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9.1. Another density statement

(a) For p < n we can prove the statement by taking ¢, = ¥ (kz) with ¢ € C*(R"™) as
described in the hint. WLOG we have ¢» = 1 on B;(0) and ¢, = 1 on any neighbourhood

of x = 0 for any k& € N. After substitution of y = kx we get

Vel = k= [ (Vo) Pdy = Ck 0

(b) For p = n the construction above fails. Instead let us consider the sequence

1, for for |z| < 1/(e""") = ry

Yr(x) = { log(log(1/]z|)) — k  otherwise
0 for for |z| > 1/e" = Ry,

If we now take the derivative we have that

|z| 7" log(|z|)|™™, for ry < |z| < Ry

0, otherwise.

V()" = {

If we now substitute s = log(1/r) we get the estimate

n—1 log(1/71) (
r . C/ S
log(1/Ry) S"

Vol de<c [ d

n < -

/Rn‘ Vel do < / | log(r)|"
Cn) |™

:W — 0 as kf—>OO

Tk

After convoluting with a standard mollifer

Pe(x) = e "P(x/e),

where we have )
e =2 /I, for|z| <1
o) =4 T o
0 for |z] > 1

we get that ¢, * Yy (z) — Uy, € C2°(R™) in WP, as required.

(c) This now follows with the constructions we have shown above when we set

U = (1 — ¢k)u

We have that that
uR — U pointwise
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and moreover that

Vu, = Vu—u (V’(/)k) - @/Jk Vu.
—0 :/0/

pointwise.
Noting that ||ug||r < 2||ul|re and ||[Vug||e < 2||Vul|e + |[uVeg|| e we conclude with
—_——

—0in LP
dominated convergence that uj, — w in W1P(R").

(d) Here in the original sheet there was a small typo. Obviously as the v, above are
members of C°(R™\{0}) we have proven that C>°(R™\{0}) lies dense in W'P(R"), i.e.
WoP(R™\{0}) = W (R")

9.2. Weak solutions to the Dirichlet problem are continuous.

(a) We have seen in class that a minimizer v for F(v) exists and solves —Av = 0 in the
weak sense. Uniqueness now follows from taking an arbitrary ¢ € H}(€2) and defining
w = v + ¢. Then an easy computation shows us that

1
E(w)=E(v+ ¢)=E(v) + /Q VoVedr + 5 /Q |Vo|*da.
Under the assumption that v solves —Av = 0 weakly we get after partial integration that
1
E(w) = E(v+ 6) = E(v) + /Q Vo Vods + - /Q Vo|2da.

= E(v) — /Q%%bedx + ;/Q|V¢|2dx > E(v).

with equality if and only if v = w.

(b) Now consider ¢ := ||g| = (s0), we claim that any weak solution v € H*(Q2) of —Av =0
with v|gq = g satisfies

vl @) < llv]oallL~(on) (%)
and
c
c it s > ¢, TF
F(s)=<s if —c<s<eg, s
—c ifs< —c.
—c

Then, F ov € H'(Q) with the same trace g and E(F ov) < F(v). By uniqueness of the
minimiser, /' ov = v. Therefore |v| < ¢ which proves the claim.
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(c) Let u be harmonic (i.e. solve —Au) in  and let g = u|gq € C°(0Q). Let (gr)ren
be a sequence in C*°(£2) such that gilasq — ¢ in C°(OQ) as k — oo. Let v, € HJ(Q)
be the weak solution of —Awv, = f; where f; := Agr € C*(Q2). By elliptic regularity,
v € C®(Q) and vglgo = 0. Thus, ug = v, + gx € C°(Q) satisfies Auy, = 0 and
ugloq = grlaa. Moreover, by (*) [Jug — ul[r=@) < gk — gllz=@a) — 0 as k — oo. As
uniform limit of continuous functions, u is continuous in 2.

9.3. Weak solutions to the biharmonic equation.
Let €2 C R™ be open and bounded with smooth boundary.

(a) The map (-,-): (H2(Q) N HY(Q)) x (H*(Q) N HY(Q)) — R given by
(u,v) == /QAUAU dx

is symmetric and bilinear by definition. Moreover, by the elliptic regularity estimate
(Satz 9.1.1), there exists a constant C' < oo such that for every u € H?(Q) N H(Q)

(u,u) < (u, ) m2() = [ulliio) < ClAulTzq) = Clu,u).

In particular, (u,u) > 0 and (u,u) = 0 < u = 0; hence (-, -) defines a scalar product and
(-,-) is equivalent to (-, ") g2(q)-

(b) Since € is bounded, convergence in H?({2) implies convergence in H'(2). Since
H}(Q) is closed in H'(Q), we obtain that H*(2) N H} () is closed in H*(2). Hence,
(H?(Q) N H}(Q), (-,-)) is a Hilbert space.

(c) We first claim the following lemma:

Lemma. Let 2 C R" open and bounded and define
=Z:={ue H(Q)N Hy(Q) | Au € H)(Q)}.
(i) Then the operator

A E— L*(Q)
u— A(Au)

is bijective.

(ii) For f € L*(Q), then for u € = satisfy A*u = f we have that

Vpe=: /QuA2<p dx = /wa dzx. (2)
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(iii) If u, f € L*(Q) satisfy (2), then u € =

Proof. (i) Since the bilaplacian A?: = — L*(Q) is linear, it suffices to prove ker(A?) =

(iii)

{0} to conclude injectivity. Let u € = with A%u = 0. By definition of =, we have
vi= Au € H*(Q) N Hy(Q).

Moreover, Av = 0 combined with the elliptic regularity estimate implies v = 0.
Repeating the same argument for Au = 0 yields v = 0 and proves ker(A?) = 0.

To prove surjectivity, let f € L*(Q) be given arbitrarily. Let v € H}(Q) be the weak
solution to Av = f in Q. By elliptic regularity, v € H*(Q). Let u € H}(Q) be the
weak solution to Au = v. Then, by elliptic regularity, u € H*(Q2). Consequently,
u € Z. Since A%u = f by construction, surjectivity of A%: Z — L*(Q) follows.

Given f € L*(Q), let u € = satisfy A’?u = f. Let ¢ € = be arbitrary. Then,
VAyp € L*(Q). Since u € H}(), the trace theorem (Satz 8.4.3) implies that
ulaq € L*(09) is well-defined and vanishes according to Korollar 8.4.3. Analogously,
since Ap € Hy(Q) by assumption, (Ap)|aq = 0. Hence, we may integrate by parts
twice with vanishing boundary terms to obtain

/QuA290 dr = —/QVU -VApdr = /QAuAcp dz. ()

Since the right hand side of (x) is symmetric in u and ¢ we may switch the roles of
u, p € = to also obtain

/gaAQwa:/AuAgodz:/uAggadx.
Q Q Q

Since ¢ € Z is arbitrary, the claim follows by substituting A%u = f.
Given f € L?(Q), let u € L?(Q) satisfy

Vo e = /QUAQQO dr = /chp dzx. (1)
According to part (c), there exists v € = such that A%?v = f. Moreover, by part (c)
Ypoez: /UAngdx:/fgpdx.
Q Q
Therefore, using again bijectivity of A%: Z — L?*(2) as shown in (c), we have
Voe=: /Q(U—U)AQQOCZJ}:O JON Vi € L*(Q) /Q(u—v)zbdx:O.

Hence u — v = 0 in L?(Q). Therefore, u = v € = as claimed.
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Now we return to our original proof: Let f € L*(Q2). Then the map H*(Q) N H} () — R
given by v — [, fvdz is a continuous linear functional. By part (b) we may apply the
Riesz representation theorem to conclude that there exists a unique u € H*(Q) N Hy(Q)
satisfying

Yo € H*(Q) N HY(Q) : (u,v>:/9fvdx.

In particular, for any v € Z:= {u € HY(Q)N HJ(Q) | Au € H}(Q)},
/ uA*vdr = / AulAv = /fv dx.
Q Q

Hence, u € = according to part (iii) of the previous lemma and

/(Agu)v dx = / ulA*v dr = /fv dx
Q Q
for any v € C°(Q2) which implies A%u = f.

9.4. Weak solution to a semilinear equation.

We follow the proof of elliptic regularity. To start off, integrating the equation against a
testfunction v € H (RY) we get

Vu - Vodr = /n(f —c(u))v de. (3)

RN
Now |h| > 0 small and an index n € {1,..., N} and we set v = —D_"(D")u where
u(x + he™) — u(x)
h
is the standard difference quotient. Recall that for D, " we have the following identities:

[ | epivdr= [ [ Diowdr,
n JRn Rn JR

Diu(z) =

and moreover that
DZ%(? = awl(DZ(b)
We can write the L.h.s of (3) as
Vu-Vvdr = Vu - V(D" D"u)dx

RN RN n n

= [ Vu-D;"(VD')dx

n n

= [ Yu-D,"DMNVu)dz

n n

= [ D'Vu-DMNVu)dx

RN
= 1D, VullZ-.

last update: 27 May 2023 5 5/11



D-MATH
Prof. P. Hintz
Assistant: P. Peters

Functional Analysis Il ETH Ziirich
Solution to Problem Set 9 Spring 2023

Now the r.h.s of (3) can be estimated as

L = elw))vda

—fD; "D+ c(u) D, D udz

< [ U1+ le()) |D;" Dk da.

R

Now note that by the fundamental theorem of calculus we have ¢(0) = 0 and ¢ € L*

and hence we find @
e(u@))| = | [ )t
0

recall that as u has compact support the integral of 0 to u(x) Also note that from that
this we have according to remark (R.28) the following inequality

< el o< lu(@)],

/ D= Dl? die < Cl/ IV Dhuf? de < 02/ Vul? da.
RN RN Rn

Taking this all together we find

/ (f —c(u))v dx’ S/ Vu - V(D" D"u)dx
n RN
< [ UF1+ liell=ul) 1D Dhu] da

<5 Lo U ek ot 2 [ 9P dr
< (|11 + llul[22 + | Vull22)
for some C5 > 0 We conclude

1Dy, w22 < ||DVul
—|[ (¢ = ctwpvds
< Cy(|I112 + llullZe + 1 Vul )

We conclude that
|DEO,,ull72 < || DEVu|[72 < Cs(|1f][72 + [ullz + [[Vul|72)

for small |h| > 0, and i € {1,..., N} arbitrary. We conclude by elliptic regularity that
Op,u € HY(RY) and

IVOs,u

72 < IDEVul3 < Cs (11F13 + [ull + [|Vull3)

so by elliptic regularity we have that v € H2(RY).

9.5. RECAP 1: Fundamental solution to Poisson’s equation on R"
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(a) Making the radial symmetry assumption of u(x) = v(r), with r = (22 + ... 4+ 22)1/2
we see that

or T;
or; r
We therefore have
2 2
/ Ty 2 N Z; / 1 Z;
Op,u =0 (r)7 and 07 u = (7“)72 +0'(r) (7’ — 7‘3> (4)
We see then that 1
Au =0"(r) + n v'(r),
r
so Au = 0 if and only if
1
v n v =0
T
If v # 0 then we deduce
v 1—mn
1 1Y = — =

and hence v'(r) = ;. For 7 > 0 we can therefore solve this ODE as

o(r) = {blog(r) +c (n=2)

b +¢ (n > 3).

rn

(b) We have
u@) = [ @@ —y)fy)dy= [ o@)f—y)dy

Therefore we have for the difference quotient

D?u = u(

a:+he}i)—U(w) :/RN(D(?/) lf<x+hei—:}yl)—f(x—y) a.

but

f(:v—l—hei—ifyb)_f(x_y) — Oy, f(x —y)

uniformily on R™ as h — 0, and thus taking the limit on both sides we find

O = [ @) S~ y) dy

for « = 1,...,n. Similarly we see for
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Now as the expression on the r.h.s is continuous in x we see that v € C?*(R").
To show that —Au(z) = f(z) we need to take into account that ® blows up at 0 we need
to isolate this singularity. Let B(0, €) be a ball centered at x = 0 with radius € > 0. Then

Nu(r) = [ S@AS =)yt [ @)D —y) dy.

=1 =Je

We then note that
Ce?|log(e n=2
|IE|SC’||D2f||Loo/B(0€)|CI>(y)|dy:{ [log(e)]  (n=2)

Cé? (n>3

And integration by parts yields for J. the following

0
Je=— /R w0 VOW)  Duf (@ = y) dy+ a(y) 2L

50, ey (z —y)dS(y)

=K. i=Le

where v is the inward pointing unit normal on 0B(0, €), where we also implicitly used
that

/R w0y WA (T —y) dy = = /]R oy EOBf (@ =) dy

We now also see that
Cellog(e)] (n=2)
L] < [|Df]| 1 / B(y)| dS(y) <
Ll < [IDfllL BB(O,E)I ()| (y)_{cE (n>3)
We note that I. and L. converge uniformily to 0 as € N\, 0 both for the cases for n = 2
and n > 3. Finally we need to estimate K. and hope that it converges to —f(x). We see
that

0P
K. = AP — ) dy — il —u)d
oo 220) fe =gy dy— [ (e —y) dS(y)
od
== B0, %f(x —y) dS(y),

where the first term vanishes as ® is the spherically symmetric solution that solves
—A®(y) = 0 away from the origin, by the previous exercise. Now we note that D®(y) =
o fory#0and v =—% = —¥ on 9B(0,¢€). Consequently 2 = v - DP(y) =

 na(n) [y vl — o
W on 0B(0,¢€), where a(n) is the solid angle in n dimensions. Note na(n)e

therefore the surface area of the ball 0B(0,¢€). We therefore see that

n—1 :

1
K. = _W /8B(O,e) f(z—y)dS(y)
= Lopeg T W 4W) = = f(2)
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as € \( 0, where we performed a translation. Combining now all these results we see that

Au(w) = =A@« f) =lim I + L+ K. =—f(x)

—0 —0 ——f(z)

uniformily as required.

9.6. RECAP 2: Fundamental solution to Poisson’s equation on the unit ball.

(a) Choosing B(x,€) for e > 0 small and let V, be as in the hint. We then apply Green’s
formula to u(y) and ®(y — x) on V; and see that

| u@)A0(y — ) - @y - )du(y) dy
= [ wl) 5 (= 2) ~ By — ) 5o0) dS()

Ve

where now v is the outer unit normal to 9V,. Recall next that A®(x —y) = 0 for = # y.
Then observe also that

ou
/GBW) Dy —2)5 (1)dS (W)

which goes to 0 uniformily in the limit € \, 0. Furthermore the previous calculations
from exercise 5 show that

< Ce" ! max |®,
0B(0,¢)

0P
/8 s "W g, ¥~ 2)dSW) = ]é oy UWVS () = (@),

as € \( 0. Hence sending ¢ — 0 yields the formula

u(r) = [ 8y~ )9 (y) — uly) oty — 7) dS(y) )

—/ y — z)Auly), (6)

as desired.

(b) To start off we apply now Green’s formula to the corrector function ¢*(y). We see
that

[ 5 wduty) dy = [ w)% () 6 () 9 (y) dS(y) M)
= [ w5 )~ 2ty - m>?j<y> sw.
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Now defining G(z,y) = ®(y — x) — ¢"(y) and adding (7) to (5), we find
oG

u(r) = —/89 U(y)g(x,y)ds(y) +/QG(fE,y)AU(y)dy for € Q,

Thus if u € C*(Q2) solves

—Au=f on Q 9)
u=g on 0, (10)

we get by plugging in the above that
u(x) ——/ u( )a—G(x )dS( )+/ G(z,y)Au(y)dy for z € (11)
= 00, Yy o » Y Yy 0 Y y)ay )
as required, with %% (z,y) := D,G(z,y) - v(y).

(c) As ®(y — z) o< |z — y|~ ™2 on OB(0, 1) we note that ¢ (y) is harmonic for y # &
(i.e. —A¢”(y) = 0. Note also that for y € 0B(0,1)

—(n—2

as |y| = 1. Therefore we see that |z|ly — Z|~" 2 = |z — y| ) and we conclude (using

the definition of ® from the previous exercise) that

¢*(y) = ®(|z|(y — 7))

B 1 1
n(n —2)a(n) (|zlly — 2|2
= . ! ; =Py — ),

so ¢*(+) fullfills the boundary conditions.

(d) From the previous exercise and the definition of the greenfunction we see that the
Green’s function for the unit ball is given by

G(r,y) = Oy — x) — O(|z[(y — 7)) (12)

for x,y € B(0,1) with z # y. Assume now that u € C?(f2) solves

—Au=0 on (13)
u =g on 0, (14)
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then from (11) we get
oG
= — — dS(y). 15
u@w) =~ [ o) ) dS) (15)

We then have from (12) that
0y, G(z,y) = 9y, (y — ) — 0,,(|z[(y — T)).

but
1 x—wy

W= 8 = o e — ol

and furthermore we have

0,8(|z|(y — 7)) = 3 110, Gz y)

=1

1 1 n
= - = iy — =) — yalw* + @)
) o= 3"
11— |z?

na(n) [ =yl

plugging this back into (15) we get the representation formula

u(w) = 2= ""3|2/8 9B sy, (16)

na(n) Jopoy) v —y/»

For the same boundary value problem on B(0,7) we can rescale the equation to

u(r) = /aB o) K(z,y)g9(y)dy, (17)

where
r?—|z? 1

K= o=yl

(18)

with z € B(0,7) and y € dB(0,r)
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