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5.1. The p-energy functional.

Let ∅ ≠ Ω ⊂ Rn be open, bounded and regular, 2 ≤ p < ∞ and g ∈ C2(∂Ω). Consider

Ep(u) :=
∫

Ω
|∇u|pdx, and U := {u ∈ C2(Ω̄) | u|∂Ω = g. (1)

(a) Suppose u1, u2 ∈ U both satisfy

Ep(u1) = Ep(u2) = m =: inf
v∈U

Ep(v). (2)

Since for p ≥ 2 the mapping Rn ∋ v 7→ |v|p is strictly convex, that is, we have∣∣∣∣v1 + v2

2

∣∣∣∣p <
|v1|p + |v2|p

2 , (3)

for every v1, v2 ∈ Rn with v1 ̸= v2. If ∇u1 ̸= ∇u2 in a set of postiive measure, then we
ahve

Ep

(
u1 + u2

2

)
=
∫

Ω

∣∣∣∣∇u1 + ∇u2

2

∣∣∣∣p dx ≤
∫

Ω

|∇u1|p + |∇u2|p

2 dx = m, (4)

which is a contradiction to u1 and u2 being minimizers of Ep.
Consequently, ∇u1 = ∇u2 a.e. on Ω. Then by continuity ∇u1 = ∇u2 on Ω, which means
that u1 − u2 is constant on every connected component of Ω. Since (u1 − u2)|∂Ω = 0 the
conclusion now follows from the lemma below with u = u1 − u2.

Lemma. If u ∈ C2(Ω̄) with u|∂Ω = 0 satisfies ∆u = 0 in Ω, then u ≡ 0.

Proof. First note if u ∈ C2(Ω̄) with u|∂Ω = 0 we can apply integration by parts and we
get

∫
Ω

|∇u|2dx = −
∫

Ω
u∆udx ≤

∫
Ω

|u||∆u|dx ≤
(∫

Ω
u2dx

)1/2 (∫
Ω

|∆u|2dx
)1/2

, (5)

where we used Cauchy-Schwarz in the final inequality. Now we note that if u ∈ C2(Ω̄)
with u|∂Ω = 0 satisfies ∆u = 0 on Ω, then∫

Ω
|∇u|2dx = −

∫
Ω

u ∆u︸︷︷︸
=0

dx = 0. (6)

Since |∇u(x)|2 ≥ 0 for every x ∈ Ω we know that |∇u|2 ≡ 0 on Ω. Since Ω is connected
this means that u is constant on Ω. From continuity it follows that u(x) = u|∂Ω = 0 as
required.
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(b) Suppose u ∈ U is a minimizer of Ep. Let ϕ ∈ C2(Ω̄) satisfy ϕ|∂Ω = 0. Then
u + tϕ ∈ U for every t ∈ R. Moreover,

d

dt

∫
Ω

|∇u + t∇ϕ|p dx = p
∫

Ω
|∇u + t∇ϕ|p−2(∇u + t∇ϕ) · ∇ϕ dx. (7)

In particular,

0 = d

dt

∣∣∣∣∣
t=0

∫
Ω

|∇u + t∇ϕ|p dx = p
∫

Ω
|∇u|p−2∇u · ∇ϕ dx = −p

∫
Ω

div
(
|∇u|p−2∇u

)
∇ϕ dx

for every C2(Ω̄) with ϕ|∂Ω = 0. Hence, by the fundamental lemma of the calculus of
variations, −div (|∇u|p−2|∇u|) = 0 a.e. in Ω. By ocntinuity, −div (|∇u|p−2∇u) = 0 on
Ω.

(c) For every u ∈ C2(Ω̄) with u|∂Ω = 0 we have that∫
Ω

|∇u|p dx =
∫

Ω
|∇u|p−2∇u · ∇u dx = −

∫
Ω

div
(
|∇u|p−2∇u

)
u dx

= −
∫

Ω

(
(p − 2)|∇u|p−4

(
D2u(∇u, ∇u)

)
+ |∇u|p−2∆u

)
u dx

≤(p − 2 +
√

n)
∫

Ω
|∇u|p−2|D2u||u| dx,

where (∆u)2 ≤ n|D2u|2 is used. Indeed, with ∂u
∂xj

=: uj and ∂2u
∂xj∂xk

=: ujk we have

∣∣∣D2u(∇u, ∇u)
∣∣∣ =

∣∣∣∣∣∣
n∑

j=1
uj

n∑
k=1

ujkuk

∣∣∣∣∣∣ ≤

 n∑
j=1

u2
j

1/2 n∑
j=1

(
n∑

k=1
ujkuk

)2
1/2

≤

 n∑
j=1

(
n∑

k=1
u2

jk

)2 ( n∑
k=1

u2
k

)2
1/2

= |∇u|2
 n∑

j=1

n∑
k=1

u2
jk

1/2

= |∇u|2|D2u|,

so we have(∇u

n

)2
=
(

u11 + ... + unn

n

)2
≤ u2

11 + ... + u2
nn

n
≤ 1

n

n∑
j=1

n∑
k=1

u2
jk = 1

n
|D2u|2.

Using Hölder’s inequality with 1 = p−2
p

+ 1
p

+ 1
p
, we obtain

∫
Ω

|∇u|pdx ≤ (p − 2 +
√

n)
(∫

Ω
|∇u|p dx

) p−2
p
(∫

Ω
|D2u|p dx

) 1
p
(∫

Ω
|u|p dx

) 1
p

.

From this it follows that

(intΩ|∇u|pdx)
2
p ≤ (p − 2 +

√
n)
(∫

Ω
|D2u|p dx

) 1
p
(∫

Ω
|u|p dx

) 1
p

, (8)
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whence ∫
Ω

|∇u|pdx ≤ (p − 2 +
√

n)
p
2

(∫
Ω

|D2u|p dx
) 1

2
(∫

Ω
|u|p dx

) 1
2

. (9)

5.2. Weak derivative in Lp(Ω)

(a) Let u ∈ L1
loc(Ω). Given 1 < p ≤ ∞, let 1 ≤ q < ∞ such that 1

p
+ 1

q
= 1. Suppose

Dαu exists as weak derivative in Lp(Ω). Let φ ∈ C∞
c (Ω) be arbitrary. Then,∣∣∣∣∫

Ω
uDαφ dx

∣∣∣∣ =
∣∣∣∣(−1)|α|

∫
Ω
(Dαu)φ dx

∣∣∣∣ ≤ ∥Dαu∥Lp(Ω)∥φ∥Lq(Ω)

by Hölder’s inequality which proves the first claim with constant C = ∥Dαu∥Lp(Ω).
Conversely, suppose

∀φ ∈ C∞
c (Ω) :

∣∣∣∣∫
Ω

u Dαφ dx

∣∣∣∣ ≤ C∥φ∥Lq(Ω).

Then, since C∞
c (Ω) is dense in Lq(Ω) for q < ∞, the map

f : φ 7→ (−1)|α|
∫

Ω
u Dαφ dx

defines a continuous linear functional f ∈ (Lq(Ω))∗. Since (Lq(Ω))∗ for 1 ≤ q < ∞ is
isometrically isomorphic to Lp(Ω), there exists g ∈ Lp(Ω) such that

∀φ ∈ Lq(Ω) : f(φ) =
∫

Ω
gφ dx.

By definition of f it follows that g ∈ Lp(Ω) is the weak derivative Dαu of u.

(b) Let u = χ]0,1[ and φ ∈ C∞
c (R). Then∣∣∣∣∫

R
u φ′ dx

∣∣∣∣ =
∣∣∣∣∫ 1

0
φ′ dx

∣∣∣∣ =
∣∣∣φ(1) − φ(0)

∣∣∣ ≤ 2∥φ∥L∞(R).

The function u restricted to R \ {0, 1} is differentiable with vanishing derivative. In
particular, if u had a weak derivative u′ ∈ L1

loc(R), then u′ = 0 almost everywhere. A
contradiction arises for test functions φ ∈ C∞

c (R) with φ(0) ̸= φ(1) via

0 =
∫
R

u′φ dx = −
∫
R

u φ′ dx = −
∫ 1

0
φ′ dx = φ(0) − φ(1).
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5.3. The ice-cream cone

(a) Fix any φ ∈ C∞
c (Ω) and pick a small positive constant 0 < ε < 1. Then, define

Iε := −
∫

Ω∖Bε(0)
u(x, y)∂φ

∂x
(x, y) dx dy = −

∫
Ω∖Bε(0)

(
1 −

√
x2 + y2

)∂φ

∂x
(x, y) dx dy

and

Jε := −
∫

Bε(0)
u(x, y)∂φ

∂x
(x, y) dx dy = −

∫
Bε(0)

(
1 −

√
x2 + y2

)∂φ

∂x
(x, y) dx dy.

Clearly,

|Jε| =
∣∣∣∣∣
∫

Bε(0)

(
1 −

√
x2 + y2

)∂φ

∂x
(x, y) dx dy

∣∣∣∣∣ ≤ π∥∇φ∥L∞(Ω)ε
2 → 0

as ε → 0+. On the other hand, since u is smooth on Ω∖Bε(0), we can integrate by parts
in the integral Iε to get

Iε =
∫

∂Bε(0)

(
1 −

√
x2 + y2

)
φ(x, y)x

ε
dσ −

∫
Ω∖Bε(0)

x√
x2 + y2 φ(x, y) dx dy

= (1 − ε)
∫

∂Bε(0)
φ(x, y)x

ε
dσ −

∫
Ω∖Bε(0)

x√
x2 + y2 φ(x, y) dx dy.

Notice that ∣∣∣∣∣(1 − ε)
∫

∂Bε(0)
φ(x, y)x

ε
dσ

∣∣∣∣∣ ≤ 2π∥φ∥L∞(Ω)(1 − ε)ε → 0

as ε → 0+. Moreover, since∣∣∣∣∣
∫

Ω

x√
x2 + y2 φ(x, y) dx dy

∣∣∣∣∣ ≤ ∥φ∥L∞(Ω)

(∫ 2π

0
| cos θ| dθ

)
·
(∫ 1

0
rdr

)
= 2∥φ∥L∞(Ω) < +∞,

by dominated convergence we get

−
∫

Ω∖Bε(0)

x√
x2 + y2 φ(x, y) dx dy → −

∫
Ω

x√
x2 + y2 φ(x, y) dx dy,

as ε → 0+. Thus,

Iε + Jε → −
∫

Ω

x√
x2 + y2 φ(x, y) dx dy.
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But since

Iε + Jε = −
∫

Ω
u(x, y)∂φ

∂x
(x, y) dx dy,

for every 0 < ε < 1, by uniqueness of the limit we obtain

−
∫

Ω
u(x, y)∂φ

∂x
(x, y) dx dy = −

∫
Ω

x√
x2 + y2 φ(x, y) dx dy.

Since Ω has finite measure, it holds that L∞(Ω) ↪→ Lp(Ω) continuously for every p ∈
[1, ∞), and so it follows that such weak partial derivative of u exists in Lp(Ω) for every
p ∈ [1, ∞] and is given by

∂u

∂x
(x, y) = − x√

x2 + y2 a.e. on Ω.

Analogous conclusions hold for the weak partial derivative with respect to y of u on Ω,
which is given by

∂u

∂y
(x, y) = − y√

x2 + y2 a.e. on Ω.

(b) First, notice that

|∇u|2 =
∣∣∣∣∣∂u

∂x

∣∣∣∣∣
2

+
∣∣∣∣∣∂u

∂y

∣∣∣∣∣
2

= 1 a.e. on Ω.

Thus,

∥∇u∥Lp(Ω) = π1/p ∀ p ∈ [1, ∞)

and

∥∇u∥L∞(Ω) = 1.

5.4. A closedness property.

(a) Given I := ]a, b[ for −∞ ≤ a < b ≤ ∞ and 1 < p ≤ ∞, let u ∈ Lp(I) and let (uk)k∈N
be a bounded sequence in W 1,p(I) satisfying ∥uk − u∥Lp(I) → 0 as k → ∞. Let u′

k be the
weak first derivative of uk. By assumption, the sequence (u′

k)k∈N is bounded in Lp(I).

Case 1 < p < ∞. In this case, the space Lp(I) is reflexive and the Eberlein–Šmulyan
Theorem applies: (u′

k)k∈N has a subsequence which converges weakly in Lp(I). Let
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g ∈ Lp(I) be the corresponding weak limit and Λ ⊂ N the subsequence’s indices. Since
for any φ ∈ C∞

c (I), the maps Lp(I) → R given by f 7→
∫

I fφ dx or by f 7→ −
∫

I fφ′ dx
are elements of (Lp(I))∗ and since ∥uk − u∥Lp → 0 implies uk

w
⇁ u, we have by definition

of weak convergence

−
∫

I
uφ′ dx = lim

Λ∋k→∞

(
−
∫

I
ukφ′ dx

)
= lim

Λ∋k→∞

(∫
I

u′
kφ dx

)
=
∫

I
gφ dx

for any φ ∈ C∞
c (I). Hence, g ∈ Lp(I) is indeed the weak derivative of u ∈ Lp(I) and

u ∈ W 1,p(I) follows.

Case p = ∞. Since L1(I) is separable, the Banach–Alaoglu Theorem applies: (u′
k)k∈N

being bounded in L∞(I) ∼= (L1(I))∗ has a subsequence (given by Λ ⊂ N) which weak∗-
converges to some g ∈ (L1(I))∗. For any φ ∈ C∞

c (]0, 1[) ⊂ L1(]0, 1[),

−
∫

I
uφ′ dx = lim

Λ∋k→∞

(
−
∫

I
ukφ′ dx

)
= lim

Λ∋k→∞

(∫
I

u′
kφ dx

)
=
∫

I
gφ dx

follows as in part (a) with the only difference, that the last identity comes from weak∗-
convergence rather than weak convergence. Hence, g ∈ (L1(I))∗ ∼= L∞(I) is indeed the
weak derivative of u ∈ L∞(I) and u ∈ W 1,∞(I) follows.

(b) The assumption p ̸= 1 in part (a) is necessary. Consider I = ]−1, 1[ and u = χ]0,1[ ∈
L1(I). For every k ∈ N let uk : I → R be given by

uk(x) =


0, for − 1 < x ≤ 0,

kx, for 0 < x ≤ 1
k
,

1, for 1
k

< x ≤ 1.
x

+1

+
0

+
1

+
−1

u1u2u3···

Then, uk ∈ W 1,1(I) with ∥uk∥L1 = 1 − 1
2k

and ∥u′
k∥L1 = 1

k
k = 1. Moreover, there holds

∥uk − u∥L1 = 1
2k

→ 0 as k → ∞. However, u /∈ W 1,1(I), otherwise u would have a
continuous representative.

Remark. This is not a counterexample in the case p > 1, where ∥u′
k∥Lp = ( 1

k
kp)

1
p → ∞.
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