6.1. The Dirichlet problem on an interval.

(a) Existence of a solution $u \in H_{0}^{1}(I)$ can be quickly deduced using Riesz' representation theorem. More specifically, we have the Poincare inequality for $\Omega \subset] 0, L\left[\times \mathbb{R}^{n-1}\right.$ that tells us that

$$
\begin{equation*}
\int_{\Omega}|u|^{2} d x \leq L^{2} \int_{\Omega}|\nabla u|^{2} d x \tag{1}
\end{equation*}
$$

for all $u \in C_{c}^{\infty}(\Omega)$. In particular this means for $I=(a, b)$ that there exists a constant $C>0$ such that

$$
\begin{equation*}
\|u\|_{L^{2}(I)} \leq C\|\nabla u\|_{L^{2}(I)} . \tag{2}
\end{equation*}
$$

This shows that for $u \in C_{c}^{\infty}(I)$ the norm $\|\cdot\|_{\nabla}$ defined through

$$
\begin{equation*}
\|u\|_{\nabla}=\int_{I}|\nabla u|^{2} d x \tag{3}
\end{equation*}
$$

is equivalent ${ }^{1}$ to the standard H^{1} norm given by $\|u\|_{H^{1}(I)}=\|u\|_{L^{2}}+\|u\|_{\nabla}$ for all $u \in C_{c}^{\infty}(I)$. Therefore, the closure of $C_{c}^{\infty}(I)$ with respect to $\|\cdot\|_{\nabla}$ will again yield $H_{0}^{1}(I)$, which will again be a Hilbert space with respect to the scalar product

$$
\begin{equation*}
\langle u, v\rangle_{\nabla}=\int_{I} u^{\prime} v^{\prime} d x . \tag{4}
\end{equation*}
$$

We then close out the argument by noting that the map $L_{f}: C_{c}^{\infty}(I) \rightarrow \mathbb{C}$ given by

$$
\begin{equation*}
L_{f}(\phi)=\int_{I} f \phi d x \tag{5}
\end{equation*}
$$

is bounded with respect to the $\|\cdot\|_{\nabla}$ norm, for any $f \in C^{0}(\bar{I})$ as we have

$$
\begin{equation*}
\left|L_{f}(\phi)\right| \leq\|f\|_{L^{2}(I)}\|\phi\|_{L^{2}(\bar{I})} \leq C\|f\|_{L^{2}(I)}\|\nabla \phi\|_{L^{2}(I)}, \tag{6}
\end{equation*}
$$

where we use the Cauchy-Schwarz inequality and again the Poincaré inequality. Thus L_{f} is bounded hence continuous, and can be extended from $C_{c}^{\infty}(I)$ to $H_{0}^{1}(I)$ by density. Then using that $H_{0}^{1}(I)$ is a Hilbert space, Riesz' represenation theorem gives us the existence of a $u \in H_{0}^{1}(I)$ such that

$$
\begin{equation*}
L_{f}(v)=\langle u, v\rangle_{\nabla} \text { for all } v \in H_{0}^{1}(I), \tag{7}
\end{equation*}
$$

which yields us exactly that

$$
\begin{equation*}
\int_{I} f v d x=\int_{I} u^{\prime} v^{\prime} d x \tag{8}
\end{equation*}
$$

for all $v \in H_{0}^{1}(I)$.

[^0](b) We will first show that $u \in C^{2}(\bar{I})$. As (8) holds for $v \in C_{c}^{\infty}(I)$ in particular we know that $u^{\prime} \in L^{2}(I)$ has the weak solution
\[

$$
\begin{equation*}
\left(u^{\prime}\right)^{\prime}=-f \in C^{0}(\bar{I}) \hookrightarrow L^{\infty}(I) \tag{9}
\end{equation*}
$$

\]

i.e. $u \in W^{1, \infty}$. Using a combination of theorem $T .18$ na dthe fundamental theorem, we see that

$$
\begin{equation*}
u(x)=u^{\prime}\left(x_{0}\right)-\int_{x_{0}}^{x} f(t) d t \in C^{1}(\bar{I}) \tag{10}
\end{equation*}
$$

Thus $u \in C^{2}(\bar{I})$ and hence u solves

$$
\begin{equation*}
-u^{\prime \prime}(x)=f(x) \tag{11}
\end{equation*}
$$

in the classical sense. To check boundary conditions, we use that $H_{0}^{1}(I)={\overline{C_{c}^{\infty}(I)}}^{\|\cdot\| \nabla}$. Hence we choose a $\left(u_{k}\right)_{k \in \mathbb{N}} \subset C_{c}^{\infty}(I)$ with

$$
\begin{equation*}
\left\|u_{k}-u\right\|_{L^{\infty}} \leq C\left\|u_{k}-u\right\|_{H^{1}} \rightarrow 0 \text { as } k \rightarrow \infty . \tag{12}
\end{equation*}
$$

Thus we have for arbitrary $k \in \mathbb{N}$ that

$$
\begin{equation*}
|u(a)| \leq \underbrace{\left|u_{k}(a)\right|}_{=0}+\left\|u_{k}-u\right\|_{L^{\infty}} \leq C \mid\left\|u_{k}-u\right\|_{H^{1}} \rightarrow 0 \text { as } k \rightarrow \infty, \tag{13}
\end{equation*}
$$

where the $u_{k}(a)$ are obviously 0 as the u_{k} are compactly supported in (a, b). We connclude $u(a)=0$. Analogously one can show $u(b)=0$

6.2. The Neumann problem on an interval.

(a) For $x, y \in I$ we have

$$
\begin{equation*}
|u(x)-u(y)| \leq \int_{I}\left|u^{\prime}(t)\right| d t=\left\|u^{\prime}\right\|_{L^{1}} . \tag{14}
\end{equation*}
$$

Therefore it follows that

$$
\begin{aligned}
|u(x)| & =|u(x)-\bar{u}|=\left|\frac{1}{|I|} \int_{I}(u(x)-u(y)) d y\right| \\
& \leq \frac{1}{|I|} \int_{I}|u(x)-u(y)| d y \frac{1}{|I|}| | u^{\prime} \|_{L^{1}} .
\end{aligned}
$$

Thus we see that

$$
\|u\|_{L^{2}}^{2}=\frac{1}{|I|^{2}}\left\|u^{\prime}\right\|_{L_{1}}^{2} \int_{I} 1 d x
$$

Functional Analysis II
Solution to Problem Set 6

ETH Zürich
Spring 2023
so

$$
\|u\|_{L^{2}}=\frac{1}{\sqrt{|I|}}\left\|u^{\prime}\right\|_{L^{1}}
$$

Now using Hölder we see that

$$
\begin{equation*}
\|u\|_{L^{1}(I)}=\int_{I}\left|u^{\prime}\right| \cdot 1 d x \leq\left\|u^{\prime}\right\|_{L^{2}}\|1\|_{L^{2}}=\sqrt{|I|}\left\|u^{\prime}\right\|_{L^{2}} \tag{15}
\end{equation*}
$$

We conclude that here we have

$$
\begin{equation*}
\|u\|_{L^{2}} \leq\left\|u^{\prime}\right\|_{L^{2}} \tag{16}
\end{equation*}
$$

as required. Note that this gives an equivalent norm on X (compare this with our considerations regarding the Poincare inequality in the previous exercises. Obviously this norm is induced by

$$
(u, v)_{X}=\int_{I} u^{\prime} v^{\prime} d x
$$

As X is a closed subspace of a Hilbert space it is complete, and therefore Hilbert space.
(b) This solution is analogous to the previous exercise. In summary, we show that the functional $L_{f}: H^{1}(I) \rightarrow \mathbb{C}$ given by

$$
L_{f}(v)=\int_{I} f v d x
$$

is bounded in L^{2} norm on X, and because of exercise (a), also in H^{1} norm on X : we again have

$$
\left|L_{f}(v)\right| \leq\|f\|_{L^{2}}\|v\|_{L^{2}} \leq\|f\|_{L^{2}}\left\|v^{\prime}\right\|_{L^{2}}, \forall v \in X
$$

Thus there exists an $u \in X$ such that

$$
\begin{equation*}
(u, v)_{X}=\int_{I} u^{\prime} v^{\prime} d x=L_{f}(v)=\int_{I} f v d x . \tag{17}
\end{equation*}
$$

as required.
(c) The fact that $u \in C^{2}(I)$ (regularity) follows also immediately from the previous question as well as the fact that $-u^{\prime \prime}=f$ in the strong sense. For the boundary conditions notice then that this combined witht he fact that u satisfies () implies that

$$
\begin{aligned}
0 & =\int_{I}\left(u^{\prime} v^{\prime}-f v\right) d x \\
& =\int_{I}\left(-u^{\prime \prime}-f\right) d x+u^{\prime}(b) v(b)-u^{\prime}(a) v(a), \text { for all } v \in H^{1}(I) .
\end{aligned}
$$

Therefore, as $v \in H^{1}(I)$ is arbitrary and thus also $v(a)$ and $v(b)$, we conclude that $u^{\prime}(b)=0=u^{\prime}(a)$.

6.3. Equivalent characterizations of $W^{1, p}(\Omega)$

$(\mathbf{c}) \Longrightarrow(\mathbf{b})$ Let $\phi \in C_{c}^{\infty}(\Omega)$, and let $\Omega^{\prime} \Subset \Omega$ be such that $\operatorname{supp} \phi \subset \Omega^{\prime}$. Let $|h|<$ $d\left(\Omega^{\prime}, \partial \Omega\right)$, then we get with Hölder the estimate

$$
A:=\int_{\Omega} \underbrace{(u(x+h)-u(x))}_{=\tau_{h} u-u \in L^{p}} \phi(x) d x \leq\left\|\tau_{h}-u\right\|_{L^{p}\left(I^{\prime}\right)} \cdot\|\phi\| \|_{L^{q}\left(I^{\prime}\right)} .
$$

On the other hand we get when we substitute $y=x+h$ that

$$
\begin{equation*}
A=\int_{I}(u(y) \phi(y-h)-u(y) \phi(y)) d y=-\int_{I} u(y)(\phi(y)-\phi(y-h)) d y . \tag{18}
\end{equation*}
$$

After division by $|h|$ and the limit $h \rightarrow 0$ and using the assumption $\left\|\tau_{h} u-u\right\|_{L^{p}\left(\Omega^{\prime}\right)} \leq C|h|$ that

$$
\left|\int_{I} u \nabla \phi d x\right|=\lim _{h \searrow 0}\left|\int_{I} u(x) \frac{\phi(x)-\phi(x-h)}{h} d x\right| \leq C \cdot\|\phi\|_{L^{q}(\Omega)},
$$

with $C>0$ independent from ϕ.
(b) \Longrightarrow (a) If we assume (b) ${ }^{2}$ to hold then we can continuously extend the map

$$
\begin{equation*}
C_{c}^{\infty}(\Omega) \ni \phi \mapsto \int_{\Omega} u \phi^{\prime} d x \tag{19}
\end{equation*}
$$

continuously to a functional $l \in\left(L^{q}(\Omega)\right)^{*}$ where we use density once again. But then using Riesz representation for $L^{q}(\Omega)$ we find that there must exist a $g \in L^{q}(\Omega)$ such that

$$
l(\phi)=-\int_{I} g \phi d x \text { for all } \phi \in L^{q}(\Omega)
$$

In particular it holds that

$$
\int_{\Omega} u \nabla \phi d x=l(\phi)=-\int_{\Omega} g \phi d x, \text { for all } \phi \in C_{c}^{\infty}(\Omega),
$$

thus $g \in L^{p}(\Omega)$ is the weak derivative of u, and we conclude $u \in W^{1, p}(\Omega)$.
$(\mathbf{a}) \Longrightarrow(\mathbf{c})$ Let $u \in C^{1}(\Omega)$ and $\Omega^{\prime} \Subset \Omega$. Then for $|h|<d\left(\Omega^{\prime}, \partial \Omega\right), x \in \Omega^{\prime}$ we have

$$
\begin{aligned}
\left|\tau_{h} u(x)-u(x)\right| & =|u(x+h)-u(x)|=\left|\int_{0}^{1} h \cdot \nabla u(x+t h) d t\right| \\
& \leq|h| \int_{0}^{1}|\nabla u(x+t h)| d t .
\end{aligned}
$$

To finalize the proof we now separate by cases. For $p<\infty$ we have with Hölder that

$$
\begin{equation*}
\left|\tau_{h} u(x)-u(x)\right|^{p} \leq|h|^{p} \int_{0}^{1}|\nabla u(x+t h)|^{p} d t \tag{20}
\end{equation*}
$$

[^1]which combined with Fubini gives us
\[

$$
\begin{equation*}
\left\|\tau_{h} u-u\right\|_{L^{p}\left(\Omega^{\prime}\right)}^{p} \leq|h|^{p} \int_{\Omega^{\prime}} \int_{0}^{1}|\nabla u(x+t h)|^{p} d t d x \leq|h|^{p}| | \nabla u \|_{L^{p}(\Omega)}^{p} . \tag{21}
\end{equation*}
$$

\]

We then use that for $u \in W^{1, p}(\Omega)$ there is a sequence $\left(u_{k}\right)_{k \in \mathbb{N}} \subset C^{1}(\Omega) \cap W^{1, p}(\Omega)$ such that $u_{k} \rightarrow u$ in $W^{1, p}(\Omega)$ for $k \rightarrow \infty$. As the last equation (21) holds for all these u_{k} we conclude that it also holds for u in the limit $k \rightarrow \infty$.
For $p=\infty$: For $\Omega \Subset \Omega$, choose $\Omega^{\prime \prime}$ such that $\Omega^{\prime} \Subset \Omega^{\prime \prime} \Subset \Omega$. As $W^{1 \infty}(\Omega) \hookrightarrow W^{1, p}\left(\Omega^{\prime \prime}\right)$ for every $p<\infty$, we obtain with (21) and the Hölder inequality for $h<d\left(\Omega^{\prime}, \partial \Omega^{\prime \prime}\right.$ the estimate

$$
\left\|\tau_{h} u-u\right\|_{L^{p}\left(\Omega^{\prime}\right)} \leq|h| \cdot\|\nabla u\|_{L^{p}\left(\Omega^{\prime \prime}\right)} \leq|h| \operatorname{Vol}\left(\Omega^{\prime \prime}\right)^{\frac{1}{p}}\|\nabla\|_{L^{\infty}(\Omega)} .
$$

Thus for $p \rightarrow \infty$ we have

$$
\left\|\tau_{h} u-u\right\|_{L^{\infty}\left(\Omega^{\prime}\right)} \leq|h| \cdot\|\nabla u\|_{L^{\infty}} .
$$

A quick inspection of the last part above allows us to deduce that in case (b) and (c) the constant is given as $C=\|\nabla u\|_{L^{p}(\Omega)}$.

6.4. Chain rule for Sobolev functions

Let us define $v=G \circ u$. Then as $G(0)=0$ and $\left|G^{\prime}(s)\right| \leq L$ we have

$$
\begin{equation*}
|v(x)|=|G(u(x))-G(0)| \leq L|u(x)| \in L^{p}(\Omega), \tag{22}
\end{equation*}
$$

and analogously we obtain for $g=\left(G^{\prime} \circ u\right) \cdot \nabla u$ the estimate

$$
\begin{equation*}
|g(x)|=\left|G^{\prime}(u(x))\right| \cdot|\nabla u(x)| \leq L|\nabla u(x)| \in L^{p}(\Omega) . \tag{23}
\end{equation*}
$$

We claim that $g=\nabla v$. To prove this claim, let $\phi \in C_{c}^{\infty}(\Omega)$. Let $\Omega^{\prime} \Subset \Omega$ with $\operatorname{supp}(\phi)$. Interpret $\left.u\right|_{\Omega^{\prime}}$ as $u \in W^{1,1}\left(\Omega^{\prime}\right)$. We take as in the previous exercise a sequence $\left(u_{k}\right)_{k \in \mathbb{N}} \subset C^{1}\left(\Omega^{\prime}\right) \cap W^{1,1}\left(\Omega^{\prime}\right)$ with $u_{k} \rightarrow u$ in $W^{1,1}\left(\Omega^{\prime}\right)$ as $k \rightarrow \infty$. According to the (usual) chain rule we have

$$
\int_{\Omega} G\left(u_{k}\right) \frac{\partial \phi}{\partial x_{i}} d x=-\int_{\Omega} G^{\prime}\left(u_{k}\right) \frac{\partial u_{k}}{\partial x_{i}} \phi d x, 1 \leq i \leq n, k \in \mathbb{N} .
$$

Furthermore we have

$$
\begin{equation*}
\left|\int_{\Omega}\left(G\left(u_{k}\right)-G(u)\right) \frac{\partial \phi}{\partial x_{i}} d x\right| \leq C\left\|u_{k}-u\right\|_{L^{1}(\Omega)} \rightarrow 0(k \rightarrow \text { infty }), \tag{24}
\end{equation*}
$$

as $\left|G\left(u_{k}\right)-G(u)\right| \leq L\left|u_{k}-u\right|,\left|\frac{\partial \phi}{\partial x_{i}}\right| \leq C$. Analogously we deduce that

$$
\begin{aligned}
& \left|\int_{\Omega}\left(G\left(u_{k}\right) \frac{\partial u_{k}}{\partial x_{i}}-G(u) \frac{\partial u}{\partial x_{i}}\right) \phi d x\right| \\
& \leq\left|\int_{\Omega} G\left(u_{k}\right)\left(\frac{\partial u_{k}}{\partial x_{i}}-\frac{\partial u}{\partial x_{i}}\right) \phi d x\right|+\left|\int_{\Omega}\left(G^{\prime}\left(u_{k}\right)-G^{\prime}(u)\right) \frac{\partial u}{\partial x_{i}} \phi d x\right| \\
& \leq L C| | u_{k}-\left.u\right|_{W^{1,1}\left(\Omega^{\prime}\right)}+C \int_{\Omega^{\prime}}\left|G^{\prime}\left(u_{k}\right)-G^{\prime}(u)\right|\left|\frac{\partial u}{\partial x_{i}}\right| d x \rightarrow 0 \text { as } k \rightarrow \infty .
\end{aligned}
$$

where we use the dominated convergence for the last integral. Observe that $\mid G^{\prime}\left(u_{k}\right)-$ $G^{\prime}(u) \mid \leq 2 L$ with $G^{\prime}\left(u_{k}\right) \rightarrow G^{\prime}(u)$ almost everywhere in Ω^{\prime} and that $\frac{\partial u}{\partial x_{i}} \in L^{1}\left(\Omega^{\prime}\right)$. It follows that

$$
\begin{aligned}
\int_{\Omega} v \frac{\partial \phi}{\partial x_{i}} d x & =\int_{\Omega} G(u) \frac{\partial \phi}{\partial x_{i}} d x=\lim _{k \rightarrow \infty} \int_{\Omega} G\left(u_{k}\right) \frac{\partial \phi}{\partial x_{i}} d x \\
& =-\lim _{k \rightarrow \infty} \int_{\Omega} G^{\prime}\left(u_{k}\right) \frac{\partial u_{k}}{\partial x_{i}} \phi d x=\int_{\Omega} G(u) \frac{\partial u}{\partial x_{i}} \phi d x=\int_{\Omega} g_{i} \phi d x .
\end{aligned}
$$

With this the claim is proven and hence the exercise.

[^0]: ${ }^{1}$ In fact this equivalence is so well-known that almost always the $\|u\|_{\nabla}$ norm is referred to as the standard H^{1} norm on the interval $I=(a, b)$. We just denote it with different notation here to emphasize that there are indeed two equivalent H^{1} norms that one could define on the interval.

[^1]: ${ }^{2}$ In the original exercise sheet there was a typo on assumption (b).

