9.1. Another density statement

(a) For $p<n$ we can prove the statement by taking $\psi_{k}=\psi(k x)$ with $\psi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ as described in the hint. WLOG we have $\psi \equiv 1$ on $B_{1}(0)$ and $\psi_{k} \equiv 1$ on any neighbourhood of $x=0$ for any $k \in \mathbb{N}$. After substitution of $y=k x$ we get

$$
\left\|\nabla \psi_{k}\right\|_{L^{p}}^{p}=k^{p-n} \int_{\mathbb{R}^{n}}|\nabla \psi(y)|^{p} d y=C k^{p-n} \rightarrow 0
$$

(b) For $p=n$ the construction above fails. Instead let us consider the sequence

$$
\psi_{k}(x)= \begin{cases}1, & \text { for for }|x| \leq 1 /\left(e^{e^{k+1}}\right)=r_{k} \\ \log (\log (1 /|x|))-k & \text { otherwise } \\ 0 & \text { for for }|x| \geq 1 / e^{k}=R_{k}\end{cases}
$$

If we now take the derivative we have that

$$
\left|\nabla \psi_{k}(x)\right|^{n}= \begin{cases}|x|^{-n}|\log (|x|)|^{-n}, & \text { for } r_{k}<|x|<R_{k} \\ 0, & \text { otherwise }\end{cases}
$$

If we now substitute $s=\log (1 / r)$ we get the estimate

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left|\nabla \psi_{k}\right|^{n} d x & \leq C \int_{r_{k}}^{R_{k}} \frac{r^{n-1}}{r^{n}|\log (r)|^{n}} d r=C \int_{\log \left(1 / R_{k}\right)}^{\log \left(1 / r_{k}\right)} \frac{d s}{s^{n}} \\
& =\left.\frac{C(n)}{|\log (R)|^{n-1}}\right|_{r_{k}} ^{R_{k}} \rightarrow 0 \text { as } k \rightarrow \infty
\end{aligned}
$$

After convoluting with a standard mollifer

$$
\phi_{\epsilon}(x)=\epsilon^{-n} \phi(x / \epsilon),
$$

where we have

$$
\phi(x)= \begin{cases}e^{-\frac{1}{1-|x|^{2}}} / I_{n} & \text { for }|x|<1 \tag{1}\\ 0 & \text { for }|x| \geq 1\end{cases}
$$

we get that $\phi_{\epsilon} * \psi_{k}(x) \rightarrow \tilde{\psi}_{k} \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ in $W^{1, p}$, as required.
(c) This now follows with the constructions we have shown above when we set

$$
u_{k}=\left(1-\psi_{k}\right) u
$$

We have that that

$$
u_{k} \rightarrow u \text { pointwise }
$$

and moreover that

$$
\nabla u_{k}=\nabla u-u \underbrace{\left(\nabla \psi_{k}\right)}_{\rightarrow 0}-\underbrace{\psi_{k}}_{\rightarrow 0} \nabla u .
$$

pointwise.
Noting that $\left\|u_{k}\right\|_{L^{p}} \leq 2\|u\|_{L^{p}}$ and $\left\|\nabla u_{k}\right\|_{L^{p}} \leq 2\|\nabla u\|_{L^{p}}+\underbrace{\left\|u \nabla \psi_{k}\right\|_{L^{p}}}_{\rightarrow 0 \text { in } L^{p}}$ we conclude with dominated convergence that $u_{k} \rightarrow u$ in $W^{1, p}\left(\mathbb{R}^{n}\right)$.
(d) Here in the original sheet there was a small typo. Obviously as the ψ_{k} above are members of $C_{c}^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ we have proven that $C_{c}^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ lies dense in $W^{1, p}\left(\mathbb{R}^{n}\right)$, i.e. $W_{0}^{1, p}\left(\mathbb{R}^{n} \backslash\{0\}\right)=W^{1, p}\left(\mathbb{R}^{n}\right)$

9.2. Weak solutions to the Dirichlet problem are continuous.

(a) We have seen in class that a minimizer v for $E(v)$ exists and solves $-\Delta v=0$ in the weak sense. Uniqueness now follows from taking an arbitrary $\phi \in H_{0}^{1}(\Omega)$ and defining $w:=v+\phi$. Then an easy computation shows us that

$$
E(w)=E(v+\phi)=E(v)+\int_{\Omega} \nabla v \nabla \phi d x+\frac{1}{2} \int_{\Omega}|\nabla \phi|^{2} d x .
$$

Under the assumption that v solves $-\Delta v=0$ weakly we get after partial integration that

$$
\begin{aligned}
E(w) & =E(v+\phi)=E(v)+\int_{\Omega} \nabla v \cdot \nabla \phi d x+\frac{1}{2} \int_{\Omega}|\nabla \phi|^{2} d x . \\
& =E(v)-\int_{\Omega} \underbrace{\Delta v}_{=0} \phi d x+\frac{1}{2} \int_{\Omega}|\nabla \phi|^{2} d x \geq E(v) .
\end{aligned}
$$

with equality if and only if $v=w$.
(b) Now consider $c:=\|g\|_{L^{\infty}(\partial \Omega)}$, we claim that any weak solution $v \in H^{1}(\Omega)$ of $-\Delta v=0$ with $\left.v\right|_{\partial \Omega}=g$ satisfies

$$
\begin{equation*}
\|v\|_{L^{\infty}(\Omega)} \leq\left\|\left.v\right|_{\partial \Omega}\right\|_{L^{\infty}(\partial \Omega)} \tag{*}
\end{equation*}
$$

and

$$
F(s)= \begin{cases}c & \text { if } s>c \\ s & \text { if }-c \leq s \leq c \\ -c & \text { if } s<-c\end{cases}
$$

Then, $F \circ v \in H^{1}(\Omega)$ with the same trace g and $E(F \circ v) \leq E(v)$. By uniqueness of the minimiser, $F \circ v=v$. Therefore $|v| \leq c$ which proves the claim.

Functional Analysis II
 Solution to Problem Set 9

(c) Let u be harmonic (i.e. solve $-\Delta u$) in Ω and let $g=\left.u\right|_{\partial \Omega} \in C^{0}(\partial \Omega)$. Let $\left(g_{k}\right)_{k \in \mathbb{N}}$ be a sequence in $C^{\infty}(\Omega)$ such that $\left.g_{k}\right|_{\partial \Omega} \rightarrow g$ in $C^{0}(\partial \Omega)$ as $k \rightarrow \infty$. Let $v_{k} \in H_{0}^{1}(\Omega)$ be the weak solution of $-\Delta v_{k}=f_{k}$ where $f_{k}:=\Delta g_{k} \in C^{\infty}(\Omega)$. By elliptic regularity, $v_{k} \in C^{\infty}(\Omega)$ and $\left.v_{k}\right|_{\partial \Omega}=0$. Thus, $u_{k}:=v_{k}+g_{k} \in C^{\infty}(\Omega)$ satisfies $\Delta u_{k}=0$ and $\left.u_{k}\right|_{\partial \Omega}=\left.g_{k}\right|_{\partial \Omega}$. Moreover, by $(*)\left\|u_{k}-u\right\|_{L^{\infty}(\Omega)} \leq\left\|g_{k}-g\right\|_{L^{\infty}(\partial \Omega)} \rightarrow 0$ as $k \rightarrow \infty$. As uniform limit of continuous functions, u is continuous in $\bar{\Omega}$.

9.3. Weak solutions to the biharmonic equation.

Let $\Omega \subset \mathbb{R}^{n}$ be open and bounded with smooth boundary.
(a) The map $\langle\cdot, \cdot\rangle:\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \times\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \rightarrow \mathbb{R}$ given by

$$
\langle u, v\rangle:=\int_{\Omega} \Delta u \Delta v d x
$$

is symmetric and bilinear by definition. Moreover, by the elliptic regularity estimate (Satz 9.1.1), there exists a constant $C<\infty$ such that for every $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$

$$
\langle u, u\rangle \leq(u, u)_{H^{2}(\Omega)}=\|u\|_{H^{2}(\Omega)}^{2} \leq C\|\Delta u\|_{L^{2}(\Omega)}^{2}=C\langle u, u\rangle .
$$

In particular, $\langle u, u\rangle \geq 0$ and $\langle u, u\rangle=0 \Leftrightarrow u=0$; hence $\langle\cdot, \cdot\rangle$ defines a scalar product and $\langle\cdot, \cdot\rangle$ is equivalent to $(\cdot, \cdot)_{H^{2}(\Omega)}$.
(b) Since Ω is bounded, convergence in $H^{2}(\Omega)$ implies convergence in $H^{1}(\Omega)$. Since $H_{0}^{1}(\Omega)$ is closed in $H^{1}(\Omega)$, we obtain that $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ is closed in $H^{2}(\Omega)$. Hence, ($\left.H^{2}(\Omega) \cap H_{0}^{1}(\Omega),\langle\cdot, \cdot\rangle\right)$ is a Hilbert space.
(c) We first claim the following lemma:

Lemma. Let $\Omega \subset \mathbb{R}^{n}$ open and bounded and define

$$
\Xi:=\left\{u \in H^{4}(\Omega) \cap H_{0}^{1}(\Omega) \mid \Delta u \in H_{0}^{1}(\Omega)\right\} .
$$

(i) Then the operator

$$
\begin{aligned}
\Delta^{2}: \Xi & \rightarrow L^{2}(\Omega) \\
& u \mapsto \Delta(\Delta u)
\end{aligned}
$$

is bijective.
(ii) For $f \in L^{2}(\Omega)$, then for $u \in \Xi$ satisfy $\Delta^{2} u=f$ we have that

$$
\begin{equation*}
\forall \varphi \in \Xi: \quad \int_{\Omega} u \Delta^{2} \varphi d x=\int_{\Omega} f \varphi d x \tag{2}
\end{equation*}
$$

Functional Analysis II
Solution to Problem Set 9

ETH Zürich
Spring 2023
(iii) If $u, f \in L^{2}(\Omega)$ satisfy (2), then $u \in \Xi$

Proof. (i) Since the bilaplacian $\Delta^{2}: \Xi \rightarrow L^{2}(\Omega)$ is linear, it suffices to prove $\operatorname{ker}\left(\Delta^{2}\right)=$ $\{0\}$ to conclude injectivity. Let $u \in \Xi$ with $\Delta^{2} u=0$. By definition of Ξ, we have

$$
v:=\Delta u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega) .
$$

Moreover, $\Delta v=0$ combined with the elliptic regularity estimate implies $v=0$. Repeating the same argument for $\Delta u=0$ yields $u=0$ and proves $\operatorname{ker}\left(\Delta^{2}\right)=0$.

To prove surjectivity, let $f \in L^{2}(\Omega)$ be given arbitrarily. Let $v \in H_{0}^{1}(\Omega)$ be the weak solution to $\Delta v=f$ in Ω. By elliptic regularity, $v \in H^{2}(\Omega)$. Let $u \in H_{0}^{1}(\Omega)$ be the weak solution to $\Delta u=v$. Then, by elliptic regularity, $u \in H^{4}(\Omega)$. Consequently, $u \in \Xi$. Since $\Delta^{2} u=f$ by construction, surjectivity of $\Delta^{2}: \Xi \rightarrow L^{2}(\Omega)$ follows.
(ii) Given $f \in L^{2}(\Omega)$, let $u \in \Xi$ satisfy $\Delta^{2} u=f$. Let $\varphi \in \Xi$ be arbitrary. Then, $\nabla \Delta \varphi \in L^{2}(\Omega)$. Since $u \in H_{0}^{1}(\Omega)$, the trace theorem (Satz 8.4.3) implies that $\left.u\right|_{\partial \Omega} \in L^{2}(\partial \Omega)$ is well-defined and vanishes according to Korollar 8.4.3. Analogously, since $\Delta \varphi \in H_{0}^{1}(\Omega)$ by assumption, $\left.(\Delta \varphi)\right|_{\partial \Omega}=0$. Hence, we may integrate by parts twice with vanishing boundary terms to obtain

$$
\begin{equation*}
\int_{\Omega} u \Delta^{2} \varphi d x=-\int_{\Omega} \nabla u \cdot \nabla \Delta \varphi d x=\int_{\Omega} \Delta u \Delta \varphi d x . \tag{*}
\end{equation*}
$$

Since the right hand side of $(*)$ is symmetric in u and φ we may switch the roles of $u, \varphi \in \Xi$ to also obtain

$$
\int_{\Omega} \varphi \Delta^{2} u d x=\int_{\Omega} \Delta u \Delta \varphi d x=\int_{\Omega} u \Delta^{2} \varphi d x .
$$

Since $\varphi \in \Xi$ is arbitrary, the claim follows by substituting $\Delta^{2} u=f$.
(iii) Given $f \in L^{2}(\Omega)$, let $u \in L^{2}(\Omega)$ satisfy

$$
\forall \varphi \in \Xi: \quad \int_{\Omega} u \Delta^{2} \varphi d x=\int_{\Omega} f \varphi d x
$$

According to part (c), there exists $v \in \Xi$ such that $\Delta^{2} v=f$. Moreover, by part (c)

$$
\forall \varphi \in \Xi: \quad \int_{\Omega} v \Delta^{2} \varphi d x=\int_{\Omega} f \varphi d x
$$

Therefore, using again bijectivity of $\Delta^{2}: \Xi \rightarrow L^{2}(\Omega)$ as shown in (c), we have

$$
\forall \varphi \in \Xi: \quad \int_{\Omega}(u-v) \Delta^{2} \varphi d x=0 \quad \Longleftrightarrow \quad \forall \psi \in L^{2}(\Omega): \quad \int_{\Omega}(u-v) \psi d x=0 .
$$

Hence $u-v=0$ in $L^{2}(\Omega)$. Therefore, $u=v \in \Xi$ as claimed.

Now we return to our original proof: Let $f \in L^{2}(\Omega)$. Then the map $H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ given by $v \mapsto \int_{\Omega} f v d x$ is a continuous linear functional. By part (b) we may apply the Riesz representation theorem to conclude that there exists a unique $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ satisfying

$$
\forall v \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega): \quad\langle u, v\rangle=\int_{\Omega} f v d x
$$

In particular, for any $v \in \Xi:=\left\{u \in H^{4}(\Omega) \cap H_{0}^{1}(\Omega) \mid \Delta u \in H_{0}^{1}(\Omega)\right\}$,

$$
\int_{\Omega} u \Delta^{2} v d x=\int_{\Omega} \Delta u \Delta v=\int f v d x
$$

Hence, $u \in \Xi$ according to part (iii) of the previous lemma and

$$
\int_{\Omega}\left(\Delta^{2} u\right) v d x=\int_{\Omega} u \Delta^{2} v d x=\int f v d x
$$

for any $v \in C_{c}^{\infty}(\Omega)$ which implies $\Delta^{2} u=f$.

9.4. Weak solution to a semilinear equation.

We follow the proof of elliptic regularity. To start off, integrating the equation against a testfunction $v \in H_{0}^{1}\left(\mathbb{R}^{N}\right)$ we get

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \nabla u \cdot \nabla v d x=\int_{\mathbb{R}^{n}}(f-c(u)) v d x . \tag{3}
\end{equation*}
$$

Now $|h|>0$ small and an index $n \in\{1, \ldots, N\}$ and we set $v=-D_{n}^{-h}\left(D_{n}^{h}\right) u$ where

$$
D_{k}^{h} u(x):=\frac{u\left(x+h e^{n}\right)-u(x)}{h}
$$

is the standard difference quotient. Recall that for D_{n}^{-h} we have the following identities:

$$
\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \phi D_{n}^{-h} \psi d x=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} D_{n}^{h} \phi \psi d x,
$$

and moreover that

$$
D_{n}^{h} \partial_{x_{i}} \phi=\partial_{x_{i}}\left(D_{n}^{h} \phi\right)
$$

We can write the l.h.s of (3) as

$$
\begin{aligned}
\int_{\mathbb{R}^{N}} \nabla u \cdot \nabla v d x & =\int_{\mathbb{R}^{N}} \nabla u \cdot \nabla\left(D_{n}^{-h} D_{n}^{h} u\right) d x \\
& =\int_{\mathbb{R}^{N}} \nabla u \cdot D_{n}^{-h}\left(\nabla D_{n}^{h} u\right) d x \\
& =\int_{\mathbb{R}^{N}} \nabla u \cdot D_{n}^{-h} D_{n}^{h}(\nabla u) d x \\
& =\int_{\mathbb{R}^{N}} D_{n}^{h} \nabla u \cdot D_{n}^{h}(\nabla u) d x \\
& =\left\|D_{n}^{h} \nabla u\right\|_{L^{2}}^{2} .
\end{aligned}
$$

ETH Zürich
Spring 2023

Now the r.h.s of (3) can be estimated as

$$
\left|\int_{\mathbb{R}^{n}}(f-c(u)) v d x\right|=\left|\int_{\mathbb{R}^{n}}-f D_{n}^{-h} D_{n}^{h} u+c(u) D_{n}^{-h} D_{n}^{h} u d x\right| \leq \int_{\mathbb{R}^{N}}(|f|+|c(u)|)\left|D_{n}^{-h} D_{n}^{h} u\right| d x .
$$

Now note that by the fundamental theorem of calculus we have $c(0)=0$ and $c^{\prime} \in L^{\infty}$ and hence we find

$$
|c(u(x))|=\left|\int_{0}^{u(x)} c^{\prime}(t) d t\right| \leq\left\|c^{\prime}\right\|_{L^{\infty}}|u(x)|
$$

recall that as u has compact support the integral of 0 to $u(x)$ Also note that from that this we have according to remark ($R .28$) the following inequality

$$
\int_{\mathbb{R}^{N}}\left|D_{n}^{-h} D_{n}^{h} u\right|^{2} d x \leq C_{1} \int_{\mathbb{R}^{N}}\left|\nabla D_{n}^{h} u\right|^{2} d x \leq C_{2} \int_{\mathbb{R}^{n}}|\nabla u|^{2} d x .
$$

Taking this all together we find

$$
\begin{aligned}
\left|\int_{\mathbb{R}^{n}}(f-c(u)) v d x\right| & \leq \int_{\mathbb{R}^{N}} \nabla u \cdot \nabla\left(D_{n}^{-h} D_{n}^{h} u\right) d x \\
& \leq \int_{\mathbb{R}^{N}}\left(|f|+\left\|c^{\prime}\right\|_{L^{\infty}}|u|\right)\left|D_{n}^{-h} D_{n}^{h} u\right| d x \\
& \leq \frac{1}{2} \int_{\mathbb{R}^{N}}\left(|f|+\left\|c^{\prime}\right\|_{\infty}|u|\right) d x+\frac{C_{2}}{2} \int_{\mathbb{R}^{N}}|\nabla u|^{2} d x \\
& \leq C_{3}\left(\|f\|_{L^{2}}^{2}+\|u\|_{L^{2}}^{2}+\|\nabla u\|_{L^{2}}^{2}\right)
\end{aligned}
$$

for some $C_{3}>0$ We conclude

$$
\begin{aligned}
\left\|D_{n}^{h} \partial_{x_{i}} u\right\|_{L^{2}}^{2} & \leq\left\|D_{n}^{h} \nabla u\right\|_{2}^{2} \\
& =\left|\int_{\mathbb{R}^{n}}(f-c(u)) v d x\right| \\
& \leq C_{3}\left(\|f\|_{L^{2}}^{2}+\|u\|_{L^{2}}^{2}+\|\nabla u\|_{L^{2}}^{2}\right)
\end{aligned}
$$

We conclude that

$$
\left\|D_{n}^{h} \partial_{x_{i}} u\right\|_{L^{2}}^{2} \leq\left\|D_{n}^{h} \nabla u\right\|_{L^{2}}^{2} \leq C_{3}\left(\|f\|_{L^{2}}^{2}+\|u\|_{L^{2}}^{2}+\|\nabla u\|_{L^{2}}^{2}\right)
$$

for small $|h|>0$, and $i \in\{1, \ldots, N\}$ arbitrary. We conclude by elliptic regularity that $\partial_{x_{i}} u \in H^{1}\left(\mathbb{R}^{N}\right)$ and

$$
\left\|\nabla \partial_{x_{i}} u\right\|_{L^{2}}^{2} \leq\left\|D_{n}^{h} \nabla u\right\|_{2}^{2} \leq C_{3}\left(\|f\|_{2}^{2}+\|u\|_{2}^{2}+\|\nabla u\|_{2}^{2}\right),
$$

so by elliptic regularity we have that $u \in H^{2}\left(\mathbb{R}^{N}\right)$.

9.5. RECAP 1: Fundamental solution to Poisson's equation on \mathbb{R}^{n}

Functional Analysis II
Solution to Problem Set 9

ETH Zürich
Spring 2023
(a) Making the radial symmetry assumption of $u(x)=v(r)$, with $r=\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)^{1 / 2}$ we see that

$$
\frac{\partial r}{\partial x_{i}}=\frac{x_{i}}{r}
$$

We therefore have

$$
\begin{equation*}
\partial_{x_{i}} u=v^{\prime}(r) \frac{x_{i}}{r} \text { and } \partial_{x_{i}}^{2} u=v^{\prime \prime}(r) \frac{x_{i}^{2}}{r^{2}}+v^{\prime}(r)\left(\frac{1}{r}-\frac{x_{i}^{2}}{r^{3}}\right) . \tag{4}
\end{equation*}
$$

We see then that

$$
\Delta u=v^{\prime \prime}(r)+\frac{n-1}{r} v^{\prime}(r),
$$

so $\Delta u=0$ if and only if

$$
v^{\prime \prime}+\frac{n-1}{r} v^{\prime}=0 .
$$

If $v^{\prime} \neq 0$ then we deduce

$$
\log \left(\left|v^{\prime}\right|\right)^{\prime}=\frac{v^{\prime \prime}}{v^{\prime}}=\frac{1-n}{r},
$$

and hence $v^{\prime}(r)=\frac{a}{r^{n-1}}$. For $r>0$ we can therefore solve this ODE as

$$
v(r)= \begin{cases}b \log (r)+c & (n=2) \\ \frac{b}{r^{n-2}}+c & (n \geq 3)\end{cases}
$$

(b) We have

$$
u(x)=\int_{\mathbb{R}^{n}} \Phi(x-y) f(y) d y=\int_{\mathbb{R}^{n}} \Phi(y) f(x-y) d y
$$

Therefore we have for the difference quotient

$$
D_{i}^{h} u=\frac{u\left(x+h e_{i}\right)-u(x)}{h}=\int_{\mathbb{R}^{N}} \Phi(y)\left[\frac{f\left(x+h e_{i}-y\right)-f(x-y)}{h}\right] d y .
$$

but

$$
\frac{f\left(x+h e_{i}-y\right)-f(x-y)}{h} \rightarrow \partial_{x_{i}} f(x-y)
$$

uniformily on \mathbb{R}^{n} as $h \rightarrow 0$, and thus taking the limit on both sides we find

$$
\partial_{x_{i}} u=\int_{\mathbb{R}^{n}} \Phi(y) \partial_{x_{i}} f(x-y) d y
$$

for $i=1, \ldots, n$. Similarly we see for

$$
\partial_{x_{i}} \partial_{x_{j}} u=\int_{\mathbb{R}^{n}} \Phi(y) \partial_{x_{i}} \partial_{x_{j}} f(x-y) d y
$$

Now as the expression on the r.h.s is continuous in x we see that $u \in C^{2}\left(\mathbb{R}^{n}\right)$.
To show that $-\Delta u(x)=f(x)$ we need to take into account that Φ blows up at 0 we need to isolate this singularity. Let $B(0, \epsilon)$ be a ball centered at $x=0$ with radius $\epsilon>0$. Then

$$
\Delta u(x)=\underbrace{\int_{B(0, \epsilon)} \Phi(y) \Delta_{x} f(x-y) d y}_{:=I_{\epsilon}}+\underbrace{\int_{\mathbb{R}^{n} \backslash B(0, \epsilon)} \Phi(y) \Delta_{x} f(x-y) d y}_{:=J_{\epsilon}} .
$$

We then note that

$$
\left|I_{\epsilon}\right| \leq C| | D^{2} f \|_{L^{\infty}} \int_{B(0, \epsilon)}|\Phi(y)| d y= \begin{cases}C \epsilon^{2}|\log (\epsilon)| & (n=2) \\ C \epsilon^{2} & (n \geq 3) .\end{cases}
$$

And integration by parts yields for J_{ϵ} the following

$$
J_{\epsilon}=\underbrace{-\int_{\mathbb{R}^{n} \backslash B(0, \epsilon)} D \Phi(y) \cdot D_{y} f(x-y) d y}_{:=K_{\epsilon}}+\underbrace{\int_{\partial B(0, \epsilon)} \Phi(y) \frac{\partial f}{\partial \nu}(x-y) d S(y)}_{:=L_{\epsilon}}
$$

where ν is the inward pointing unit normal on $\partial B(0, \epsilon)$, where we also implicitly used that

$$
\int_{\mathbb{R}^{n} \backslash B(0, \epsilon)} \Phi(y) \Delta_{x} f(x-y) d y=-\int_{\mathbb{R}^{n} \backslash B(0, \epsilon)} \Phi(y) \Delta_{y} f(x-y) d y
$$

We now also see that

$$
\left|L_{\epsilon}\right| \leq\|D f\|_{L^{\infty}} \int_{\partial B(0, \epsilon)}|\Phi(y)| d S(y) \leq \begin{cases}C \epsilon|\log (\epsilon)| & (n=2) \\ C \epsilon & (n \geq 3)\end{cases}
$$

We note that I_{ϵ} and L_{ϵ} converge uniformily to 0 as $\epsilon \searrow 0$ both for the cases for $n=2$ and $n \geq 3$. Finally we need to estimate K_{ϵ} and hope that it converges to $-f(x)$. We see that

$$
\begin{aligned}
K_{\epsilon} & =\int_{\mathbb{R}^{n} \backslash B(0, \epsilon)} \underbrace{\Delta \Phi(y)}_{=0} f(x-y) d y-\int_{\partial B(0, \epsilon)} \frac{\partial \Phi}{\partial \nu} f(x-y) d S(y) \\
& =-\int_{\partial B(0, \epsilon)} \frac{\partial \Phi}{\partial \nu} f(x-y) d S(y),
\end{aligned}
$$

where the first term vanishes as Φ is the spherically symmetric solution that solves $-\Delta \Phi(y)=0$ away from the origin, by the previous exercise. Now we note that $D \Phi(y)=$ $-\frac{1}{n \alpha(n)} \frac{y}{|y|^{n}}$ for $y \neq 0$ and $\nu=-\frac{y}{|y|}=-\frac{y}{\epsilon}$ on $\partial B(0, \epsilon)$. Consequently $\frac{\partial \Phi}{\partial \nu}=\nu \cdot D \Phi(y)=$ $\frac{1}{n \alpha(n) \epsilon^{n-1}}$ on $\partial B(0, \epsilon)$, where $\alpha(n)$ is the solid angle in n dimensions. Note $n \alpha(n) \epsilon^{n-1}$ is therefore the surface area of the ball $\partial B(0, \epsilon)$. We therefore see that

$$
\begin{aligned}
K_{\epsilon} & =-\frac{1}{n \alpha(n) \epsilon^{n-1}} \int_{\partial B(0, \epsilon)} f(x-y) d S(y) \\
& =-f_{\partial B(x, \epsilon)} f(y) d S(y) \rightarrow-f(x)
\end{aligned}
$$

as $\epsilon \searrow 0$, where we performed a translation. Combining now all these results we see that

$$
\Delta u(x)=-\Delta(\Phi * f)=\lim _{\epsilon \searrow 0} I_{\rightarrow 0} I_{\epsilon}+\underbrace{L_{\epsilon}}_{\rightarrow 0}+\underbrace{K_{\epsilon}}_{\rightarrow-f(x)}=-f(x)
$$

uniformily as required.

9.6. RECAP 2: Fundamental solution to Poisson's equation on the unit ball.

(a) Choosing $B(x, \epsilon)$ for $\epsilon>0$ small and let V_{ϵ} be as in the hint. We then apply Green's formula to $u(y)$ and $\Phi(y-x)$ on V_{ϵ} and see that

$$
\begin{aligned}
& \int_{V_{\epsilon}} u(y) \Delta \Phi(y-x)-\Phi(y-x) \Delta u(y) d y \\
& \quad=\int_{\partial V_{\epsilon}} u(y) \frac{\partial \Phi}{\partial \nu}(y-x)-\Phi(y-x) \frac{\partial u}{\partial \nu}(y) d S(y)
\end{aligned}
$$

where now ν is the outer unit normal to ∂V_{ϵ}. Recall next that $\Delta \Phi(x-y)=0$ for $x \neq y$. Then observe also that

$$
\left|\int_{\partial B(x, \epsilon)} \Phi(y-x) \frac{\partial u}{\partial \nu}(y) d S(y)\right| \leq C \epsilon^{n-1} \max _{\partial B(0, \epsilon)}|\Phi|,
$$

which goes to 0 uniformily in the limit $\epsilon \searrow 0$. Furthermore the previous calculations from exercise 5 show that

$$
\int_{\partial B(x, \epsilon)} u(y) \frac{\partial \Phi}{\partial \nu}(y-x) d S(y)=f_{\partial B(x, \epsilon)} u(y) d S(y) \rightarrow u(x) .
$$

as $\epsilon \searrow 0$. Hence sending $\epsilon \rightarrow 0$ yields the formula

$$
\begin{gather*}
u(x)=\int_{\partial \Omega} \Phi(y-x) \frac{\partial u}{\partial \nu}(y)-u(y) \frac{\partial \Phi}{\partial \nu}(y-x) d S(y) \tag{5}\\
-\int_{\Omega} \Phi(y-x) \Delta u(y) \tag{6}
\end{gather*}
$$

as desired.
(b) To start off we apply now Green's formula to the corrector function $\phi^{x}(y)$. We see that

$$
\begin{align*}
-\int_{\Omega} \phi^{x}(y) \Delta u(y) d y & =\int_{\partial \Omega} u(y) \frac{\partial \phi^{x}}{\partial \nu}(y)-\phi^{x}(y) \frac{\partial u}{\partial \nu}(y) d S(y) \tag{7}\\
& =\int_{\partial \Omega} u(y) \frac{\partial \phi^{x}}{\partial \nu}(y)-\Phi(y-x) \frac{\partial u}{\partial \nu}(y) d S(y) \tag{8}
\end{align*}
$$

Now defining $G(x, y)=\Phi(y-x)-\phi^{x}(y)$ and adding (7) to (5), we find

$$
u(x)=-\int_{\partial \Omega} u(y) \frac{\partial G}{\partial \nu}(x, y) d S(y)+\int_{\Omega} G(x, y) \Delta u(y) d y \text { for } x \in \Omega
$$

Thus if $u \in C^{2}(\bar{\Omega})$ solves

$$
\begin{align*}
-\Delta u & =f \quad \text { on } \Omega \tag{9}\\
u & =g \quad \text { on } \partial \Omega, \tag{10}
\end{align*}
$$

we get by plugging in the above that

$$
\begin{equation*}
u(x)=-\int_{\partial \Omega} u(y) \frac{\partial G}{\partial \nu}(x, y) d S(y)+\int_{\Omega} G(x, y) \Delta u(y) d y \text { for } x \in \Omega \tag{11}
\end{equation*}
$$

as required, with $\frac{\partial G}{\partial \nu}(x, y):=D_{y} G(x, y) \cdot \nu(y)$.
(c) As $\Phi(y-x) \propto|x-y|^{-(n-2)}$ on $\partial B(0,1)$ we note that $\phi^{x}(y)$ is harmonic for $y \neq \tilde{x}$ (i.e. $-\Delta \phi^{x}(y)=0$. Note also that for $y \in \partial B(0,1)$

$$
\begin{aligned}
|x|^{2}|y-\tilde{x}|^{2} & =|x|^{2}\left(|y|^{2}-\frac{2 x \cdot y}{|x|^{2}}+\frac{1}{|x|^{2}}\right) \\
& =|x|^{2}-2 y \cdot x+1=|x-y|^{2}
\end{aligned}
$$

as $|y|=1$. Therefore we see that $|x||y-\tilde{x}|^{-(n-2)}=|x-y|^{-(n-2)}$ and we conclude (using the definition of Φ from the previous exercise) that

$$
\begin{aligned}
\phi^{x}(y) & =\Phi(|x|(y-\tilde{x})) \\
& =\frac{1}{n(n-2) \alpha(n)} \frac{1}{(|x||y-\tilde{x}|)^{n-2}} \\
& =\frac{1}{n(n-2) \alpha(n)} \frac{1}{|x-y|^{n-2}}=\Phi(y-x),
\end{aligned}
$$

so $\phi^{x}(\cdot)$ fullfills the boundary conditions.
(d) From the previous exercise and the definition of the greenfunction we see that the Green's function for the unit ball is given by

$$
\begin{equation*}
G(x, y):=\Phi(y-x)-\Phi(|x|(y-\tilde{x})) \tag{12}
\end{equation*}
$$

for $x, y \in B(0,1)$ with $x \neq y$. Assume now that $u \in C^{2}(\bar{\Omega})$ solves

$$
\begin{align*}
-\Delta u & =0 \quad \text { on } \Omega \tag{13}\\
u & =g \quad \text { on } \partial \Omega, \tag{14}
\end{align*}
$$

ETH Zürich

Spring 2023
then from (11) we get

$$
\begin{equation*}
u(x)=-\int_{\partial B(0,1)} g(y) \frac{\partial G}{\partial \nu}(x, y) d S(y) . \tag{15}
\end{equation*}
$$

We then have from (12) that

$$
\partial_{y_{i}} G(x, y)=\partial_{y_{i}} \Phi(y-x)-\partial_{y_{i}} \Phi(|x|(y-\tilde{x})) .
$$

but

$$
\partial_{y_{i}} \Phi(y-x)=\frac{1}{n \alpha(n)} \frac{x_{i}-y_{i}}{|x-y|^{n}}
$$

and furthermore we have

$$
\begin{aligned}
\partial_{y_{i}} \Phi(|x|(y-\tilde{x})) & =\sum_{i=1}^{n} y_{i} \partial_{y_{i}} G(x, y) \\
& =-\frac{1}{n \alpha(n)} \frac{1}{|x-y|^{n}} \sum_{i=1}^{n} y_{i}\left(\left(y_{i}-x_{i}\right)-y_{i}|x|^{2}+x_{i}\right) \\
& =-\frac{1}{n \alpha(n)} \frac{1-|x|^{2}}{|x-y|^{n}}
\end{aligned}
$$

plugging this back into (15) we get the representation formula

$$
\begin{equation*}
u(x)=\frac{1-|x|^{2}}{n \alpha(n)} \int_{\partial B(0,1)} \frac{g(y)}{|x-y|^{n}} d S(y) \tag{16}
\end{equation*}
$$

For the same boundary value problem on $B(0, r)$ we can rescale the equation to

$$
\begin{equation*}
u(x)=\int_{\partial B(0, r)} K(x, y) g(y) d y \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
K(x, y):=\frac{r^{2}-|x|^{2}}{n \alpha(n) r} \frac{1}{|x-y|^{n}} \tag{18}
\end{equation*}
$$

with $x \in B(0, r)$ and $y \in \partial B(0, r)$

