : [0, 1] → L(H) continuous. Most certainly
then, the integral∮

γ
f(z)(z − A)−1dz =

∫ 1

0
f(γ(t))(γ(t) − A)−1γ′(t)dt ∈ L(H). (18)

is well defined and yields an operator b ∈ L(H).

We also note that we have the following theorem.

Theorem. Let ψ : [a, b] → L(H) be a continuous function and let u, v ∈ H arbitrary.
Then we have

⟨
∫ 1

0
ψ(t) dtu, v⟩H =

∫ 1

0
⟨ψ(t)u, v⟩Hdt (19)

Proof. Let T be an arbitrary mesh for [0, 1] and ξT its set of intermediate points. We
then see that this arbitrary Riemann sum S(ψ, T, ξT ) we have

⟨S(ψ, T, ξT )u, v⟩H =
〈

n∑
i=1

ψ(ξi)(ti+1 − ti)u, v
〉

H

=
n∑

i=1
⟨ψ(ξi)u, v⟩H (ti+1 − ti)

= S(⟨ψ(t)u, v⟩H , T, ξT ).

3Note that γ′(t) ∈ C for all t ∈ [0, 1] so it is a scalar!
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Notice as a quick reality check that [0, 1] ∋ t 7→ ⟨ψ(t)u, v⟩H ∈ C is simply a continuous
function and thus also integrable over [0, 1] as∫ 1

0
⟨ψ(t)u, v⟩Hdt ≤ max

t∈[0,1]
||ψ(t)||L(H)||u||H ||v||H .

Therefore taking limits of partitions with mesh ||T || → 0 and corresponding ξT we get

⟨
∫ 1

0
ψ(t) dtu, v⟩H =

∫ 1

0
⟨ψ(t)u, v⟩Hdt

as required.

From this and our knowledge of f(z)(z −A)−1 we immediately get the following identity
for u, v ∈ H arbitrary〈∮

γ
f(z)(z − A)−1dz u, v

〉
H

=
∮

γ
⟨⟨f(z)(z − A)−1dz u, v⟩Hdz. (20)

With this last argument done, we are now set up to prove equality to the Borel functional
calculus, and show that the holomorphic functional calculus is independent of the path γ
chosen. We recall that through the Borel functional calculus we can define

⟨f(A)u, u⟩H =
∫
R
f(λ)dµu(λ),

where µu is supported on σ(A). Notice in particiular that for all u ∈ H we have that µu

is a finite measure as
∞ > ||u||2H =

∫
R

1dµu = µu(R).

As always, for the bilinear ⟨·, ·⟩H know that the polarization identity

2⟨Au, v⟩H = ⟨T (u+v), u+v⟩H + i⟨T (u+ iv), u+ iv⟩H − (1+ i)⟨Tu, u⟩H − (1+ i)⟨Tv, v⟩H

(21)
must hold. This, combined with the fact that µu and µv are finite, we can define the
complex measure

µu,v = 1
2 (µu+v + iµu+iv − (1 + i)µu − (1 + i)µv) . (22)

It is easy to check that for this measure it holds that for A and u, v ∈ H fixed,

⟨Au, v⟩H =
∫
R
f(λ)dµu,v(λ), (23)

where µu,v is again supported on σ(A). We will use these measures µu,v as it is slightly
more convenient in what follows. For the punchline of this entire exercise we replace
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the standard Lebesque measure dµ(z) on C with the dz so as not to confuse it with the
Borel spectral measure dµu,v we find

⟨fH(A)u, v⟩H =
〈 1

2πi

∮
γ
f(z)(z − A)−1 dz u, v

〉
H

= 1
2πi

∮
γ

〈
f(z)(z − A)−1 u, v

〉
H
dz

= 1
2πi

∮
γ

∫
σ(A)

f(z)
z − λ

dµu,v(λ) d(z)

= 1
2πi

∫ 1

0

∫
σ(A)

f(γ(t))
γ(t) − λ

γ′(t) dµu,v(λ) dt

=
∫

σ(A)

1
2πi

∫ 1

0

f(γ(t))
γ(t) − λ

γ′(t) dt dµu,v(λ)

=
∫

σ(A)

1
2πi

∮
γ

f(z)
z − λ

dz dµu,v(λ)

=
∫

σ(A)
f(λ) dµu,v(λ)

= ⟨f(A)u, v⟩H .

In the second line we used the interchanging of the contour integral and the scalar product
on H for vector valued functions, in the third line we plugged in the Borel functional
calculus, used Fubini to swap, and finally we were able to rewrite this as a standard
contour integral of a holomorphic function on C\σ(A) in (??) and finally apply the Cauchy
integral formula in this ordinary setting. 4) to completely rewrite this into the standard
expression for the Borel functional calculus. As we now know ⟨fH(A)u, v⟩H = ⟨f(A)u, v⟩H

for arbitrary u, v ∈ H we conclude with the Riesz representation theorem for Hilbert
spaces that f(A) = fH(A). Finally to edge out well-definedness of the holomorphic
functional calculus: let γ̃ be another path winding around σ(A) once, and assume it to
be homologous γ. If we were to define f̃H(A) as

f̃H(A) = 1
2πi

∮
γ̃
f(z)(z − A)−1dz (24)

4Although the Cauchy interal formula can be proven for vector valued integrals of analytic functions as
well, the nice thing about our current setup is that by swapping integrals around we can rewrite the
integral to an integral for which we already know the Cauchy integral formula to hold.
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we note that we can run the above computations again up until (??) and find

⟨f̃H(A)u, v⟩H =
∫

σ(A)

1
2πi

∮
γ̃

f(z)
z − λ

dz dµu,v(λ) (25)

=
∫

σ(A)

1
2πi

∮
γ

f(z)
z − λ

dzdµu,v(λ) (26)

= ⟨fH(A)u, v⟩H , (27)

where we shift the contour from γ to γ̃ for an ordinary holomorphic function!5 Again
with Riesz we conclude that the holomorphic calculus is well-defined, and independent of
the homologous paths γ and γ̃ chosen.

Remark. There is a nicer version of the Bochner integrals which is reminiscent of Lebesque
integration. But in this formalism the commuting identity (20) is harder to prove as
you work with simple functions on [0, 1] that do not translate back nicely to a contour
integral. For people more interested in the Riesz-Dunford holomorphic calculus, or in
Bochner integrals integrals in general I recommend reading the works of Rudin, Lax or
Yosida (all called Functional Analysis) or the original paper by Schwartz and Dunford,
called Linear Operators: Part I. Vector Measures by Diestel and Uhl also has a good
introduction to vector valued integrals.

4.3. Analicity of the resolvent operator

(a) We know that by definition that if z ∈ ρ(A), it holds that

Rz(z − A) = Id = (z − A)Rz,

therefore consider the quantity

Rw ◦ ((w − A) − (z − A)) ◦Rz = Rz −Rw. (28)

where we note that the composition of the l.h.s is well-defined as Rz, Rw : H → D(A) are
continuous bijections that map onto the domain of A. Now noting that the l.h.s reduces
to

Rw((w − A) − (z − A))Rz = (w − z)RwRz, (29)

gives us the required identity.

5In fact we could have concluded that fH(A) is independent of the homologous paths γ or γ̃ by the
fact that it is equal to f(A) yielded by the Borel functional calculus. The latter is of course not
defined using any contour at all...
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(b) Let z0 ∈ ρ(A) arbitrary. Choose z ∈ C such that |z − z0| ≤ ||Rz0||−1, where ||Rz0||
is the operator norm of Rz0 = (z0 −A)−1 and is bounded by assumption. Clearly then as

|z − z0|
||Rz0||

< 1, (30)

we have that for the operator T : D(A) → H defined by

T :=
∞∑

n=0
(−1)n(z − z0)n((z0 − A)−1)n (31)

that
||T || ≤ ||

∞∑
n=0

(−1)n(z − z0)n((z0 − A)−1)n|| ≤
∞∑

n=0

|z0 − z|n

||Rz0||
< ∞ (32)

is bounded, as the r.h.s is absolutely convergent.
Now we perform a simple Neumann-series argument yields us that

(z − A) ◦ T = ((z − z0)IdH + (z0 − A))
∞∑

n=0
(−1)n(z − z0)n((z0 − A)−1)n

= ((((((((z − z0)IdH + (z0 − A) −
(((((((((((
(z − z0)2((z0 − A)−1 −((((((((z − z0)IdH

+ (z − z0)3((z0 − A)−1)2 +(((((((((((
(z − z0)2(z0 − A)−1 + ...

= (z0 − A).

Now (z0 −A) is invertible by assumption (as we assumed z0 ∈ ρ(A), therefore we conclude
that

T ◦ (z0 − A)−1 :=
∞∑

n=0
(−1)n(z − z0)n((z0 − A)−1)n+1 (33)

is the right inverse of (z−A) and similarly one can show that it is the left inverse as well,
i.e. T ◦ (z0 − A)−1 = . We conclude that (z − A) is invertible, therefore z ∈ ρ(A). With
this we have proved that the ball with radius ||Rz0||−1 is contained in ρ(A) for arbitrary
z0 ∈ ρ(A). Hence ρ(A) is open.

(c) We prove that the map ρ(A) ∋7→ Rz(A) = (z − A)−1 ∈ L(H) is analytic, by taking
an arbitrary point z0 ∈ ρ(A). As ρ(A) is open, let us take h ∈ C with |h| small enough
such that z = Z0 + h ∈ ρ(A). Let T := z0 − A, and note that ||T || ̸= 0. Then observe
that z − A = T + h, whence

Rz0+h = (z − A)−1

= (h+ T )−1

= T−1 − h(T−1)2 + h2(T−1)3 + ...

=
∞∑

n=0
(−h)n(T−1)n+1
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where the expansion is again justified as long as we take |h| < ||T−1||. Now observe that
for n ≥ 2 the sum in this expansion is of order O(h) as

||
∞∑

n=2
(−h)n(T−1)n+1|| ≤

∞∑
n=2

|h|n||T−1||n+1 = |h|2||T−1||3

1 − |h|||T−1||
. (34)

We conclude that

lim
|h|↓0

||Rz(A) −Rz0(A)||
|h|

= lim
|h|↓0

||(h+ T )−1 − T−1||
|h|

= ||T−2|| = ||(z0 − A)−2||. (35)

We are done when we show that z 7→ Rz is also continous (as then Rz ◦Rz) is continuous
as a composition of continuous functions in the last line above). But this also follows
immediately from (34) and exercise (a). We see that for |h| > 0 small and z := z0 + h
that

||Rz −Rz0|| ≤ |h|||Rz0 ◦Rz||

≤ |h|||T−1||
( ∞∑

n=0
|h|n(T−1)n+1

)

=
( ∞∑

n=1
|h|n(T−1)n+1

)
.

This series is absolutely convergent and of order O(h) again, thus

lim
|h|↓0

||Rz0+h −Rz0|| = 0, (36)

and z 7→ Rz is continuous, and hence so is Rz ◦Rz. We conclude that the r.h.s in (35) is
continuous, and therefore z 7→ Rz complex differentiable and analytic.

4.4. Heat equation and the exponential map.

(a) The "neat" framework for this exercise would be unbounded Borel functional calculus,
however theorem theorem (T.11) gives us a "budget" version of doing this. As unbounded
Borel functional calculus has only briefly been mentioned in the lectures, we will opt to
solve the exercise with theorem (T.11) Furthermore we shift notation to from u to v in
the solution as we denote the unitary operator we are going to use with U .
Let U : H → L2(M,dµ) be the unitary transformation from H to a finite measure space
(M,µ) such that for all v ∈ D(A) ⊂ H we have

A(v) = U−1 ◦ Tg ◦ U(v), (37)
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where g : M → R is a measurable function and Tg : L2(M,dµ) ⊃ D(Tg) → L2(M,dµ)
where we recall that D(Tg) = U(D(A)).
Let v ∈ D(A) and let us first observe the following:

||v||2H = ||Uv||2L2(M,dµ), (38)

as U is unitary. We conclude therfore that∫
M

|(Uv)(x)|2dµ(x) < ∞ (39)

where we emphasize that Uv ∈ L2(M,dµ) for all v ∈ H. Likewise, if v ∈ D(A), we have

||Av||2H = ||U−1TgUv||2H
= ||TgUv||2L2(M,dµ).

Therefore as v ∈ D(A) =⇒ ||Av||H < ∞, and we see that∫
M

|g(x)|2|Uv(x)|2dµ(x) < ∞. (40)

We have seen in class as well that

e−tA = U−1 ◦ e−tTg ◦ U, (41)

we also know that
ess ran g = σ(A). (42)

Therefore if σ(A) ⊆ [C,∞) we know that

g(x) > C µ− a.e.. (43)

Therefore, for all v0 ∈ D(A) we have that

||vt||2H = ||e−tAv0||2H
= ||U−1e−tgU(v0)||2H
= ||e−tgU(v0)||2L2(M,dµ)

=
∫

M
e−2tg(x)|Uv0(x)|2dµ(x)

≤ e−2tC
∫

M
|Uv0(x)|2dµ(x)

= e−2tC ||Uv0||2L2(M,dµ)

= e−2tC ||v0||2H ,
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where we used that y 7→ e−ty is monotously decreasing in y for t ≥ 0. Taking the square
root in the above we have ||vt||H ≤ e−tC ||v0||H for all t ≥ 0 as required. Notice that
this implies that if v0 ∈ D(A) then v0 ∈ D(e−tA) for all t ≥ 0. Let us also now here
that if v0 ∈ D(A) then vt ∈ D(A) for all t ≥ 0. From the unitary equivalence relation
U−1 ◦ A ◦ U = Tg and the fact that D(Tg) = U(D(A)) we know that given v0 ∈ D(A)
(so ||gUv0||L2(M,dµ) < ∞), we will have that vt ∈ D(A) if and only if gUvt ∈ Tg, i.e.
iff ||TgUvt||L2(M,dµ). As vt = e−tAv0 = U−1e−tg(x)Uv0 we can further reduce this to the
statement that vt ∈ D(A) iff ||gUU−1e−tg(x)Uv0||L2(M,dµ) < ∞ under the assumption that
v0 ∈ D(A). But this follows immediately:

||ge−tgU(v0)||2L2(M,dµ) =
∫

M
e−2tg(x)|g(x)|2|Uv0(x)|2dµ(x)

≤ e−2tC
∫

M
|g(x)|2|Uv0(x)|2dµ(x)

= e−2tC ||TgUv0||2L2(M,dµ) < ∞.

Thus we see that ||Avt||2H = ||U−1Tge
−tgU(v0)||2H < e−2tC ||Av0||2H < ∞ for all t ≥ 0

provided that v0 ∈ D(A).

(b) We will prove in this exercise only that vt ∈ C0([0,∞), D(A)) with D(A) equipped
with the norm ||u||D(A) = ||u||H + ||Au||H and differ differentiability to the last exercise.
Recall that D(A) with this norm is closed as A is self adjoint and thus Hilbert. We will
only prove continuity in t = 0, the proof for other t is analogous due to the semi-group
property of the family {e−tA}t≥0, i.e. e−(t+s)A = e−tA ◦ e−sA.
Thus, let v0 ∈ D(A); we want to show

lim
t↘0

||vt − v0||D(A) = lim
t↘0

(||vt − v0||H + ||Avt − Av0||H) = 0. (44)

Let us consider ||vt − v0||H first. We know, by the same steps as above that

lim
t↘0

||vt − v0||2H = lim
t↘0

||(e−tA − 1)v0||2H

= lim
t↘0

||(e−tg(x) − 1)Uv0||2L2(M,dµ)

= lim
t↘0

∫
M

(e−tg(x) − 1)2|Uv0(x)|2dµ(x)

= lim
t↘0

∫
M

(e−2tg(x) − 2e−tg(x) + 1)|Uv0(x)|2dµ(x)

As we proved already that Uv0 ∈ L2(M,dµ) we see that the above integrand is dominated
by (e−t2C +2e−tC +1)||Uv0||L2(M,dµ), where we flip the sign on the cross term. Moreover we
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have that limt↘0(e−tg(x) − 1)2|Uv0(x)| = 0 pointwise µ-a.e.. With dominated convergence
we conclude that

lim
t↘0

||vt − v0||H = 0. (45)

Let us now consider ||Avt −Av0||H for v0 ∈ D(A). The calculation is analogous, we have

lim
t↘0

||Avt − Av0||2H = lim
t↘0

||Tge
−tg(x)Uv0 − TgUv0||2L2(M,dµ)

= lim
t↘0

∫
M

∣∣∣e−tg(x) − 1
∣∣∣2 |g(x)|2|Uv0(x)|2dµ(x).

As v0 ∈ D(A) we know that gUv0 ∈ L2(M,dµ). Therefore the above integral is dominated
by (e−2tC + 2e−tC + 1)||TgUv0||L2(M,dµ) = (e−2tC + 2e−tC + 1)||Av0||H . Pointwise we again
have limt↘0 |e−tg(x) − 1||Uv(x)| = 0 and with dominated convergence we can conclude
that

lim
t↘0

||Avt − Av0||H = 0. (46)

(c) We will now prove that vt ∈ C1([0,∞), H) and moreover that d
dt
vt = −Avt. We

will again prove this only for t = 0 the rest is anologous by the semi-group property.
Specifically, we want to prove that for v0 ∈ D(A)

lim
t↘0

∣∣∣∣∣∣∣∣vt − v0

t
− −Av0

∣∣∣∣∣∣∣∣
H

= lim
t↘0

∣∣∣∣∣
∣∣∣∣∣e−tAv0 − v0

t
+ Av0

∣∣∣∣∣
∣∣∣∣∣
H

= 0. (47)

Now, we see that

lim
t↘0

∣∣∣∣∣
∣∣∣∣∣e−tAv0 − v0

t
+ Av0

∣∣∣∣∣
∣∣∣∣∣
H

= lim
t↘0

∣∣∣∣∣
∣∣∣∣∣(e−tg(x) − 1)

t
Uv0 + TgUv0

∣∣∣∣∣
∣∣∣∣∣
L2(M,dµ)

=
∫

M

∣∣∣∣∣e−tg(x) − 1
t

+ g(x)
∣∣∣∣∣
2

|Uv0(x)|2 dµ(x)
1/2

=
∫

M

(∣∣∣∣∣e−tg(x) − 1
t

∣∣∣∣∣+ |g(x)|
)2

|Uv0(x)|2 dµ(x)
1/2

=
∫

M

∣∣∣∣∣e−tg(x) − 1
t

∣∣∣∣∣
2

+ 2|g(x)|
∣∣∣∣∣e−tg(x) − 1

t

∣∣∣∣∣+ |g(x)|2
 |Uv0(x)|2 dµ(x)

1/2

=
∫

M
2
∣∣∣∣∣e−tg(x) − 1

t

∣∣∣∣∣
2

+ |g(x)|2
 |Uv0(x)|2 dµ(x)

1/2

,

where we use Young’s inequality to absorb the cross term into the squared terms. As
we know that ||g(x)Uv0(x)||L2(M,dµ) = ||Avt||H ≤ e−2tC ||Av0||H < ∞, we are done if we
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can we can dominate the first term uniformly around t = 0. Therefore let δ > 0, and fix
x ∈ M . By the intermediate value theorem, we know that for all 0 ≤ t < δ there exists a
0 ≤ ξ0 < t such that

e−tg(x) − 1 = g(x)(e−ξ0g(x))(t− 0). (48)

Thus we see that∣∣∣∣∣e−tg(x) − 1
t

∣∣∣∣∣
2

=
∣∣∣g(x)(e−ξ0g(x))

∣∣∣2 < e−2ξ0C |g(x)|2 < e−2δC |g(x)|2 (49)

Thus we see that we can dominate the integrand for t ∈ [0, δ) uniformly as

2
∣∣∣∣∣e−tg(x) − 1

t

∣∣∣∣∣
2

+ |g(x)|2
 |Uv0(x)|2 ≤ 2(e−2δC + 1)|g(x)|2|Uv0(x)|2, (50)

which is integrable as |g(x)|2|Uv0(x)|2 is. As

lim
t↘0

∣∣∣∣∣e−tg(x) − 1
t

+ g(x)
∣∣∣∣∣
2

|Uv0(x)|2 = |−g(x) + g(x)|2 |Uv0(x)|2 = 0

pointwise µ-almost everywhere, we conclude again with dominated convergence that

lim
t↘0

∣∣∣∣∣
∣∣∣∣∣e−tAv0 − v0

t
+ Av0

∣∣∣∣∣
∣∣∣∣∣
H

= 0. (51)

For the other points t ̸= 0 we can similarly deduce that d
dt
vt = Avt. We finally note that

Avt is continuous for t ≥ 0 as we have proven this already in part (b) (we know that
limt↘0 ||Avt − Av0||H = 0, for t = 0, and for t ≠ 0 the proof is analogous. We conclude
that vt ∈ C1([0,∞), H).
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