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6.1. The Dirichlet problem on an interval.

(a) Existence of a solution u ∈ H1
0 (I) can be quickly deduced using Riesz’ representation

theorem. More specifically, we have the Poincare inequality for Ω ⊂]0, L[×Rn−1 that
tells us that ∫

Ω
|u|2dx ≤ L2

∫
Ω

|∇u|2dx, (1)

for all u ∈ C∞
c (Ω). In particular this means for I = (a, b) that there exists a constant

C > 0 such that
||u||L2(I) ≤ C||∇u||L2(I). (2)

This shows that for u ∈ C∞
c (I) the norm || · ||∇ defined through

||u||∇ =
∫

I
|∇u|2dx (3)

is equivalent1 to the standard H1 norm given by ||u||H1(I) = ||u||L2 + ||u||∇ for all
u ∈ C∞

c (I). Therefore, the closure of C∞
c (I) with respect to || · ||∇ will again yield H1

0 (I),
which will again be a Hilbert space with respect to the scalar product

⟨u, v⟩∇ =
∫

I
u′v′ dx. (4)

We then close out the argument by noting that the map Lf : C∞
c (I) → C given by

Lf (ϕ) =
∫

I
fϕ dx. (5)

is bounded with respect to the || · ||∇ norm, for any f ∈ C0(Ī) as we have

|Lf (ϕ)| ≤ ||f ||L2(I)||ϕ||L2(Ī) ≤ C||f ||L2(I)||∇ϕ||L2(I), (6)

where we use the Cauchy-Schwarz inequality and again the Poincaré inequality. Thus
Lf is bounded hence continuous, and can be extended from C∞

c (I) to H1
0 (I) by density.

Then using that H1
0 (I) is a Hilbert space, Riesz’ represenation theorem gives us the

existence of a u ∈ H1
0 (I) such that

Lf (v) = ⟨u, v⟩∇ for all v ∈ H1
0 (I), (7)

which yields us exactly that ∫
I

fv dx =
∫

I
u′v′dx (8)

for all v ∈ H1
0 (I).

1In fact this equivalence is so well-known that almost always the ||u||∇ norm is referred to as the
standard H1 norm on the interval I = (a, b). We just denote it with different notation here to
emphasize that there are indeed two equivalent H1 norms that one could define on the interval.
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(b) We will first show that u ∈ C2(Ī). As (8) holds for v ∈ C∞
c (I) in particular we know

that u′ ∈ L2(I) has the weak solution

(u′)′ = −f ∈ C0(Ī) ↪→ L∞(I), (9)

i.e. u ∈ W 1,∞. Using a combination of theorem T.18 na dthe fundamental theorem, we
see that

u(x) = u′(x0) −
∫ x

x0
f(t)dt ∈ C1(Ī). (10)

Thus u ∈ C2(Ī) and hence u solves

−u′′(x) = f(x) (11)

in the classical sense. To check boundary conditions, we use that H1
0 (I) = C∞

c (I)||·||∇ .
Hence we choose a (uk)k∈N ⊂ C∞

c (I) with

||uk − u||L∞ ≤ C||uk − u||H1 → 0 as k → ∞. (12)

Thus we have for arbitrary k ∈ N that

|u(a)| ≤ |uk(a)|︸ ︷︷ ︸
=0

+||uk − u||L∞ ≤ C||uk − u||H1 → 0 as k → ∞, (13)

where the uk(a) are obviously 0 as the uk are compactly supported in (a, b). We connclude
u(a) = 0. Analogously one can show u(b) = 0

6.2. The Neumann problem on an interval.

(a) For x, y ∈ I we have

|u(x) − u(y)| ≤
∫

I
|u′(t)|dt = ||u′||L1 . (14)

Therefore it follows that

|u(x)| = |u(x) − ū| =
∣∣∣∣∣ 1
|I|

∫
I
(u(x) − u(y)) dy

∣∣∣∣∣
≤ 1

|I|

∫
I

|u(x) − u(y)| dy
1

|I|
||u′||L1 .

Thus we see that

||u||2L2 = 1
|I|2

||u′||2L1

∫
I

1 dx,
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so

||u||L2 = 1√
|I|

||u′||L1 .

Now using Hölder we see that

||u||L1(I) =
∫

I
|u′| · 1dx ≤ ||u′||L2||1||L2 =

√
|I|||u′||L2 . (15)

We conclude that here we have
||u||L2 ≤ ||u′||L2 (16)

as required. Note that this gives an equivalent norm on X (compare this with our
considerations regarding the Poincare inequality in the previous exercises. Obviously this
norm is induced by

(u, v)X =
∫

I
u′v′ dx.

As X is a closed subspace of a Hilbert space it is complete, and therefore Hilbert space.

(b) This solution is analogous to the previous exercise. In summary, we show that the
functional Lf : H1(I) → C given by

Lf (v) =
∫

I
fv dx

is bounded in L2 norm on X, and because of exercise (a), also in H1 norm on X: we
again have

|Lf (v)| ≤ ||f ||L2||v||L2 ≤ ||f ||L2 ||v′||L2 , ∀v ∈ X

Thus there exists an u ∈ X such that

(u, v)X =
∫

I
u′v′ dx = Lf (v) =

∫
I

fv dx. (17)

as required.

(c) The fact that u ∈ C2(I) (regularity) follows also immediately from the previous
question as well as the fact that −u′′ = f in the strong sense. For the boundary conditions
notice then that this combined witht he fact that u satisfies () implies that

0 =
∫

I
(u′v′ − fv) dx

=
∫

I
(−u′′ − f) dx + u′(b)v(b) − u′(a)v(a), for all v ∈ H1(I).

Therefore, as v ∈ H1(I) is arbitrary and thus also v(a) and v(b), we conclude that
u′(b) = 0 = u′(a).
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6.3. Equivalent characterizations of W 1,p(Ω)

(c) =⇒ (b) Let ϕ ∈ C∞
c (Ω), and let Ω′ ⋐ Ω be such that supp ϕ ⊂ Ω′. Let |h| <

d(Ω′, ∂Ω), then we get with Hölder the estimate

A :=
∫

Ω
(u(x + h) − u(x))︸ ︷︷ ︸

=τhu−u∈Lp

ϕ(x) dx ≤ ||τh − u||Lp(I′) · ||ϕ|||Lq(I′).

On the other hand we get when we substitute y = x + h that

A =
∫

I
(u(y)ϕ(y − h) − u(y)ϕ(y)) dy = −

∫
I

u(y)(ϕ(y) − ϕ(y − h)) dy. (18)

After division by |h| and the limit h → 0 and using the assumption ||τhu−u||Lp(Ω′) ≤ C|h|
that ∣∣∣∣∫

I
u∇ϕ dx

∣∣∣∣ = lim
h↘0

∣∣∣∣∣
∫

I
u(x)ϕ(x) − ϕ(x − h)

h
dx

∣∣∣∣∣ ≤ C · ||ϕ||Lq(Ω),

with C > 0 independent from ϕ.
(b) =⇒ (a) If we assume (b)2 to hold then we can continuously extend the map

C∞
c (Ω) ∋ ϕ 7→

∫
Ω

uϕ′ dx, (19)

continuously to a functional l ∈ (Lq(Ω))∗ where we use density once again. But then
using Riesz representation for Lq(Ω) we find that there must exist a g ∈ Lq(Ω) such that

l(ϕ) = −
∫

I
gϕ dx for all ϕ ∈ Lq(Ω).

In particular it holds that∫
Ω

u∇ϕ dx = l(ϕ) = −
∫

Ω
gϕ dx, for all ϕ ∈ C∞

c (Ω),

thus g ∈ Lp(Ω) is the weak derivative of u, and we conclude u ∈ W 1,p(Ω).
(a) =⇒ (c) Let u ∈ C1(Ω) and Ω′ ⋐ Ω. Then for |h| < d(Ω′, ∂Ω), x ∈ Ω′ we have

|τhu(x) − u(x)| = |u(x + h) − u(x)| =
∣∣∣∣∫ 1

0
h · ∇u(x + th) dt

∣∣∣∣
≤ |h|

∫ 1

0
|∇u(x + th)| dt.

To finalize the proof we now separate by cases. For p < ∞ we have with Hölder that

|τhu(x) − u(x)|p ≤ |h|p
∫ 1

0
|∇u(x + th)|p dt (20)

2In the original exercise sheet there was a typo on assumption (b).

last update: 26 May 2023 4 4/6



d-math
Prof. P. Hintz
Assistant: P. Peters

Functional Analysis II
Solution to Problem Set 6

ETH Zürich
Spring 2023

which combined with Fubini gives us

||τhu − u||pLp(Ω′) ≤ |h|p
∫

Ω′

∫ 1

0
|∇u(x + th)|p dtdx ≤ |h|p||∇u||pLp(Ω). (21)

We then use that for u ∈ W 1,p(Ω) there is a sequence (uk)k∈N ⊂ C1(Ω) ∩ W 1,p(Ω) such
that uk → u in W 1,p(Ω) for k → ∞. As the last equation (21) holds for all these uk we
conclude that it also holds for u in the limit k → ∞.
For p = ∞: For Ω ⋐ Ω, choose Ω′′ such that Ω′ ⋐ Ω′′ ⋐ Ω. As W 1∞(Ω) ↪→ W 1,p(Ω′′)
for every p < ∞, we obtain with (21) and the Hölder inequality for h < d(Ω′, ∂Ω′′ the
estimate

||τhu − u||Lp(Ω′) ≤ |h| · ||∇u||Lp(Ω′′) ≤ |h|Vol(Ω′′)
1
p ||∇||L∞(Ω).

Thus for p → ∞ we have

||τhu − u||L∞(Ω′) ≤ |h| · ||∇u||L∞ .

A quick inspection of the last part above allows us to deduce that in case (b) and (c)
the constant is given as C = ||∇u||Lp(Ω).

6.4. Chain rule for Sobolev functions

Let us define v = G ◦ u. Then as G(0) = 0 and |G′(s)| ≤ L we have

|v(x)| = |G(u(x)) − G(0)| ≤ L|u(x)| ∈ Lp(Ω), (22)

and analogously we obtain for g = (G′ ◦ u) · ∇u the estimate

|g(x)| = |G′(u(x))| · |∇u(x)| ≤ L|∇u(x)| ∈ Lp(Ω). (23)

We claim that g = ∇v. To prove this claim, let ϕ ∈ C∞
c (Ω). Let Ω′ ⋐ Ω with

supp(ϕ). Interpret u|Ω′ as u ∈ W 1,1(Ω′). We take as in the previous exercise a sequence
(uk)k∈N ⊂ C1(Ω′) ∩ W 1,1(Ω′) with uk → u in W 1,1(Ω′) as k → ∞. According to the
(usual) chain rule we have∫

Ω
G(uk) ∂ϕ

∂xi

dx = −
∫

Ω
G′(uk)∂uk

∂xi

ϕdx, 1 ≤ i ≤ n, k ∈ N.

Furthermore we have∣∣∣∣∣
∫

Ω
(G(uk) − G(u)) ∂ϕ

∂xi

dx

∣∣∣∣∣ ≤ C||uk − u||L1(Ω) → 0(k → infty), (24)
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as |G(uk) − G(u)| ≤ L|uk − u|, | ∂ϕ
∂xi

| ≤ C. Analogously we deduce that∣∣∣∣∣
∫

Ω
(G(uk)∂uk

∂xi

− G(u) ∂u

∂xi

)ϕdx

∣∣∣∣∣
≤

∣∣∣∣∣
∫

Ω
G(uk)(∂uk

∂xi

− ∂u

∂xi

)ϕdx

∣∣∣∣∣ +
∣∣∣∣∣
∫

Ω
(G′(uk) − G′(u)) ∂u

∂xi

ϕdx

∣∣∣∣∣
≤ LC||uk − u||W 1,1(Ω′) + C

∫
Ω′

|G′(uk) − G′(u)|
∣∣∣∣∣ ∂u

∂xi

∣∣∣∣∣ dx → 0 as k → ∞.

where we use the dominated convergence for the last integral. Observe that |G′(uk) −
G′(u)| ≤ 2L with G′(uk) → G′(u) almost everywhere in Ω′ and that ∂u

∂xi
∈ L1(Ω′). It

follows that∫
Ω

v
∂ϕ

∂xi

dx =
∫

Ω
G(u) ∂ϕ

∂xi

dx = lim
k→∞

∫
Ω

G(uk) ∂ϕ

∂xi

dx

= − lim
k→∞

∫
Ω

G′(uk)∂uk

∂xi

ϕdx =
∫

Ω
G(u) ∂u

∂xi

ϕdx =
∫

Ω
giϕ dx.

With this the claim is proven and hence the exercise.
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