Functional Analysis II
 Problem Set 8

8.1. A Poincaré-like inequality on the unit ball.

Assume by contradiction that the statement is false. Then there exists a sequence $\left\{u_{k}\right\}_{k \in \mathbb{N}}$ with

$$
\begin{equation*}
\lambda\left(\left\{u_{k}(x)=0\right\}\right) \geq \alpha, \tag{1}
\end{equation*}
$$

with $\left\|u_{k}\right\|_{L^{2}}=1$, but $\left\|\nabla u_{k}\right\|_{L^{2}} \rightarrow 0$ as $k \rightarrow \infty$. Since $H^{1}(B(0,1))$ is a Hilbert space we may assume WLOG that $u_{k} \rightharpoonup u$ weakly as $k \rightarrow \infty$. By the Rellich compactness theorem this implies that $u_{k} \rightarrow u$ in $L^{2}(B(0,1))$. As $\left\|u_{k}\right\|_{L^{2}}=1$ for all $k \in \mathbb{N}$ by L^{2} convergence we have that $\|u\|_{L^{2}}=1$ as well. Moreover we have that

$$
\|\nabla u\|_{L^{2}} \leq \liminf _{k \rightarrow \infty}\left\|\nabla u_{k}\right\|_{L^{2}}=0
$$

again by weak H^{1}-convergence. Therefore u must be constant almost everywhere $u=$ $c:=1 / \sqrt{\operatorname{vol}}(B(0,1))$. But then for any $k \in \mathbb{N}$. But then for any $k \in \mathbb{N}$, if for arbitrary $k \in \mathbb{N}$

$$
\begin{equation*}
S_{k}=\left\{x \in B(0,1) \mid u_{k}(x)=0\right\}, \tag{2}
\end{equation*}
$$

we have that

$$
\left\|u-u_{k}\right\|_{L^{2}(B(0,1))} \geq\left\|u-u_{k}\right\|_{L^{2}\left(S_{k}\right)}=\int_{S}|u(x)|^{2} d x \geq \alpha c^{2} .
$$

In particular, as all sets S_{k} are non-null sets with $\lambda\left(S_{k}\right)>\alpha$, we conclude that u_{k} cannot converge to u on $L^{2}\left(S_{k}\right)$ hence also not on $L^{2}(B(0,1))$.
8.2. A variant of Hardy's inequality. NOTE: This exercise had a significant typo. As this complicated matters by quite a bit we present here a rather straightforward solution.
We do note that it suffices to prove the inequality for $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ as one can always argue by density of $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ in $H^{1}\left(\mathbb{R}^{n}\right)$. Let now $\lambda>0$ arbitrary, and consider

$$
\begin{align*}
0 & \leq \int_{\mathbb{R}^{n}}\left|\lambda \nabla u+\frac{x u(x)}{|x|^{2}}\right|^{2} d x \tag{3}\\
& =\int_{\mathbb{R}^{n}}|\lambda|^{2}|\nabla u|^{2} d x+\int_{\mathbb{R}^{n}} \frac{|x u(x)|^{2}}{|x|^{2}} d x+2 \lambda \int_{\mathbb{R}^{n}} \nabla u \cdot \frac{x u(x)}{|x|^{2}} d x \tag{4}
\end{align*}
$$

Now note that

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \nabla u \cdot \frac{x u(x)}{|x|^{2}} d x & =\int_{\mathbb{R}^{n}} \cdot \frac{x}{|x|^{2}} u \nabla u d x \\
& =\int_{\mathbb{R}^{n}} \cdot \frac{x}{2|x|^{2}} \nabla\left(u^{2}\right) d x,
\end{aligned}
$$

(note that the later inequality was what was asked to compute in (c)). Since

$$
\nabla \cdot \frac{x}{|x|^{2}}=\frac{n-2}{|x|^{2}}
$$

then we find with integration by parts that

$$
\int_{\mathbb{R}^{n}} \nabla u \cdot \frac{x u(x)}{|x|^{2}} d x=-\frac{n-2}{2} \int_{\mathbb{R}^{n}}|\nabla u|^{2} d x .
$$

Now going back to (3) we have that

$$
0 \leq \lambda^{2}|\nabla u|^{2} d x+(1-(n-2) \lambda) \int_{\mathbb{R}^{n}} \frac{u^{2}}{|x|^{2}} d x
$$

The above is a second degree polynomial in $\lambda>0$ which attains its minimal value for

$$
\lambda=\frac{n-2}{2} \frac{\int u^{2} /|x|^{2} d x}{\int|\nabla u|^{2} d x} .
$$

Plugging this equation into the last inequality we find

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \frac{u^{2}}{|x|^{2}} d x \leq \underbrace{\left(\frac{2}{n-2}\right)^{2}}_{=C} \int_{\mathbb{R}^{n}}|\nabla u|^{2} d x \tag{5}
\end{equation*}
$$

8.3. Uniform bounds on functions in $W^{n, 1}$

Let $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ be arbitrary. Then,

$$
\begin{aligned}
u\left(x_{1}, \ldots, x_{n}\right) & =\int_{-\infty}^{x_{1}} \frac{\partial u}{\partial x_{1}}\left(s_{1}, x_{2}, \ldots, x_{n}\right) d s_{1} \\
& =\int_{-\infty}^{x_{1}} \int_{-\infty}^{x_{2}} \frac{\partial^{2} u}{\partial x_{2} \partial x_{1}}\left(s_{1}, s_{2}, x_{2}, \ldots, x_{n}\right) d s_{2} d s_{1} \\
& =\int_{-\infty}^{x_{1}} \ldots \int_{-\infty}^{x_{n}} \frac{\partial^{n} u}{\partial x_{n} \ldots \partial x_{1}}\left(s_{1}, \ldots, s_{n}\right) d s_{n} \ldots d s_{1} \\
\Rightarrow|u(x)| & \leq \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty}\left|\frac{\partial^{n} u}{\partial x_{n} \ldots \partial x_{1}}\left(s_{1}, \ldots, s_{n}\right)\right| d s_{n} \ldots d s_{1} \leq\|u\|_{W^{n, 1}\left(\mathbb{R}^{n}\right)} .
\end{aligned}
$$

Since $x \in \mathbb{R}^{n}$ is arbitrary,

$$
\begin{equation*}
\forall u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right): \quad\|u\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq\|u\|_{W^{n, 1}\left(\mathbb{R}^{n}\right)} \tag{6}
\end{equation*}
$$

Functional Analysis II
 Problem Set 8

ETH Zürich
Spring 2023
follows. The inequality (6) remains true for arbitrary $u \in W^{n, 1}\left(\mathbb{R}^{n}\right)$ by density of $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ in $W^{n, 1}\left(\mathbb{R}^{n}\right)$. Indeed, given $u \in W^{n, 1}\left(\mathbb{R}^{n}\right)$, let $\left(u_{k}\right)_{k \in \mathbb{N}}$ be a sequence in $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\left\|u_{k}-u\right\|_{W^{n, 1}\left(\mathbb{R}^{n}\right)} \rightarrow 0$ as $k \rightarrow \infty$. Since inequality (6) implies $\left\|u_{k}-u_{m}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq\left\|u_{k}-u_{m}\right\|_{W^{n, 1}\left(\mathbb{R}^{n}\right)}$ the sequence $\left(u_{k}\right)_{k \in \mathbb{N}}$ is Cauchy in $L^{\infty}\left(\mathbb{R}^{n}\right)$ and hence convergent to some v in $L^{\infty}\left(\mathbb{R}^{n}\right)$. In particular, $u_{k}(x) \rightarrow v(x)$ converges pointwise for almost every $x \in \mathbb{R}^{n}$ as $k \rightarrow \infty$. Moreover, since $\left\|u_{k}-u\right\|_{L^{n}\left(\mathbb{R}^{n}\right)} \rightarrow 0$ implies pointwise convergence almost everywhere on a subsequence, $v=u$ almost everywhere follows by uniqueness of limits. Passing to the limit $k \rightarrow \infty$ in $\left\|u_{k}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq\left\|u_{k}\right\|_{W^{n, 1}\left(\mathbb{R}^{n}\right)}$ proves the claim.

8.4. Horizontal derivatives

Given $u \in H^{2}\left(\mathbb{R}_{+}^{n}\right) \cap H_{0}^{1}\left(\mathbb{R}_{+}^{n}\right)$ and $h \in \mathbb{R} \backslash\{0\}$, let $D_{h, i} u: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ be given by

$$
D_{h, i} u(x)=\frac{u\left(x+h e_{i}\right)-u(x)}{h},
$$

where $e_{i}=(0, \ldots, 0,1,0 \ldots, 0,0) \in \mathbb{R}^{n}$ has the entry 1 at position $i \in\{1, \ldots, n-1\}$.
The translation by $h e_{i}$ is an isometry of $H^{1}\left(\mathbb{R}_{+}^{n}\right)$ and carries $C_{c}^{\infty}\left(\mathbb{R}_{+}^{n}\right)$ into itself, so it carries its closure $H_{0}^{1}\left(\mathbb{R}_{+}^{n}\right)$ into itself. Therefore, $u \in H_{0}^{1}\left(\mathbb{R}_{+}^{n}\right)$ implies $D_{h, i} u \in H_{0}^{1}\left(\mathbb{R}_{+}^{n}\right)$.
According to Satz 8.3.1.iii) the assumption $u \in H^{2}\left(\mathbb{R}_{+}^{n}\right)$ implies

$$
\exists C<\infty \quad \forall h \in \mathbb{R}^{n} \backslash\{0\}: \quad\left\|D_{h, i} u\right\|_{H^{1}} \leq C .
$$

Hence, there exists a sequence $h_{k} \xrightarrow{k \rightarrow \infty} 0$ such that $D_{h_{k}, i} u$ converges weakly in $H^{1}\left(\mathbb{R}_{+}^{n}\right)$ to some $v \in H^{1}\left(\mathbb{R}_{+}^{n}\right)$ as $k \rightarrow \infty$. Since $H_{0}^{1}\left(\mathbb{R}_{+}^{n}\right)$ is a closed subspace of $H^{1}\left(\mathbb{R}_{+}^{n}\right)$, it is weakly closed. Therefore, $v \in H_{0}^{1}\left(\mathbb{R}_{+}^{n}\right)$. Moreover, for any $\varphi \in C_{c}^{\infty}\left(\mathbb{R}_{+}^{n}\right)$ there holds

$$
\begin{aligned}
\int_{\mathbb{R}_{+}^{n}} v \varphi d x & =\lim _{k \rightarrow \infty} \int_{\mathbb{R}_{+}^{n}} \frac{u\left(x+h_{k} e_{i}\right)-u(x)}{h_{k}} \varphi(x) d x \\
& =\lim _{k \rightarrow \infty} \frac{1}{h_{k}}\left(\int_{\mathbb{R}_{+}^{n}} u\left(x+h_{k} e_{i}\right) \varphi(x) d x-\int_{\mathbb{R}_{+}^{n}} u(x) \varphi(x) d x\right) \\
& =\lim _{k \rightarrow \infty} \frac{1}{h_{k}}\left(\int_{\mathbb{R}_{+}^{n}} u(y) \varphi\left(y-h_{k} e_{i}\right) d y-\int_{\mathbb{R}_{+}^{n}} u(x) \varphi(x) d x\right) \\
& =-\lim _{k \rightarrow \infty} \int_{\mathbb{R}_{+}^{n}} u(x) \frac{\varphi(x)-\varphi\left(x-h_{k} e_{i}\right)}{h_{k}} d x \\
& =-\int_{\mathbb{R}_{+}^{n}} u \frac{\partial \varphi}{\partial x_{i}} d x .
\end{aligned}
$$

By definition of weak derivative,

$$
\frac{\partial u}{\partial x_{i}}=v \in H_{0}^{1}\left(\mathbb{R}_{+}^{n}\right)
$$

and the claim follows.

