7.1. A $W^{1, p}$ function that is not in L^{∞}

Note that we have

$$
\partial_{i} u(x)=-\frac{1}{\log \left(1+\frac{1}{|x|}\right)} \frac{x_{i}}{|x|^{3}} \frac{1}{1+\frac{1}{|x|}}
$$

and moreover that

$$
\frac{x_{i}}{|x|^{3}} \frac{1}{1+\frac{1}{|x|}}=\frac{x_{i}}{|x|^{2}} \frac{1}{|x|+1}
$$

The term $\frac{1}{|x|+1}$ does not have a singularity at $|x|=0$ and

$$
\begin{equation*}
\left|\frac{x_{i}}{|x|^{2}}\right|=\frac{1}{|x|} . \tag{1}
\end{equation*}
$$

Therefore we have

$$
\begin{equation*}
|\nabla u| \leq \frac{1}{\log (|x|)} \frac{1}{|x|^{2}} \tag{2}
\end{equation*}
$$

which is integrable after switching to polar coordinates.
7.2. Absolute value of $u \in W^{1, p}$

We note first of all that $f_{\epsilon}(x)=\left(x^{2}+\epsilon\right)^{1 / 2}-\epsilon$ is bounded from above by $|x|$ with $\epsilon>0$ small and that

$$
\begin{equation*}
\lim _{\epsilon \searrow 0} f_{\epsilon}(x)=|x| \tag{3}
\end{equation*}
$$

pointwise. Moreover we have

$$
\begin{equation*}
f_{\epsilon}^{\prime}(x)=\frac{x}{\left(x^{2}+\epsilon^{2}\right)^{1 / 2}} \tag{4}
\end{equation*}
$$

and that

$$
\begin{equation*}
\left|f_{\epsilon}^{\prime}(x)\right| \leq 1 . \tag{5}
\end{equation*}
$$

combined with the pointwise limit

$$
\lim _{\epsilon \searrow 0} f_{\epsilon}^{\prime}(x)=\left\{\begin{array}{l}
1 \text { for } x>0 \tag{6}\\
-1 \text { for } x<0
\end{array}\right.
$$

as the limit exists we have that the sequence $f_{\epsilon} \circ u$ is Cauchy in the L^{p} norm, hence converges. We note that the gradient of $f_{\epsilon} \circ u$ is given by

$$
\begin{equation*}
\nabla\left(f_{\epsilon} \circ u\right)=\left(f_{\epsilon}^{\prime} \circ u\right) \cdot \nabla u . \tag{7}
\end{equation*}
$$

where we note that we note that $\left|\nabla\left(f_{\epsilon} \circ u\right)\right| \leq 2^{p} C|\nabla u|^{p}$ for $\epsilon>0$ small. Therefore in the pointwise limit we have

$$
\lim _{\epsilon \geq 0} \nabla\left(f_{\epsilon} \circ u\right)= \begin{cases}\nabla u & \text { for } u(x)>0 \tag{8}\\ -\nabla u & \text { for } u(x)<0\end{cases}
$$

Let us call this last function $\chi_{u} \nabla u$. We have thus shown that both $f_{\epsilon} \circ u \rightarrow|u|$ and $f_{\epsilon} \circ \nabla u \rightarrow \chi_{u} \nabla u$ in L^{p}. It can also easily be shown by testing against any $\phi \in C_{c}^{\infty}$ and using the dominated convergence theorem to take the limit $\epsilon \searrow 0$ to show that $\chi_{u} \nabla u=\nabla|u|$.

7.3. Trace-zero functions in $W^{1, p}$

We denote with $T: W^{1, p}(\Omega) \rightarrow L^{p}(\partial \Omega)$ the trace operator.
(a) If $u \in W_{0}^{1, p}(\Omega)$ then by definition there exist functions $u_{n} \in C_{c}^{\infty}(\Omega)$ such that

$$
\begin{equation*}
u_{n} \rightarrow u \text { in } W^{1, p}(\Omega) . \tag{9}
\end{equation*}
$$

As $T u_{m}=0$ on $\partial \Omega$ and T is bounded, we conclude $T u=\left.u\right|_{\partial \Omega}=0$.
(b) i) Let us now assume $T u=\left.u\right|_{\partial \Omega}=0$. Using a partition of unity and flattining out the boundary $\partial \Omega$ we may assume that

$$
\left\{\begin{array}{l}
u \in W^{1, p}\left(\mathbb{R}_{+}^{n}\right), \operatorname{supp}(u) \text { is compact in } \overline{\mathbb{R}_{+}^{n}} \\
T u=0 \text { on } \partial \mathbb{R}_{+}^{n}=\mathbb{R}^{n-1}
\end{array}\right.
$$

ii) Since $T u=0$ on \mathbb{R}^{n-1}, there exist $u_{k} \in C^{1}\left(\overline{\mathbb{R}^{n}}\right)$ such that

$$
u_{k} \rightarrow u \text { in } W^{1, p}\left(\mathbb{R}_{+}^{n}\right)
$$

and

$$
\left.T u_{k} \rightarrow u_{k}\right|_{\mathbb{R}^{n-1}} \text { in } L^{p}\left(\mathbb{R}^{n-1}\right)
$$

Now if $x^{\prime} \in \mathbb{R}^{n-1}, x_{n} \geq 0$ it follows that

$$
\left|u_{k}\left(x^{\prime}, x_{n}\right)\right| \leq\left|u_{k}\left(x^{\prime}, 0\right)\right|+\int_{0}^{x_{n}}\left|\partial_{x_{n}} u\left(x^{\prime}, t\right)\right| d t .
$$

Thus

$$
\int_{\mathbb{R}^{n-1}}\left|u_{k}\left(x^{\prime}, x_{n}\right)\right|^{p} d x^{\prime} \leq \int_{\mathbb{R}^{n-1}}\left|u_{k}\left(x^{\prime}, 0\right)\right|^{p} d x^{\prime}+C x_{n}^{p-1} \int_{0}^{x_{n}} \int_{\mathbb{R}^{n}}|D u|^{p} d x^{\prime} d t .
$$

Thus letting $k \rightarrow \infty$ and rescaling we see that

$$
\int_{\mathbb{R}^{n-1}}\left|u_{k}\left(x^{\prime}, x_{n}\right)\right|^{p} d x^{\prime} \leq C x_{n}^{p-1} \int_{0}^{x_{n}} \int_{\mathbb{R}^{n}}|D u|^{p} d x^{\prime} d t .
$$

for $x_{n}>0$ almost everywhere.
iii)-iv) For η as given in the exercise we immediately see that

$$
\left\{\begin{array}{l}
\partial_{x_{n}} u_{m}=\partial_{x_{n}} u\left(1-\eta\left(m x_{n}\right)\right)-m u \eta^{\prime} \\
D_{x^{\prime}} u_{m}=\left(D_{x^{\prime}} u\right)\left(1-\eta\left(m x_{n}\right)\right) .
\end{array}\right.
$$

Consequently we have that

$$
\begin{aligned}
\int_{\mathbb{R}_{+}^{n}}\left|D u_{m}-D u\right|^{p} d x & \leq \underbrace{C \int_{\mathbb{R}_{+}^{n}}\left|\eta\left(m x_{n}\right)\right|^{p}|D u|^{p} d x}_{:=A_{m}} \\
& +\underbrace{C m^{p} \int_{0}^{2 / m} \int_{\mathbb{R}^{n-1}}|u|^{p} d x^{\prime} d t}_{:=B_{m}}
\end{aligned}
$$

Now $A_{m} \rightarrow 0$ as $m \rightarrow 0$, as $\eta\left(m x_{n}\right) \neq 0$ if and only iff $0 \leq x_{n} \leq \frac{2}{m}$. To estimate B_{m} we see that

$$
B_{m} \leq C m^{p}\left(\int_{0}^{2 / m} t^{p-1} d t\right)\left(\int_{0}^{2 / m} \int_{\mathbb{R}^{n-1}}|D u|^{p} d x^{\prime} d x_{n}\right)
$$

$\leq C \int_{0}^{2 / m} \int_{\mathbb{R}^{n-1}}|D u|^{p} d x_{n} \rightarrow 0$ as $m \rightarrow \infty$.
Finally using that $A_{m}, B_{m} \rightarrow 0$, we see that $D u_{m} \rightarrow D u$ in $L^{p}\left(\mathbb{R}_{+}^{n}\right)$ Since clearly $u_{m} \rightarrow u$ in $L^{p}\left(\mathbb{R}_{+}^{n}\right.$ we conclude

$$
u_{m} \rightarrow u \text { in } W^{1, p}\left(\mathbb{R}_{+}^{n}\right)
$$

But $w_{m}=0$ if $0<x_{n}<1 / m$. Therefore we mollify the w_{m} to produce functions $u_{m} \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $u_{m} \rightarrow u$ in $W^{1, p}\left(\mathbb{R}_{+}^{n}\right)$. Hence $u \in W_{0}^{1, p}\left(\mathbb{R}_{+}^{n}\right)$.

7.4. Simple Hölder spaces

Let $\alpha \in(0,1)$ and let $\left(u_{n}\right)_{n \in \mathbb{N}} \subset C^{0, \alpha}(\bar{\Omega})$. We want to show that there is a $u \in C^{0, \alpha}(\bar{\Omega})$ such that $\lim _{n \rightarrow \infty} u_{n}=u$ with respect to the $C^{0, \alpha}$-norm. We know by completeness of $C^{0}(\bar{\Omega})$ that there exists a $u \in C^{0}(\bar{\Omega})$ with $\lim _{n \rightarrow \infty} u_{n}=u$ in the C^{0} norm. Clearly we hope for u to be our $C^{0, \alpha}$ candidate as well.
Let us first show that in fact $u \in C^{0, \alpha}(\bar{\Omega})$. We then have for fixed $x \neq y$ that

$$
\begin{equation*}
\frac{|u(x)-u(y)|}{|x-y|^{\alpha}} \leq \frac{\left|u(x)-v_{n}(x)\right|}{|x-y|^{\alpha}}+\frac{\left|u_{n}(x)-u_{n}(y)\right|}{|x-y|^{\alpha}}+\frac{\left|u_{n}(y)-u(y)\right|}{|x-y|^{\alpha}} \tag{10}
\end{equation*}
$$

ETH Zürich
Spring 2023
taking the sup we can make the first and third term arbitrariy by choosing m large enough, as $u_{n} \rightarrow u$ uniformly. The second term can also be made arbitrarily small as u_{n} is Cauchy thus bounded, whence we conclude that

$$
\begin{equation*}
\frac{|u(x)-u(y)|}{|x-y|^{\alpha}} \leq M, \tag{11}
\end{equation*}
$$

i.e. $u \in C^{0, \alpha}(\bar{\Omega})$. To conclude that the sequence also converges in the $C^{0, \alpha}$-norm we see that

$$
\begin{aligned}
\frac{\left|\left(u-u_{n}\right)(x)-\left(u-u_{n}\right)(y)\right|}{|x-y|^{\alpha}} & =\frac{\left|u(x)-u_{n}(x)-u(y)-u_{n}(y)\right|}{|x-y|^{\alpha}} \\
& =\frac{\left|\lim _{k \rightarrow \infty}\left(u_{k}(x)-u_{n}(x)\right)-\lim _{k \rightarrow \infty}\left(u_{k}(y)-u_{n}(y)\right)\right|}{|x-y|^{\alpha}} \\
& =\lim _{k \rightarrow \infty} \frac{\left|\left(u_{k}-u_{n}\right)(x)-\left(u_{k}-u_{n}\right)(y)\right|}{|x-y|^{\alpha}}
\end{aligned}
$$

The last limit goes to zero as $\left(u_{k}-u_{n}\right) \in C^{0, \alpha}(\bar{\Omega})$

7.5. Extra: Properties of the characteristic function

This solution will be added shortly.

